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Abstract: We propose a novel approach to design discrete-time state feedback controllers for
sampled control systems with guaranteed stability under arbitrary sampling times that fulfill the
Nyquist-Shannon condition. The key idea is borrowed from symplectic integration and backward
error analysis of Hamiltonian systems: The closed-loop target system is the discretized version
of a continuous-time system with appropriately shaped Hamiltonian, where a symplectic scheme
is used for discretization. We adopt this argumentation for a systematic discrete-time design
procedure for controllable linear systems based on the implicit midpoint rule. We motivate the
approach on the example of two basic linear systems under zero order hold sampling, we show
the construction of target systems with desired eigenvalues based on the discrete-time controller
canonical form, and we illustrate the quality of the main result on a random sixth order system.
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1. INTRODUCTION

Continuous-time control design and implementation in
sampled-data control systems can lead to the deterioration
of the closed-loop dynamics or even instability, which is
a well-known fact. Therefore, for non-negligible sampling
times, a discrete-time control design is mandatory, see e.g.
Ogata et al. (1995). Physically inspired state feedback con-
trol designs like Interconnection and Damping Assignment
Passivity-Based Control (IDA-PBC) (Ortega et al., 2002)
or Controlled Lagrangians (Bloch et al., 2000) are typically
split in two steps: While energy shaping renders the closed-
loop system conservative with the desired equilibrium the
minimum of the shaped energy, damping injection adds
dissipation to enforce asymptotic stability of the closed-
loop equilibrium.

To translate this rationale to sampled control systems,
the discrete-time target system in the energy shaping step
must be conservative as well. Appropriate candidate tar-
get systems result from symplectic numerical integration
of continuous-time conservative (e.g. Hamiltonian) sys-
tems, see Hairer et al. (2006) or Kotyczka and Lefèvre
(2019) for a corresponding definition of discrete-time port-
Hamiltonian systems. These discrete-time models lack nu-
merical dissipation and feature conserved quantities like a
modified Hamiltonian, which are related to the invariants
of the underlying continuous-time system, and which can
be determined via backward error analysis.

? The work was supported by Deutsche Forschungsgemeinschaft
(project number 317092854) and Agence Nationale de la Recherche
(ID ANR-16-CE92-0028), project INFIDHEM.

In this contribution, we present the systematic assignment
of a corresponding “symplectic” discrete-time target sys-
tem for the case of sampled controllable linear systems.
We exploit the transformation of the (exact) zero order
hold equivalent to discrete-time controller canonical form.
Based on two basic examples, which illustrate instability
under sampling and its avoidance, as well as discrete-time
energy shaping by the implicit midpoint rule, we motivate
the approach, before generalizing it to linear SISO systems.

Although we do not stress the energy-based perspective in
the main result of this paper, the link between eigenvalue
assignment and energy shaping for stabilizable linear sys-
tems can be easily established via LMIs, see Prajna et al.
(2002). Therefore, symplectic integration schemes are an
appropriate choice in the considered context.

Recent control design approaches, which aim at a tar-
get system defined via geometric integration, are mainly
based on discrete gradient methods that enforce the exact
conservation of a desired Hamiltonian. Laila and Astolfi
(2005) present a discrete-time IDA-PBC approach for
separable systems, which is based on the forward Euler
discretization of the open-loop mechanical system. Energy-
based discrete-time control design using the construction
of discrete gradients for the original and the closed-loop
mechanical-type system is the topic of Gören Sümer and
Yalçin (2008). Tiefensee et al. (2010) propose the sampled-
data implementation of a continuous-time IDA-PBC con-
troller based on Taylor series expansion to determine the
piecewise constant control input. This way, the value of the
closed-loop energy is matched with the continuous-time so-
lution in the sampling instants. In Moreschini et al. (2019),
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Fig. 1. Continuous-time SISO system, embedded in a
sampled control loop.

discrete-time Hamiltonian systems are defined based on
higher order discrete gradients.

The remainder of the paper is structured as follows. Sec-
tion 2 gives two introductory examples, which show the
utility of the implicit midpoint rule as a target system
structure. In Section 3, we present as the main result
the systematic procedure for discrete-time eigenvalue as-
signment based on the implicit midpoint rule. A random
sixth-order numerical example illustrates the quality of
our approach, in comparison with quasi-continuous state
feedback design, in Section 4. We give a summary and
concluding remarks in Section 5.

2. INTRODUCTORY EXAMPLES

The two basic examples in this section motivate the use of
the implicit midpoint rule to define a discrete-time target
system for state feedback control. The simple integrator il-
lustrates the unconditional stabilizability, i.e. independent
of the sampling time h. In the second example, we show
that the implicit midpoint rule allows to endow the double
integrator with a discrete-time conservative behavior in
the sense of energy shaping.

2.1 Integrator

We consider the (continuous-time) integrator

ẏ(t) = u(t), (1)

together with a proportional controller

u(t) = K(v(t)− y(t)). (2)

For positive controller gain K > 0, the continuous-time
closed-loop system (a lag element)

ẏ(t) = −Ky(t) +Kv(t) (3)

is asymptotically (and BIBO) stable.

Now we put the plant between a zero-order hold element
and a sampler with constant sampling time h > 0, see Fig.
1. We apply the same control law in discrete time (the
quasi-continuous implementation),

uk = K(vk − yk), K > 0. (4)

The exact discrete-time representation of the sampled
plant (zero order hold equivalence) is

yk+1 = yk + huk. (5)

With (4), we obtain the discrete-time closed-loop system

yk+1 = (1− hK)yk + hKvk. (6)

Instability of the closed loop occurs for |1−hK| > 1, which
is the case for sampling times h > 2

K .

Let us now follow a different approach. We design a
controller such that the closed-loop system corresponds to

hK

λ(h)

1

−1

2 4

(a)

(b)

Fig. 2. Eigenvalues for closed-loop system (6) (a, red) and
system (10) (b, blue) over hK.

the symplectic discretization of the first order lag element
(3). We use the implicit midpoint rule 1 as one of the
simplest symplectic schemes. This gives

yk+1 = yk −
hK

2
(yk + yk+1) +

hK

2
(vk + vk+1). (7)

Matching this target dynamics with (5), we obtain

uk = −K
2

(yk + yk+1) +
K

2
(vk + vk+1). (8)

To render the discrete-time control law causal (the future
reference value vk+1 can be assumed known), we substitute
the system dynamics (5) on the right hand side and obtain,
after rearrangement,

uk = − K

1 + hK
2

yk +
K

2 + hK
(vk + vk+1). (9)

For stability analysis, we set vk ≡ 0 for all k, substitute
(9) in (5), and obtain

(1 +
hK

2
)yk+1 = (1− hK

2
)yk, (10)

which is exactly the target dynamics (7). The evolution
of the eigenvalues for this discrete-time system (the term
on the left is invertible for all hK > 0) in terms of hK
is depicted in Fig. 2, as well as the eigenvalues for (6).
Unlike the control law (4) designed in continuous time,
for which stability is lost for h > 2

K , the closed-loop
eigenvalue under the controller (9) remains in the unit
circle for all h > 0. For values h > 2

K , the eigenvalue
moves to the negative real line, which means a stable
deterioration of the dynamics in the sense of an alternating
system response.

2.2 Double integrator

We now consider the double integrator

ẋ(t) =

[
0 1
0 0

]
x(t) +

[
0
1

]
u(t)

y(t) = [1 0]x(t).

(11)

The continuous-time energy shaping feedback control law
u(t) = ues(t) with

ues(t) = − [1 0]x(t) + v(t) (12)

renders the system an undamped oscillator 2 (the output
remains unchanged)

ẋ(t) =

[
0 1
−1 0

]
x(t) +

[
0
1

]
v(t). (13)

1 Which is the Gauss-Legendre scheme with s = 1 stage and
coincides for linear systems with the trapezoidal rule.
2 Which can be written as Hamiltonian system with quadratic
Hamiltonian H(x) = 1

2
xTx.
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Fig. 3. Locations of the complex conjugate (red and
blue) eigenvalues of the state matrix in (17), h ∈
{0.1, 0.3, 0.5, . . . , 4.3}.

The additional passive output or damping injection feed-
back v(t) = vdi(t) with

vdi(t) = −r [0 1]x(t), r > 0 (14)

yields the closed-loop state representation of a damped
oscillator

ẋ(t) =

[
0 1
−1 r

]
x(t). (15)

As in the previous example, we consider the zero order
hold equivalent discrete-time state representation

xk+1 =

[
1 h
0 1

]
xk +

[
h2

2
h

]
uk (16)

of the double integrator. Substituting the discrete-time
evaluation of the energy shaping control law (12) in (16)
leads to the closed-loop dynamics

xk+1 =

[
1− h2

2 h
−h 1

]
xk +

[
h2

2
h

]
vk. (17)

Figure 3 illustrates that for arbitrary h > 0, the eigenval-
ues of the closed-loop system have magnitude greater than
1, i.e. they lie outside the unit circle. The quasi-continuous
implementation fails to impose the desired conservative
system behavior of a lossless oscillator.

As in the previous section, we define the discretization of
(13) using the implicit midpoint rule as the target system:

xk+1 = xk +
h

2

([
0 1
−1 0

]
(xk + xk+1) +

[
0
1

]
(vk + vk+1)

)
.

(18)
Matching this desired state representation with the open-
loop system (16), we obtain two scalar matching equations.

First matching equation Identifying the first components
x1,k+1, we get

x1,k +
h

2
(x2,k + x2,k+1) = x1,k + hx2,k +

h2

2
uk. (19)

After cancellation of x1,k on both sides and division by h
2 ,

what remains is

x2,k+1 = x2,k + huk. (20)

This is exactly the second equation of (16), i.e. a part of
the discrete-time dynamics, and therefore a valid equation.

Second matching equation Doing accordingly with x2,k+1,
we obtain

x2,k−
h

2
(x1,k +x1,k+1)+

h

2
(vk +vk+1) = x2,k +huk. (21)

Fig. 4. Eigenvalue locations of the matrix pencil P (λ) =
λE −A as in (23), h ∈ {0.1, 0.3, 0.5, . . . , 4.3}.

Cancellation of x2,k and substitution of x1,k+1 according
to (16) yields the control law

uk =
1

1 + h2

4

(
−x1,k −

h

2
x2,k +

1

2
(vk + vk+1)

)
. (22)

Substitution of the control law in the open-loop state rep-
resentation (16) yields an expression which, by appropriate
matrix multiplication, can be brought to the form[

1 −h
2

h
2 1

]
xk+1 =

[
1 h

2

−h
2 1

]
xk +

[
0
h
2

]
(vk + vk+1). (23)

This is exactly the descriptor form (E,A, b) of the target
system (18). The complex conjugate eigenvalues of the
matrix pencil P (λ) = λE − A are depicted in Fig. 4
(red and blue). We note that energy shaping in the sense
of endowing the system with conservative discrete-time
target dynamics is possible, see the phase portrait in Fig.
5 for illustration.

Fig. 5. Phase portrait under the symplectic energy shaping
controller in Example 2 with sampling time h = 1.
Simulation until t = 150.

Remark 1. In view of the discretization of (15) and (18), it
is straightforward to see that vk = −rx2,k is the appropri-
ate discrete-time damping injection, which corresponds to
the implicit midpoint rule, and which could be realized in
conjunction with energy shaping in a one-step approach.

3. MAIN RESULT

We present as the main result of the paper a procedure for
discrete-time symplectic eigenvalue assignment in the sense
that the discrete-time target system, based on which the
state feedback controller is derived, is the discretization
with the implicit midpoint rule of a continuous-time target
system

ẋ(t) = ACx(t), σ(AC) ∈ C−, (24)
where σ(AC) denotes the spectrum of the matrix AC .
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3.1 Preliminaries and notation

We consider controllable SISO linear time invariant sys-
tems 3 (Ac0, bc0) of order n that are sampled as sketched
in Fig. 1. As long as the Nyquist-Shannon sampling con-
dition 4 is satisfied, also the zero order hold sampled
system 5 (Ad0, bd0) = (eAc0h,A−1

c0 (eAc0h − I)bc0) is con-
trollable 6 . Therefore it can be transformed to controller
canonical form (CCF)

xk+1 =


0 1

. . .
. . .
0 1

−a0 . . . −an−2 −an−1

xk +


0
...
0
1

uk, (25)

shortly written (Ad, bd).

By discrete-time state feedback control

uk = −rTd xk, (26)

we want to impose closed-loop dynamics of the form

(I − h

2
AC)xk+1 = (I +

h

2
AC)xk, (27)

which is the implicit midpoint rule discretization of (24).
With

AD = (I − h

2
AC)−1(I +

h

2
AC), (28)

Equation (27), as a feature of the linear case, can be
written in the explicit form 7

xk+1 = ADxk. (29)

All mentioned matrices are summarized in Table 1.

Table 1. Different used state space matrices.

Symbol(s) Description

(Ac0, bc0) Continuous-time system
(Ad0, bd0) Discretized system (zero order hold)
(Ad, bd) Discretized system in CCF
(Ac, bc) Corresponding continuous-time system
AC Target state matrix, continuous-time
AD Target state matrix, discrete-time in CCF

3.2 Matching condition

We exploit the special structure of D := h
2AC . Note that,

unlike Ad and AD, which are in CCF, D has a priori no
particular form. However, its structure is constrained by
the matching equation, which results from multiplication
of (25) with (I − D) and comparison of its right hand
side with the one of the target system (27) (bd = en, en
denotes the n-th unit vector):

(I −D)Adxk + (I −D)enuk = (I + D)xk. (30)

To characterize the assignable matrices D, we multi-
ply the whole equation with a full rank left hand an-
nihilator X ∈ R(n−1)×n such that X(I − D)en = 0.

3 We do not fix an output as state feedback control is considered.
4 See Shannon (1949).
5 If Ac0 is not invertible, bd0 is well defined by the Taylor series
expansion of eAc0h − I.
6 See Eq. (28) in Kalman (1960), which is always true if the sampling
condition is respected.
7 Note that this corresponds to the simplest discrete gradient for
linear Hamiltonian systems as given in Moreschini et al. (2019),
Proposition 2.

A possible choice, which follows from (I − D)en =

[−d1,n . . . −dn−1,n 1− dn,n]
T

, is

X =


1

d1,n

1−dn,n

. . .
...

1
dn−1,n

1−dn,n

 . (31)

Omitting xk, this yields the matching condition

X(I −D)Ad = X(I + D). (32)

Theorem 1. The matrix

D = D0 − gDkT
D (33)

with the upper triangular matrix D0 ∈ Rn×n and the
alternating column vector gD ∈ Rn

D0 =


−1 2 −2 . . . (−1)n · 2
−1 2 . . . (−1)n−1 · 2

. . .
. . .

...
−1 2

−1

 , gD =


(−1)n

(−1)n−1

...
1
−1


(34)

and an arbitrary row vector kT
D ∈ R1×n satisfies the

matching condition (32).

Proof: Denote by dT
i ∈ R1×n, i = 1, . . . , n, the rows of D.

By inspection of (33), (34), we find that

dT
n = kT

D + [0 . . . 0 −1] , (35)

and for i = n− 1, . . . , 1,

dT
i + dT

i+1 = [0 . . . 0 −1 1 0 . . . 0] , (36)

with −1 and 1 at position i and i + 1, respectively. The
evaluation of the last elements of (35) and (36) yields

dn,n = kd,n − 1,

dn−1,n = 1− dn,n,
di = −di+1 for i = n− 2, . . . , 1.

(37)

With this, the annihilator takes the form

X =
[
I gD[1,...,n−1]

]
, (38)

where gD[1,...,n−1] ∈ Rn−1 contains the first n−1 elements
of gD. This matrix can be factorized as X = X1X2 with
X1 ∈ R(n−1)×(n−1) an upper triangular invertible matrix
(diagonals of ±1 with alternating sign) and

X2 =

1 1
. . .

. . .
1 1

 ∈ R(n−1)×n. (39)

X1 cancels from the matching condition (32), which can
be written in terms of X2 instead of X. With

X2D =

−1 1
. . .

. . .
−1 1

 ∈ R(n−1)×n (40)

according to (36), the matching condition reads2 0
. . .

. . .
2 0

Ad =

0 2
. . .

. . .
0 2

 , (41)

and it is obviously satisfied for Ad in CCF. 2
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3.3 Eigenvalue assignment

The matrix D is a scaled version of the continuous-time
target matrix AC . With the eigenvalues of AC as design
parameters, the corresponding eigenvalues of D are

λi(D) =
h

2
λi(AC), i = 1, . . . , n. (42)

By inspection of (33) we note that the eigenvalues of D

can be assigned arbitrarily by appropriate choice of kT
D if

and only if the pair (D0, gD) is controllable.

Lemma 2. The pair (D0, gD) is controllable.

Sketch of the proof: Linear independence of the columns
of the controllability matrix

[
gD D0gD . . . Dn−1

0 gD

]
fol-

lows from the particular structure of D0 and gD. 2

Consequently, for an arbitrary desired spectrum σ(AC),

we can determine a vector kT
d , which assigns the corre-

sponding scaled eigenvalues to the matrix D according to
(33).

3.4 Control law

Having constructed a matrix D with arbitrary assignable
eigenvalues, which satisfies the matching condition (32),
what remains is to isolate the control law from the match-
ing equation (30). With the structure of the last column
of D according to (37), the column vector in front of uk
becomes (I−D)en = (dn,n−1)gD. Note that the squared
Euclidean norm of gD is ‖gD‖22 = n, therefore left multipli-

cation of (30) with
gT
D

(dn,n−1)n yields, after rearrangement,

uk =
gT
D

(dn,n − 1)n
(I + D − (I −D)Ad)xk. (43)

This gives the feedback vector according to (26)

rTd =
gT
D

(1− dn,n)n
(I + D − (I −D)Ad). (44)

Remark 3. A straightforward possibility to determine rTd
numerically is to solve the matrix equation (I −D)AD =
I + D for AD and to compute rTd = eTnAd − eTnAD.

3.5 Design procedure

We summarize the approach for a controllable SISO sys-
tem (Ac0, bc0).

(1) Compute the zero order hold equivalent system
(Ad0, bd0).

(2) Transform the system to CCF using the controllabil-
ity matrix Qd0 =

[
bd0 Ad0bd0 . . . A

n−1
d0 bd0

]
. Result:

(Ad, bd) according to (25).
(3) Choose a continuous-time target spectrum σ(AC) ∈

C−, and obtain σ(D) by scaling with h
2 .

(4) Compute kT
D and obtain D according to (33), (34) by

eigenvalue assignment.
(5) Compute the feedback vector rTd according to (44) or

Remark 3.
(6) Use the inverse transformation from CCF to obtain

rTd0 in the modeling coordinates.

4. NUMERICAL EXAMPLE

We illustrate the proposed control design approach on an
example of order 6, with system matrices

Ac0 =


0.11 0.93 0.98 0.13 0.47 0.35
0.14 0.73 0.86 0.03 0.65 0.45
0.17 0.74 0.79 0.94 0.03 0.05
0.62 0.06 0.51 0.30 0.84 0.18
0.57 0.86 0.18 0.30 0.56 0.66
0.05 0.93 0.40 0.33 0.85 0.33

 , bc0 =


0.90
0.12
0.99
0.54
0.71
1.00

 ,
(45)

generated by Matlab’s rand command 8 . We compare the
effect in the closed-loop sampled system of the discrete-
time controller designed according to Subsection 3.5 with
a state feedback derived based on continuous-time eigen-
value placement Ac0 − bc0r

T
c0 = AC . In both cases, the

desired spectrum of the continuous-time target state ma-
trix is chosen as

σ(AC) = {−1± j,−2± 2j,−3± 3j}. (46)

Table 2 shows the obtained feedback vectors. Case (a) rep-
resents the continuous-time controller rTc,0, case (b) shows

the discrete-time controllers rTd,0 for different sampling

times h. The convergence of the latter to rTc,0 for h→ 0 is
evident.

Table 2. Feedback vectors rTc0 (first row) and
rTd0 for different sampling times.

h Feedback vector

(a) − [−292.1 − 258.4 − 1026 112.3 612.7 828.4]

(b) 0.01 [−270.2 − 239.5 − 956.0 101.8 572.6 771.2]
0.05 [−197.7 − 176.4 − 722.7 67.90 437.5 579.9]
0.15 [−90.69 − 80.97 − 363.1 21.28 226.1 288.2]
0.3 [−28.85 − 24.02 − 135.9 − 0.4209 89.06 107.3]

The behavior of the closed-loop sampled system as de-
picted in Fig. 1 is simulated using a continuous-time
Simulink model, where sample and hold are included as
the corresponding blocks, triggered by an external signal
with period h. The variable-step solver is automatically
chosen, with a tolerance of 10−3.

Figure 6 shows the initial value responses for the closed-
loop system with rTc,0 for two sampling times, in particular
the instability of the closed loop for h = 0.15.

Figure 7 illustrates the expected quality of the presented
discrete-time control design. The initial value responses
converge asymptotically to the equilibrium x∗ = 0, up
to h = 0.3. This sampling time, which is very close to
the time constant of the largest real eigenvalue of Ac0

(0.35 ≈ 1/2.85), still resolves the system dynamics.

Remark 4. A possible extension of the approach is its ap-
plication to stabilizable linear systems, based on a partial
transformation to CCF.

5. CONCLUSIONS

Based on the well-known fact that sufficiently slow sam-
pling can deteriorate and destabilize the closed-loop dy-
namics of a control system, we proposed a systematic
procedure for state feedback design of linear sampled SISO
8 Eigenvalues: σ(Ac0) ≈ {−0.74,−0.26, 0.13± 0.37j, 0.71, 2.85}.
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Fig. 6. Closed-loop system responses with the discrete-time
implementation of the continuous-time controller rTc0,
x(0) = [1 0 0 0 0 0]T .

Fig. 7. Closed-loop system responses with the discrete-time
controller rTd0, x(0) = [1 0 0 0 0 0]T .

systems, which utilizes the zero order hold equivalent sys-
tem representation and symplectic integration. The target
system is defined as the discretization of an asymptoti-
cally stable continuous-time system with the implicit mid-
point rule, or one-stage Gauss-Legendre collocation. The
approach is valid for arbitrary controllable discrete-time

systems, which allows for the straightforward inclusion of
time delays, which are integer multiples of the sampling
time.

We are working on generalizations in several directions,
including discrete-time nonlinear passivity-based control
with IDA-PBC, where the local linearization helps in the
parametrization of the nonlinear control law (Kotyczka,
2013). Other extensions concern higher-order symplectic
schemes for the target system and generalized forms of
sampling.
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