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Abstract: Food trays are very common in shops and supermarkets. Fresh food packaged in
trays must be correctly sealed to protect the internal atmosphere and avoid contamination or
deterioration. Due to the speed of production, it is not possible to have human quality inspection.
Thus, automatic fault detection is a must to reach high production volume. This work describes
a deep neural network based on Principal Component Analysis Network (PCANet) for food
tray sealing fault detection. The input data come from hyperspectral cameras, showing more
characteristics than regular industrial cameras or the human eye as they capture the spectral
properties for each pixel. The proposed classification algorithm is divided into three main parts.
In the first part, a single image is extracted from the hypercube by using pixel-level fusion
method: the cube hyperspectral images are transformed into two-dimensional images to use
as the input to the PCANet. Second, a PCANet structure is applied to the fused image. The
PCANet has two filter bank layers and one binarization layer (three stages), obtaining a feature
vector. Finally, a classification algorithm is used, having the feature vector as input data. The
SVM and KNN classifiers were used. The database used in this work is provided by food industry
professionals, containing eleven types of contamination in the seal area of the food tray and using
metallic opaque cover film. Obtained results show that the design of our framework proposed
achieves accuracy of 90% (87% F-measure) and 89% (89% F-measure) for SVM and KNN,
respectively. Computation time for classification shows that a food tray speed of 65 trays per
second could be reached. As a final result, the influence of the dataset size is analyzed, having
PCANet a similar behavior for an extended and a reduced dataset.

Keywords: Image processing, PCANet Classifier, Neural networks, Food Industry, Food
packaging, quality inspection.

1. INTRODUCTION

Food quality is a very important task in the food industry
which includes food supply chain, food contamination,
food analysis, and health care [Ryser and Marth, 1999].
Thus, food safety is essential as it might lead to a public
health problem. In particular, food packaging is crucial in
food manufacturing. Packaging can be affected by different
anomalies, either in the production factory or food supply
chain. For example, according to the PPP (Waste and
Resources Action Programme) in UK, it is estimated that
up to 480,000 tons of food is wasted each year due to poor
seals in packaging [WRAP, 2000]. Consequently, proper
packaging and seals are mandatory to achieve the expected
shelf life for many food products. Many techniques have
been well established in order to meet both present legis-
lation and consumers’ expectations and demands. Tradi-
tional inspection for food tray sealing fault detection as
human visual inspection, analytical, physical, biological

and chemical analyses are time-consuming, destructive,
and sometimes environmentally unfriendly [Sun, 2010].
To overcome this, image sensing and spectral analysis
techniques have been growing in the food safety field
and gained more attention due to the obtained achieve-
ments and encouraging results [Li et al., 2017]. In par-
ticular, spectral imaging is able to obtain both spatial
and spectral information from the object, which is helpful
to locate small anomalies, it is fast, and non-destructive.
In addition no human intervention is required. Contrary
to the conventional image acquisition systems used food
quality imaging, hyperspectral imaging combines infrared
spectroscopy with machine vision to produce images, hav-
ing more information about the chemical composition of
the objects present in the acquired image. Its ability to
identify differences in the chemical composition of organic
materials opens up major new possibilities for detecting
contamination in food products. Additionally, computing
technology allows hyperspectral images to be entered into
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a classifier and obtaining the classification result in due
time to operate in real time, i.e. faster than the production
line. Then, they can be used in high speed production lines
for food processing and packaging inspection [Huang et al.,
2014].

Data cubes generated by hyperspectral imaging (HSI) sen-
sors contain multiple spectral images, generating a large
dimensionality. However, the amount of data (spatial and
spectral) involved in HSI often needs a deep processing,
space reduction, handcrafted feature selection tools in
order to retain the important features and ignore the
redundant information [Du and Sun, 2006]. Generally,
conventional imaging cannot acquire spectral information
(at most, RGB images provide information in three spec-
tral points) and spectroscopy measurement cannot cover
large sample areas. In recent years, spectral imaging (i.e.,
hyperspectral and multispectral) has emerged as a better
tool for sensing and is being currently applied to multiple
applications [Bioucas-Dias et al., 2013].

On the other hand, machine learning-based methods play
an important role in food safety and its applications [Du
and Sun, 2006]. Some of these methods use standard
image processing techniques to learn a set of features
which deliver spatial knowledge into a single spectral point
(three for RGB); they provide information about color and
texture, shapes, etc. and obtain a set of features from the
image which are applied to a machine learning classifier
such as KNN, SVM, NN, etc. [Tiger and Verma, 2013].
The main drawback of these methods is that they require
hand crafted feature extraction from the image and, if not
properly selected, the classifier result will not be accurate
and would not provide a good accuracy. Methods as low-
rank representation are effective in feature extraction and
overcome the aforementioned problems. A well known
procedure is Principal Component Analysis (PCA) [Ostyn
et al., 2007] that, in combination with neural networks [Lee
and Seung, 2001] is a common classification algorithm.
However, such technique needs to convert the 3D HSI hy-
percube into a 2D matrix representation and consequently,
a loss of important information contained in image cube
arises [Erichson et al., 2018]. To tackle this issue, sparse
representation is another effective low rank representation,
which became widely adopted for HSI [Huang et al., 2017].
The simplest way of sparsely representing these images is
a linear combination of atoms from a dictionary, which is
constructed or learned from training samples [Chen et al.,
2018].

Recently, deep learning-based algorithms have been in-
troduced to food science and engineering and presented
promising performance [Zhou et al., 2019]. The aim of
deep learning is to extract higher level features which
represent more abstract semantics of the original data.
Convolutional Neural networks (CNN) are the first kind of
deep architecture-based models. To our knowledge, CNN is
considered as a successful method obtaining high accuracy
in hyperspectral image classification [Haggag et al., 2019],
[Kagaya et al., 2014], [Hassannejad et al., 2016], [Liu et al.,
2016]. As PCA, the Auto Encoder (AE) can be used as
a method of both feature extraction and dimensionality
reduction, making it a common technique in HSI classi-
fication [Turan and Erzin, 2018]. However, deep learning
methods usually suffer from hyperparameter optimization,

being time-consuming for the training process. Many tech-
niques have been used in building the network structure
to fit the desired application [Zhou et al., 2019].

The PCANet has shown a great success in image classifi-
cation [Chan et al., 2015] due to its ability for deep feature
extraction. Deep structure and filter convolution are two
significant parts in PCANet. Deep structure hierarchically
extracts deep features. Filter convolution learns multi-
scale spatial structure of images. Unfortunately, training
these networks end-to-end with fully learnable convolu-
tional kernels is computationally expensive and prone to
over-fitting. Thus, many approaches try to replace the
process of learning these convolutional kernels with tradi-
tional matrix/tensor factorization methods. For example,
PCANet learns convolutional kernels by employing PCA
instead of back propagation.

Here, we propose a deep network for food tray seal fault
detection using a PCA network (PCANet) [Chan et al.,
2015]. Despite PCANet is a simple network, it is used
in many computer vision tasks [Soon et al., 2018], [Lee
et al., 2018]. Motivated by this, we attempt to propose
a new PCANet for hyperspectral image classification.
However, the spectral data cannot be directly utilized
by PCANet and then, this work also proposes different
adaptation methods. To deal with this constraint, we
proposed to apply the fusion strategy on the image cube
which leads to construct a single image and then fed to the
PCANet. Pixel-level fusion methods are proposed as they
are computationally efficient and easy to implement [Li
et al., 2017]. Three pixel-level fusion methods have been
developed: spatial image fusion methods and transform
image fusion methods.

Recent studies show that PCANet with relatively shallow
architectures (i.e. number of stage and filter PCA) are
able to learn challenging tasks involving 2D or 1D signals.
Although this method losses some spectral information,
the networks with shallow architecture is much easier
to train and implement, still showing good classification
results. The remainder of this work is organized as follows:
In section 2 we present detailed description of the proposed
PCANet based Food tray sealing fault detection method.
Section 3 describes the hyperspectral images used in this
study and Section 4 describes the algorithm details for the
specific task. Section 5 reports the experimental results
and discusses the obtained values. Conclusions are drawn
in Section 6.

2. PCANET CLASSIFIER

PCANet is first proposed to handle the task of classifi-
cation for single image [Chan et al., 2015]. The PCANet
aim is to achieve two goals: first, obtain a simple deep
learning network; and second, provide a baseline for single
image tasks where simpler and end to end learning can be
accomplished. Binary quantization (hashing), histogram
features and linear support vector machine (SVM) are
also adopted to simplify traditional deep learning methods
used in other deep learning algorithms. Generally, PCANet
contains three processing components: PCA filters, binary
hashing, and histogram features. The PCANet was first
proposed in [Chan et al., 2015] by cascading PCA filter
banks with mean normalization, binary hashing and the
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histogram composition step to learn hierarchical repre-
sentations. The conventional PCANet presented in the
literature is designed to exclusively operate in 2D data.
This is why we have to apply fusion schemes (average,
minimum maximum strategies) on the image cube to made
single image 2D instead of multichannel image. In this way,
multiple images from different channels are combined into
one single image in pixel-wise manner, after which it is fed
into the PCANet system to extract the important features.
One of the main advantages of the pixel-level fusion is their
low computational complexity and easy implementation
[Li et al., 2017]. PCANet algorithm consists of many stages
of PCA filters to extract higher level feature vectors.

The filter banks are constructed by projecting principal
components (PCA) over a set of image vectors (I) where
each vector represents the k1 × k1 patch sliding around
each pixel. After that, we subtract the patch mean from
each vectorized patch (normalization process). Therefore,
for all the input training images {I, i = 1, 2, . . . , N}, we
can obtain the matrix described in equation (1) where

m̂ = m−
[
k1
2

]
and n̂ = n−

[
k2
2

]
.

I =
[
I1, I2, . . . , IN

]
∈ Rk1k2 ×Nm̂n̂ (1)

Assuming that the number of PCA filter banks in ith layer
is FS1

i (L1 convolution filter), output filtered images can
be obtained by convolving the training image with PCA
eigenvectors, and mathematically given by equation (2).

IS1

F1
= I ∗ FS1

i (2)

In this case, FS1
i principal eigenvectors are selected as PCA

filters for convolutional stage as in equation (3).

FS1
i = matk1k2

(
qi
(
IIT

))
∈ Rk1k2 , l = 1, 2 . . . , L1 (3)

To simplify, we depicted an example of three stages
PCANet based feature extraction method (see Fig. 1).
The PCA is deployed to minimize the reconstruction error
within a family of orthonormal filters (equation 4). Two
filter banks stages and one filter bank stage conforms the
algorithm.

minV ∈Rk1k2∗L1 ‖ I − V V T ‖2F , stV V T = IL1
(4)

Where IS1

Fi
(i ∈ [1 . . . L1]) denote the ith filtered image

using the FS1
i filter for the first stage. In the second

stage, the same step process used in the first stage is also
performed by convolving the output filter images of the
pervious stage with the weight filters FS2

j generated by

PCA as in (5) where IS1

Fi
with i ∈ [1, . . . , L1] and j ∈

[1, . . . , L1] denote the ith filtered image using the FS2
j filter

for the second stage. If the number of filters in second stage
equals L2, the output size filtered images is L1 · L2.

IS2

Fij
= IS1

Fi
× FS2

j (5)

In the last layer, the filter image outputs IS2

Fij
are trans-

formed into binary format by using a Heaviside step func-
tion (binary hashing) as shown in equation (6).

HB
ij =

{
1 if IS2

Fij
≥ 0

0 otherwise,
(6)

where HB
ij is a binary image. After that, around each pixel,

the vector of L2 binary bits is viewed as a decimal number
(equation 7) where Ol

i is an image whose every pixel is an
integer in the range [0, 2L2−1].

Ol
i =

L2∑
i=1

2i−1HB
ij (7)

Then, the histograms of the obtained block images B of
size h1h2 are extracted either with overlap ratio R or
non-overlapping and then concatenated to form a feature
vector which represents the input single image (histogram
computation step). Thus, the feature vector of the input
image I is then defined as in equation (8) where fi denotes
the block-wise histograms of the Ol

i binary image.

fi = [f1, f2, . . . , fL1 ]
T ∈ R2L2L1B (8)

As in other deep learning techniques, PCANet requires
hyperparameter tuning for optimal classification. In this
case, the PCANet parameters which must be tuned are
the number of stages (N), the filter sizes in each stage
(K1,K2, . . . ,KN ), the number of filters in each stage
(L1, L2, . . . , LN ), the block size (h1, h2, . . . , hN ), and the
overlap ratio R.

Once trained and tuned, the algorithm works in two main
phases:

(1) Data acquisition and fusion. After being acquired
by the hyperspectral camera, the complete image
hypercube is divided in Regions Of Interest (ROI)
[Gowen et al., 2007]. Then, ROI hypercubes are fused
into a single image by applying a pixel-level fusion
method (see section 4).

(2) PCANet-based feature extraction and classifier oper-
ation (SVM and KNN in this case).

3. DATASET

Images were captured with a line-scanning imager (pushb-
room type) which is an imaging spectrometer. They were
analyzed in detail, and after a filtering process, some of
them were discarded.

The complete group of images was composed of 210
hyperspectral images (i.e. 210 food trays), divided in 150
tray images with multiple types of contamination or seal
faults (11 classes with 15 images each) and 60 images
of standard trays in production correctly sealed (control
data). In order to generate the dataset, all impurities
were manually added and then, trays were sealed with a
metallic cover (the human eye cannot detect any impurity
in these cases). Selected impurities were those materials
that might be present in the sealing process that, due to
some production failure, can contaminate the food tray:
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Fig. 1. General diagram of the PCANet classification algorithm. Two filter banks are used, and a binarization stage
provides a feature vector which serves as the input to a classifier.

small pieces of plastic or metals, liquids that could be
spilled over the edges of the trays, etc. The specific types
of contamination (classes) were eleven: washers, sugar,
flange, plywood, cork, elastic rubber, wood, paper, silver
paper, hair, and polarized plastic. All the images were
composed of 410 lines by 320 samples, each one with 168
spectral channels (wavelengths in the range from 891.12
to 1728.45 [nm]). Each data point was coded in a 16 bit
signed integer. Thus, each tray hypercube image was 4.204
MiB in size.

In order to generate a dataset from a set of images, a
specific labeling software was created, called HypLabTool.
The tool was built to be multi-platform, currently run-
ning under Linux and Windows. It was developed in
Python, using the PyQt, GDAL and h5pypackages. The
tool is currently available in open source repository
at: https://github.com/LeoSf/HypLabTool. A feature to
manually define the type of contamination and a Region Of
Interest (ROI) around a contaminated area was included in
the software. All acquired images were visually inspected
and labelled. The ROI is specified by the user indicating
the height and width covering the entire area where the
fault is located. These dimensions were expressed in pixels.
This methodology allows the creation of datasets with
complete images or with areas of different dimensions,
not following the conventional approach of a pixel by
pixel analysis. In this case, a ROI size of 40 × 40 pixels
around the fault, with 130 spectral channels, was chosen,
which means that data hypercubes of 40 × 40 × 130 were
obtained. After analyzing multiple cases of anomalies, it
was observed that the ends of the spectrum did not pro-
vide meaningful information. Then, the first and last 19
spectral channels were removed, thus having 130-channel
hypercubes with spectral information from 984.2 to 1631.0
[nm]. With their corresponding class designation, data are
used for SVM and KNN learning in this case (or any other
machine learning process), and classification performance
evaluation.

4. PCANET PARAMETER SELECTION

Tuning of the algorithm parameters is required to obtain
the best classification ratio. Parameters greatly depends on
the application and type of data. A series of experiments
was conducted in order to select the best parameters. Table
1 shows the final parameters obtained for this application.

Hyperspectral image fusion was done in order to reduce
computation time. The 3D input data cube is reduced to
a regular 2D image. This fact also allows to use PCANet
2D image analysis techniques. In order to evaluate how
the application of fusion rules affect the algorithm perfor-
mance, three types of fusion rules were tested:

(1) MEAN fusion rule on the image hypercube and then,
PCANet feature extraction and classification.

(2) MAX fusion rule on the image hypercube and then,
PCANet feature extraction and classification.

(3) MIN fusion rule on the image hypercube and then,
PCANet feature extraction and classification.

Table 1. Optimal parameters for PCANet used in food
tray abnormal seal detection.

Parameter Definition Values

m ∗ n Size of input image 40 ∗ 40
N Number of stages 2

K1 ∗K2 Patch size 7 ∗ 7
L1L2 Number of two stage filters 10 ∗ 10
h1 ∗ h2 Block size 5 ∗ 5

R Overlap ratio of block R, (0 < R < 0.9) 0.6

Classification performance metrics of accuracy (9) and F-
measure (11) were obtained. The F-measure can provide a
more realistic measure of a test performance by using both
precision and recall into a single metric. For equations,
Tp=True positive, Tn=True negative, Fp=False positive,
P=total number of positive samples, and T=total number
of samples. A positive sample (Tp) is considered as a
normal tray, and a negative Tn is considered to have an
anomaly.
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accuracy =
Tp + Tn

T
(9)

recall =
Tp

P
; precision =

Tp

Tn + Fp
(10)

Fmeasure =
2 ∗ (precision ∗ recall)

(precision ∗ recall)
(11)

5. RESULTS AND DISCUSSION

After obtaining the feature vector provided by the
PCANet, two different classification algorithms were used
for comparison purposes. In both cases, a 5-fold cross-
validation procedure was used, the dataset was split into
ten parts, nine of which were used for training and one for
testing. Table 2 shows the classification performance re-
sults for the SVM and KNN classifiers using the aforemen-
tioned input data fusion methods. As seen in the tables,
the best results are obtained in case of MEAN data fusion
and both SVM and KNN provide very similar classification
values: 90% and 89% in case of MAX data fusion, 87% and
85% for MAX data fusion, and 83% and 82% in case of
MIN data fusion, for SVM and KNN, respectively.

Table 2. Performance of the proposed classification
technique using SVM and KNN classifiers under three

different input data fusion rules

SVM KNN
Accuracy F-measure Accuracy F-measure

MEAN 0.90 0.87 0.89 0.89
MAX 0.87 0.87 0.85 0.85
MIN 0.83 0.83 0.82 0.82

It is well known that one of the main issues in machine
learning and deep learning algorithms is related to the
amount of data used for training since effects as overfitting,
under-fitting or unbalanced data may arise. In order to
verify whether the performance of the proposed PCANet
model is affected by this issue, we performed a training
of the model with a reduced dataset. Thus, we obtained
classification results with the following amount of data:

• 1st Scenario: number of training samples, from 1000
to 1775. The remaining samples were used as test set
to verify the performance of the model.
• 2nd Scenario: number of training samples, from 100

to 375. The remaining samples were used as test set
to verify the performance of the model.

Table 3 shows the influence of the number of training
samples on the performance of the recognition model.
From this table, we can see that the PCANet model
achieves an accuracy of 80%, i.e. the algorithm still can
achieve good results when the training set has less 300
samples. Thus, we do not need to collect a massive number
of experimental data when using PCANet to construct the
discrimination model for food seal fault detection.

Table 4 shows the computation time for the training
dataset (total time in seconds) and the average com-
putation time for each hypercube image, in case of the
complete (1st scenario) and reduced dataset (2nd scenario).
As expected, a reduced dataset implies that the training
time is greatly reduced when compared to a bigger dataset.

Table 3. The performance of SVM classifier on the food
seal database

#Exper accuracy F-measure

1st Scenario 0.90 0.87
2nd Scenario 0.80 0.79

Table 4. Computation time for PCANet. Total train
time and average computation time for one test sample

(hypercube).

#Exper Total train time (s) Avg. test time (s).

1st Scenario 423.50 0.91
2nd Scenario 43.55 0.76

Concerning the computation time for a single hypercube
data, the obtained model for the extended data set re-
quires 0.91 s versus 0.76 s for the model obtained in the
reduced dataset. These computation times means that 65
and 78 trays per second could be analyzed in extended and
reduced dataset, respectively.

In any case, food industry requires a very strict quality
control, which means that classification ratio must be
as high as possible. In order to rise the performance
of the algorithm, one main issue concerns data. While
the obtained dataset was big enough, it is desirable to
obtain a dataset with representative anomalies, including
all possible contamination products that could happen in
the production line. Another future direction concerns the
type of anomaly; it was observed that the hyperspectral
camera, together with the optical and lighting setup, was
capturing some faults poorly. Thus, if acquired images do
not have enough quality, the algorithm will not be able to
extract enough information for anomaly detection.

Related to algorithms, a future line os research is oriented
to individual fault analysis. Typically, having one clas-
sifier for each anomaly might lead to better results. On
the contrary, this option would require more computation
time as multiple algorithms must be running concurrently.
Concerning the data fusion techniques, some other im-
provements apart from the techniques proposed in this
work could be used, in order to find the optimal metric
for data fusion, applying it in an optimized form.

6. CONCLUSION

In this paper, we propose a novel framework for hyper-
spectral image classification based on single image data
input, PCANet, and SVM/KNN classifiers. Three data
fusion techniques for PCANet input data are proposed.
The PCANet output generates a binarized histogram (fea-
ture vector) obtained by concatenating two PCA filter
banks, which shows good invariance to the shape and the
illumination of the image. Obtained results are close to
90% accuracy and 90% F-measure.

This work shows that hyperspectral image analysis can
detect food tray contamination in cases where the human
eye cannot; especially in tray covers using opaque seal
such as a metallic cover used in this dataset. Extended
and reduced datasets are analyzed, showing that PCANet
has excellent performance in learning features from small
datasets. The computation time allows a food tray pro-
cessing speed above 65 trays per minute.
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A future research topic to take the most of the spectral
information will be the use of other spectral information
extraction techniques apart from the fusion rules described
in this work. Principal Component Analysis of spectra and
other data reduction techniques will be explored.
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