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Abstract: Model-free adaptive control has been used to design feedback in cases when
accurate mathematical modeling of the system can not be realized. By using only input-
output information, the control approach is attractive with respect to minimal design efforts.
In this contribution an improved model-free control program is proposed and applied to flexible
systems. The main control idea is based on the compact-form dynamic linearization technique.
A linearized controller structure which contains a matrix of unknown time-varying parameters
namely pseudo-partial derivative can be designed. First, an equivalent linearized data-based
model of the original system is established and corrected locally by using the recursive least-
squares estimation algorithm. Then a modified objective function with respect to the controller
parameter matrix considering minimization of the current tracking errors and its variations
is proposed for control performance improvement. Finally, the required control inputs are
calculated to fulfill control requirements. For illustration and as example, the newly introduced
method is applied to reduce vibrations of an elastic crane representing a multivariable system.
The control effectiveness is verified nummerically and compared with conventional model-free
and PI controllers.

Keywords: Model-free adaptive control, Dynamic linearization, Recursive least-squares,
Estimation parameters, Vibration control

1. INTRODUCTION

In recent years, model-free control (MFC) has been re-
ceived increasing attention, particularly in control design
of unknown multi-input multi-output (MIMO) nonlinear
systems. Because of less complexities in dynamical anal-
ysis and control design, MFC could be an alternative
solution beside model-based control (MBC). Model-free
controllers only require input-output (I/O) information
which are directly measured or calculated from the closed-
loop system without any requirements about the system
model (Hou (2013)). Up to now, different MFC strategies
are introduced in literature enhancing robustness against
unknown inputs and disturbances as well as improving
tracking control abilities. Based on controller structure
design, MFC can be divided into two groups (Hou (2013)).
In the first group the controller structure is assumed to
be known. The control task is based on the identification
of unknown time-varying parameters. Typical methods
include intelligent PID control (Fliess (2008)) and virtual
reference feedback tuning control (Guardabassi (2000)).
However, other MFC approaches such as iterative learning
control (Bristow et al. (2006)) and model-free adaptive
control (Hou (2011)) can also be classified.
As a typical MFC, model-free adaptive control (MFAC)
was firstly proposed by Hou et al. (Hou (2013)) for a
class of single-input single-output (SISO) nonlinear sys-
tems. The core idea of MFAC is establishment of a local
linearized data-based model which contains time-varying
parameters at every step of the system operation. These

parameters can be estimated and updated recursively.
Several dynamic linearization techniques are introduced
to obtain the linearized model including compact-form
dynamic linearization (CFDL) (Hou (2013)), partial-form
dynamic linearization (PFDL) (Hou (2011)), and full-form
dynamic linearization (FFDL) (Li (2011)). Compared to
MBC, MFAC possesses several advantages. First, no in-
formation about model description is utilized in MFAC
design. Second, MFAC does not require any external test-
ing signals or training processes. Furthermore, MFAC ap-
proaches are characterized by low computational load. Fi-
nally, the convergence and stability of a model-free-based
control system can be guaranteed under some reasonable
assumptions (Hou (2013)).
Different MFAC strategies are developed and applied to
SISO and MIMO nonlinear systems. By combination of
MFAC and sliding mode control, a novel model-free adap-
tive controller is designed by Liu (2018) for discrete-time
systems with tracking error constraints. To improve track-
ing error convergence, another modified MFAC strategy is
developed by combination of MFAC with a single output
tracking differentiator (Ma (2009)). Furthermore, Zhen et
al. (Zhen (2017)) proposed a novel MFAC program based
on dynamic linearization techniques and predictive control
ideas. As result, the robustness of the control algorithm
can be improved. Other MFAC methods are discussed such
as combinations of MFC and MBC including model-free
adaptive predictive control (Yu-Chang (2012)) or model-
free adaptive iterative learning control (Madadi et al.
(2018)).
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In this study an improved MFAC program using the
CFDL technique is proposed for a class of MIMO systems.
The designed controller is applied to reduce vibrations of
a crane represented as a typical example of mechanical
flexible systems. Motion-induced vibrations can become
dangerous so needed to be reduced or suppressed. Many
vibration control techniques have been presented and ap-
plied to flexible structures which can be separated in three
categories namely active, passive, and hybrid control (Rah-
man (2015)). He et al. (He (2015)) introduced a vibration
control method for an Euler-Bernoulli beam with a bound-
ary output constraint in which the system model has to
be derived. In addition, active vibration control is decribed
in Rahman (2017) to suppress unexpected oscillations of
a flexible beam structure using chaotic fractal search al-
gorithm. However, most of the above methods require a
precise mathematical model of the system which could
be difficult to obtain due to nonlinearities, unmodeled
dynamics, or uncertainties of the system.
In this contribution a modified MFAC strategy is proposed
by using the CFDL concept not only for the original
system but also for the unknown controller. The linearized
data-based models of the system and the controller are
established which contain unknown time-varying parame-
ters. To estimate these parameters, instead of using tra-
ditional projection algorithms as discussed in Hou (2013)
and Hou (2011) recursive least-squares (RLS) estimation
algorithm (Aström (1995)) is applied for estimation accu-
racy improvement. Furthermore, to reduce tracking errors
a modification of minimizing the output errors and its
variations is discussed. This idea was already introduced
in Madadi et al. (2018) and applied successfully to an
inverted elastic cantilever beam as a SISO example. In
this paper the control performance is verified by applying
the proposed method to control of an elastic crane as
MIMO system. The rest of the paper is organized as
follows. Theory of MFAC using the CFDL technique will
be introduced in the next section. Recursive least-squares
estimation method applied to the CFDL model as well as
a CFDL-based controller structure are also discussed in
detail. In Section 3 a modified estimation algorithm of the
controller parameters is presented. Simulation results and
discussion are illustrated in Section 4. Finally, conclusion
is given in the last section.

2. MODEL-FREE ADAPTIVE CONTROL USING
CFDL TECHNIQUE

2.1 CFDL-based RLS estimation algorithm

For a class of unknown MIMO nonlinear systems, a general
I/O representation can be described in discrete-time as
(Hou (2013))

y(k + 1) = f(y(k), . . . ,y(k −my),u(k), . . . ,u(k −mu)),
(1)

where y(k) ∈ Rr,u(k) ∈ Rm denote the system outputs
and inputs at step k, respectively. The unknown system
orders are my and mu, while m and r indicate the
known number of inputs and outputs, correspondingly.
The unknown nonlinear function f(. . .) consists of the
previous system outputs and control inputs.
As discussed in Hou (2013), two assumptions should be
satisfied for system (1) as follows:

Assumption 1: The partial derivatives of f(. . .) with
respect to u(k) exist and are considered as smooth.

Assumption 2: The system (1) satisfies the general Lip-
schitz condition ‖y(k + 1)− y(k)‖ ≤ b ‖u(k)− u(k − 1)‖
at each time instant k with ‖u(k)− u(k − 1)‖ 6= 0, and b is
a small positive constant. Assumption 2 defines an upper
limitation on the change rates of the outputs driven by the
change rates of the control inputs.
Based on the above assumptions, the original system (1)
can be linearized locally as a CFDL data-based model

∆y(k + 1) = Φ(k)∆u(k), (2)

in which the unknown time-varying parameters Φ(k) called
pseudo-jacobian matrix (PJM) can be estimated recur-
sively. The matrix PJM appears as

Φ(k) =


φ11(k) φ12(k) φ13(k) . . . φ1m(k)
φ21(k) φ22(k) φ23(k) . . . φ2m(k)

...
...

...
. . .

...
φr1(k) φr2(k) φr3(k) . . . φrm(k)


r×m

, (3)

assuming ‖Φ(k)‖ ≤ b according to assumption 2.
The RLS estimation method as introduced in Aström
(1995) is applied to the virtual CFDL model (2) to update
the PJM parameters continuously. As result, the CFDL-
RLS algorithm is obtained as

Φ̂(k) = Φ̂(k − 1) + K(k)
[
∆y(k)− Φ̂(k − 1)∆u(k − 1)

]
,

(4)

K(k) = P(k)∆u(k − 1) = P(k − 1)∆u(k − 1) (5)

·
[
I + ∆uT (k − 1)P(k − 1)∆u(k − 1)

]−1
,

P(k) = P(k − 1)−P(k − 1)∆u(k − 1) (6)

·
[
I + ∆uT (k − 1)P(k − 1)∆u(k − 1)

]−1

·∆uT (k − 1)P(k − 1),

where P0 = P(0) > 0 is the initial parameter matrix.

2.2 CFDL applied to an assumed nonlinear controller

As introduced in Hou (2013), it is assumed that an I/O
data-based controller description in discrete-time which
can stabilize the original system (1) is written as

u(k) = g(u(k− 1), . . . ,u(k−nc), e(k+ 1), . . . , e(k−ne)),
(7)

where g(. . .) is a smooth unknown nonlinear function;
e(k) = yd(k) − y(k) denotes the current tracking errors,
while yd(k) and y(k) are the desired and actual outputs,
respectively. Here nc and ne are two positive integers
indicated as the unknown orders of the controller (7).
To obtain the CFDL-based controller structure, the fol-
lowing conditions (Hou (2013)) have to be satisfied:

Assumption 3: The controller (7) is a smooth nonlinear
function, and the partial derivatives ∂g(e)/∂e are contin-
uous.

Assumption 4: The generalized Lipschitz condition is
fulfilled for the controller (7), that is ‖u(k)− u(k − 1)‖ ≤
c ‖e(k + 1)− e(k)‖; c > 0. This assumption imposes an
upper bound on the change rates of the controller outputs
driven by the change rates of the tracking errors. With
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these assumptions, a CFDL-based controller structure is
described as (Hou (2013))

∆u(k) = Ψ(k)∆e(k + 1), (8)

u(k) = u(k − 1) + Ψ(k) [e(k + 1)− e(k)] , (9)

where Ψ(k) is an unknown time-varying parameter matrix
of the controller called pseudo-partial derivative (PPD),
and ‖Ψ(k)‖ ≤ c for any step k. Theoretically, it is as-
sumed that the controller (7) can generate perfect control
input signals to acquire perfect control performance (Hou
(2013)), so that the upcoming output tracking errors are
e(k + 1) = [0]. However, from a practical point of view
the tracking errors e(k + 1) will not vanish completely
because of uncertainties or estimation errors. Therefore,
the redefined actual errors in practice are rewritten as
follows

ε(k + 1) = yd(k + 1)− y(k + 1), (10)

ε(k) = yd(k)− y(k). (11)

Hence, the practical control law based on the CFDL
concept is described as

u(k) = u(k − 1)−Ψ(k)ε(k). (12)

Based on the system CFDL model (2), assuming yd(k +
1) = yd(k) = const, the error dynamic equations are

yd(k + 1)− y(k + 1) = yd(k)− y(k)− Φ(k)∆u(k), (13)

ε(k + 1) = ε(k)− Φ(k)∆u(k), (14)

ε(k + 1) = ε(k) + Φ(k)Ψ(k)ε(k), (15)

ε(k + 1) = [I + Φ(k)Ψ(k)] ε(k), (16)

where Φ(k) and Ψ(k) are the unknown PJM and PPD
parameter matrices of the system (1) and the controller
(7), respectively.
To estimate the matrix Ψ(k), the following objective
function is considered

J(Ψ(k)) =
∥∥yd(k + 1)− y(k + 1)

∥∥2+λk‖Ψ(k)−Ψ(k − 1)‖2,
(17)

where λk > 0 is a weighting factor which is added to limit
the change rates of Ψ(k). By using the CFDL model of the
plant

y(k + 1) = y(k) + Φ(k)∆u(k), (18)

y(k + 1) = y(k)− Φ(k)Ψ(k)ε(k), (19)

the cost function (17) can be rewritten as

J(Ψ(k)) =
∥∥yd(k + 1)− y(k) + Φ(k)Ψ(k)ε(k)

∥∥2 (20)

+ λk‖∆Ψ(k)‖2.
By minimizing (20) with respect to Ψ(k), the final estima-
tion algorithm of the PPD matrix

Ψ̂(k) = Ψ̂(k − 1) (21)

−
ρk

[
yd(k + 1)− y(k) + Φ̂(k)ε(k)Ψ̂(k − 1)

]
Φ̂T (k)εT (k)

λk +
∥∥∥Φ̂(k)ε(k)

∥∥∥2 ,

where ρk > 0 denoting a step-size constant is obtained.
The matrix PJM Φ̂(k) in (21) could be estimated by using
the CFDL-RLS algorithm (4), (5), and (6). Finally, the
required control input vector u(k) is updated via (12)
based on the actual tracking errors (11) and the estimated
PPD parameters (21).

3. MODIFIED CFDL-BASED MODEL-FREE
ADAPTIVE CONTROL

In this section a modified estimation algorithm of the
PPD matrix Ψ̂(k) is proposed by minimization of the
actual tracking errors ε(k + 1) and the error variations
∆ε(k + 1) within a specified length of sampling instants
N > 0 to improve control performance. The modified
control approach has been implemented successfully to
an inverted elastic cantilever beam as an example of
SISO nonlinear systems (Madadi et al. (2018)). In this
study a modified objective function of the PPD matrix
Ψ(k) is proposed. As result, a novel parameter estimation
algorithm of the design controller is developed. Based on
the updated parameters and the current output tracking
errors, the required control inputs u(k) are computed.
Explanation of how to apply the proposed method to
control of a class of MIMO systems is discussed in detail.

3.1 Modified parameter estimation algorithm

Based on the existing objective function of Ψ(k) as given
in (17), a modified function is proposed as

J(Ψ(k)) =
∥∥yd(k + 1)− y(k + 1)

∥∥2 (22)

+ τ
∥∥∆yd(k + 1)−∆y(k + 1)

∥∥2 + λk‖Ψ(k)−Ψ(k − 1)‖2,
where τ > 0 denotes a constant design parameter.
To minimize the tracking error variations, the term of∥∥∆yd(k + 1)−∆y(k + 1)

∥∥ is added. Substituting the sys-
tem output increment equation (19) into (22) results to

J(Ψ(k)) =
[
yd(k + 1)− y(k) + Φ(k)Ψ(k)ε(k)

]2
(23)

+ τ
[
∆yd(k + 1) + Φ(k)Ψ(k)ε(k)

]2
+ λk(∆Ψ(k))2.

Differentiating (23) in term of Ψ(k) and letting it zero, the
following equations[

yd(k + 1)− y(k) + Φ(k)Ψ(k)ε(k)
] [

ΦT (k)εT (k)
]

(24)

+ τ
[
∆yd(k + 1) + Φ(k)Ψ(k)ε(k)

] [
ΦT (k)εT (k)

]
+ λk∆Ψ(k) = 0,

Ψ̂(k) = Ψ̂(k − 1)−
ρk
[
yd(k + 1)− y(k)

]
Φ̂T (k)εT (k)

λk + (1 + τ)
∥∥∥Φ̂(k)ε(k)

∥∥∥2
(25)

− ρk (1 + τ) Φ̂(k)ε(k)Ψ̂(k − 1)Φ̂T (k)εT (k)

λk + (1 + τ)
∥∥∥Φ̂(k)ε(k)

∥∥∥2
−
τ
[
yd(k + 1)− y(k)−

(
yd(k)− y(k − 1)

)]
Φ̂T (k)εT (k)

λk + (1 + τ)
∥∥∥Φ̂(k)ε(k)

∥∥∥2 ,

can be derived. The estimation algorithm (25) is different
from the standard algorithm (21). As discussed in Madadi
et al. (2018), the output error differences which are defined
as [

yd(k + 1)− yd(k)− (y(k)− y(k − 1))
]
, (26)

in (25) only consider minimizing one step of the tracking
errors from previous steps with relatively small ampli-
tudes. Therefore, the extended error variations within a
length of N > 0 sampling instants are considered as[

yd(k + 1)− y(k)−
(
yd(k −N + 1)− y(k −N)

)]
,
(27)
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resulting to the modified estimation equation

Ψ̂(k) = Ψ̂(k − 1)−
ρk
[
yd(k + 1)− y(k)

]
Φ̂T (k)εT (k)

λk + (1 + τ)
∥∥∥Φ̂(k)ε(k)

∥∥∥2
(28)

− ρk (1 + τ) Φ̂(k)ε(k)Ψ̂(k − 1)Φ̂T (k)εT (k)

λk + (1 + τ)
∥∥∥Φ̂(k)ε(k)

∥∥∥2
− τ [ε(k)− ε(k −N)] Φ̂T (k)εT (k)

λk + (1 + τ)
∥∥∥Φ̂(k)ε(k)

∥∥∥2 ,

where ε(k) = yd(k + 1) − y(k); ε(k − N) = yd(k − N +
1)− y(k−N) denote the actual output tracking errors at
step k and k −N , respectively. Here ρk > 0 is a step-size
constant. The PJM matrix Φ̂(k) can be estimated by using
the CFDL-RLS algorithm (4), (5), and (6).

3.2 Control scheme for application to MIMO systems

The proposed control method can be applied to a class of
MIMO systems. The modified control scheme is shown in
Fig. 1. To design the modified CFDL-MFAC, the following
steps have to be implemented:

(1) Based on the CFDL data model and the available I/O
data from the system, the unknown PJM parameters
are estimated and updated recursively using the RLS
estimation algorithm. According to Hou (2013), to
improve the ability in tracking time-varying parame-
ters a reset condition is defined as

Φ̂(k) = Φ̂(1) if
∥∥∥Φ̂(k)

∥∥∥ ≤ γ or ‖∆u(k)‖ ≤ γ,
(29)

where γ is a small positive constant, and Φ̂(1) denotes
the initial PJM values.

(2) By using the updated PJM Φ̂(k) and the current

tracking errors ε(k), the controller parameters Ψ̂(k)
are estimated. To increase the tracking ability of
the matrix PPD, another reset condition should be
considered (Hou (2013))∥∥∥Ψ̂(k)

∥∥∥ = −b1 if
∥∥∥Ψ̂(k)

∥∥∥ > b1, (30)

where b1 > 0 is a small constant. Matrix Ψ̂(k)

is always negative, whereas matrix Φ̂(k) is positive
(according to the reset conditions (29) and (30)), that
means the future errors ε(k+ 1) will converge to zero
regarding (16).

(3) Based on the corrected PPD Ψ̂(k) and the actual
tracking errors ε(k), the control input vector u(k)
is calculated via (12). Then the next output values
y(k + 1) are computed or measured and the given
process is implemented repeatedly.

4. SIMULATION RESULTS AND DISCUSSION

4.1 Introduction to an elastic ship-mounted crane

An elastic crane with the “Maryland Rigging” equipped in
large ships in open sea was considered as a MIMO example
in Al-Sweiti (2007). During the system operation, due to

MIMO system

RLS-based
PJM estimation

Output increment
calculation

Modied PPD
estimation

Control law

Input increment
calculation

1z-

1z-

1z-

1z-

( 1)k +y

( )ky

( 1)d k +y

( )ke

( )ky

( )ke

( )ku

( )ku

( 1)kD -u
( )kDy

ˆ ( )kF

ˆ ( 1)kF -

ˆ ( )kY

ˆ ( 1)kY -

( 1)k -u

+

-

Modied CFDL-MFAC structure

Fig. 1. Modified CFDL-MFAC scheme for MIMO systems

Fig. 2. Configuration of an elastic ship-mounted crane with
the “Maryland Rigging” (Al-Sweiti (2007))

the effects of wave motions and wind forces represented
as unknown disturbances the crane normally becomes
unstable. In Fig. 2 the crane configuration with an elastic
part of the boom (part AB) is described. In addition,
because of non-zero initial conditions of the system states
large oscillations of the payload and the elastic boom
occur and they might lead to suspension of the system
operation. Three control input variables are defined for
control implementation namely the displacements of the
luff angle ∆ρ, the upper cable length ∆L, and the lower
suspension point ∆D which are written as

u(k) = [∆ρ(k) ∆L(k) ∆D(k)]
T
. (31)

The system output vector consists of the angular displace-
ments of the elastic boom ∆θ6 (at node 6), and the cables
of the payload m2 denoted as

y(k) = [∆θ6(k) ∆α2(k) ∆φ2(k)]
T
. (32)
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To estimate the system parameters PJM, the available I/O
data from the simulation of the crane are used. Therefore,
the state-space model as developed in Al-Sweiti (2007) is
applied which can be rewritten in discrete-time as

z(k + 1) = Gz(k) + Hu(k) + J∆δ(k) + Qp2(k), (33)

y(k) = Cz(k) + Du(k) + F∆δ(k),

where z denotes the state vector. Here G,H are the system
and input matrices, respectively; meanwhile the system
output and the input direct transmission matrices are
represented as C and D, correspondingly. The external
disturbance matrices are indicated as J due to ship rolling
(∆δ), and Q due to wind force (p2). The disturbance direct
transmission matrix F is resulted by sea motion. In Table 1
initial parameters of the crane and the modified CFDL-
based model-free adaptive controller (modified CFDLc-
MFAC) are given.

Table 1. Initial parameters of the crane and the
modified CFDLc-MFAC

Parameter Meaning Value [Unit]

β0 Orientation of the boom axis π/4 [rad]

D0 Low-point suspension cable 0.55 [m]

L0 Upper cable length 1.60 [m]

m2 Mass of the payload 5.0 [kg]

φ̇20 Initial angular velocity of the
payload

5.0 [rad/s]

ρk Step-size constant 0.01 [-]

λk Constant weighting factor 4.0 [-]

τ Constant design parameter 0.02 [-]

γ Small positive constant 10−5 [-]

b1 Small positive constant 0.009 [-]

4.2 Simulation results and discussion

In this contribution simulation results are obtained in the
case of without considering external disturbance effects
(∆δ(k) = p2(k) = 0). As mentioned before, the unex-
pected in-plane vibrations in the crane need to be reduced
by control. The modified CFDLc-MFAC is compared with
the normal MFAC which uses traditional projection algo-
rithm for online parameter estimation (Hou (2011)) and
PI control.
In Fig. 3 the vibration control results of the payload
displacement in x- and y-direction are shown. Compared to
the normal MFAC (red line) and the PI control (blue-dot
line), the proposed controller (green line) has better con-
trol performance with respect to smaller tracking errors.
The controllers are activated from t = 30 [s]. To obtain the
system dynamic behavior due to non-zero initial condition
of the payload (φ̇20), the uncontrolled case results (pink-
dash line) are also presented. In addition, comparison of
vibration control regarding the angular displacements of
the upper and payload cables (∆α2 and ∆φ2) is illustrated
in Fig. 4. It can be seen that these angular oscillations are
reduced considerably from around 30 [deg] and 50 [deg] to
nearly zero at the end of the simulation by all approaches,
but faster by the proposed controller (green line).
To evaluate control performance of the discussed methods
by varying controller parameters, the relationship between

the control input energy
t2∫
t1

u2(t)dt and the output tracking

-1
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0
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PI control
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0
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Fig. 3. Vibration control comparison with respect to the
payload position ∆x2 and ∆y2
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-50

0
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-4
-2
0
2
4

-5

0

5
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Fig. 4. Vibration control comparison with respect to the
output values ∆α2 and ∆φ2

error
t2∫
t1

e2(t)dt within a specified length of time T = [t1 t2]

[s] (Liu and Söffker (2012)) is applied as follow

PK =

 t2∫
t1

u2(t)dt,

t2∫
t1

e2(t)dt


K

, (34)
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Fig. 5. Control performance evaluation regarding the cri-
teria (34)

where K = [Kp,Ki, λ, λk] is a set of control parameters
of the PI control, normal MFAC, and modified CFDLc-
MFAC, respectively. Here λ and λk are the important
parameters which can improve the model-free control
performance. The trajectory of the control input energy
with u = [∆L,∆D] as well as the control errors e =
[∆x2,∆y2] is denoted as PK . In Fig. 5 control performance
evaluation with respect to the criteria (34) within the
sampling interval T = [30 160] [s] is shown. The trajectory
PK of the modified CFDLc-MFAC (violet dot) is closer to
the origin (upper figure) when varying parameters K than
that of the normal MFAC (blue dot) and the PI control
(red dot). However, the modified model-free controller still
requires more input energy (lower figure) to obtain smaller
control errors compared with other approaches.

5. CONCLUSION

This contribution discusses a modified MFAC which uses
the CFDL technique not only for the unknown system,
but for the unknown controller. To estimate the time-
varying parameters of the linearized system model, the
RLS algorithm is applied instead of using traditional
projection-based method. Finally, an improved model-
free controller is designed and implemented to reduce
vibrations of an elastic crane representing a MIMO system.
Simulation results illustrate the advantages of the modified
approach in comparison with the conventional methods.
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