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Abstract: In this work we consider the problem of cooperative end-effector control between
heterogeneous fully actuated agents when varying-time delays and/or packet loss are present.
We couple agents via outputs encoded with task-space coordinates and velocities that are
transformed into wave-variables to overcome the destabilising effects of the communication
network. The scheme poses dynamic requirements on the agents which are locally satisfied with
feedback control that integrates subtasks, such as joint-limit avoidance or local tracking, when
there are redundant degrees-of-freedom. The proposed approach extends existing methods to
task-space control. The approach is robust to network effects, applies to nonlinear systems
and is scalable by design. The tuning task is simplified considerably by separation of the
cooperative and non-cooperative control terms. We demonstrate the efficacy of the proposed
approach experimentally.
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1. INTRODUCTION

This work concerns cooperative distributed control of het-
erogeneous nonlinear systems in realistic network condi-
tions. Cooperation between heterogeneous systems opens
up new avenues for automation in domains such as the
medical, logistic or aerospace industries (Wurman et al.
(2008), Leitner (2009)). The considered type of interac-
tions are especially useful for aligning systems of different
types, e.g., alignment of space-vessels or automated indus-
trial picking and packing. Although cooperative control
methods for systems of different types exist, their use
is often facilitated by heuristic, systems specific inter-
agent couplings. Our method decouples cooperative and
local behaviour of agents, which greatly increases the
application scope and reduces the tuning requirements
compared to other methods. The effects of time-delays
and communication packet loss adversely affect stability
properties of typical cooperative controllers and in some
cases may result in drift. Mitigating these effects is par-
ticularly challenging due to the nonlinear dynamics of the
agents and the various couplings that can be introduced
between them. In this work we apply passivity theory to
overcome the aforementioned issues. Passive systems are
characterised by their inability to instantaneously supply
energy; externally supplied energy is either stored or dis-
sipated. The Scattering Transformation (ST), introduced
for bilateral teleoperation applications in Niemeyer and
Slotine (1991), transforms the networked input and output
of a system into signals with a defined energy, such that
the network becomes passive. In Chopra and Spong (2006)
this approach was used to derive a convergent Multi-Agent
Scheme (MAS) for passive systems. The scheme achieves
synchronisation of passive outputs (i.e., velocities). It was
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shown in Chopra and Spong (2005) that the coordinate
states may be encoded with the velocities in the outputs r
which, by local feedback, can be rendered passive. This r-
passivity approach was used in Chopra and Spong (2006)
to show state convergence of the MAS. In this work we
consider a modification of the outputs r for task-space
control. We incorporate formation and leader-follower con-
trol, of which synchronisation is a special case. The result-
ing scheme poses cooperative dynamical requirements on
the individual agents for which we develop a novel local
controller. Our control law designs the cooperative and
redundant dynamical behaviour of the agent separately,
making it simple to tune and easily deployable in different
scenarios.
Networks where the standard ST architecture is applied
achieve passivity in the presence of arbitrary constant
communication delays in continuous time. In Lozano et al.
(2002) the result is extended to preserve passivity in the
presence of time-varying delays in continuous-time. In
Berestesky et al. (2004) it is shown that time-varying
delays and packet loss in discrete-time both lead to the
absence of data on the receiver side of an edge when the
network is sampled. The algorithm developed in the same
work reconstructs wave-variables in a passive manner,
thereby remaining passive under improved performance.
The work in Liu and Puah (2014) introduces a passive
reconstruction method, called Wave-Variable Modulation
(WVM), that may be applied locally while extracting
the maximum energy. This reconstruction is incorporated
into a Communication Management Module (CMM) that
connects an agent to other agents in a passive manner in
the presence of network effects. This concept is the key to
robust and scalable communication.
In this work, we propose a control method and demon-
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strate its ability experimentally. The main contributions
are the following:

(i) Extension of r-passivity to task-space coordinates,
validation of coordinate convergence under a large set
of time-varying delays in the MAS from Chopra and
Spong (2006) and a modified scheme that achieves
leader-follower- or leaderless formation control. (Sec-
tion 3).

(ii) Development of a control law for fully actuated me-
chanical systems that achieves r-passivity while allow-
ing control over the excess degrees-of-freedom (Sec-
tion 4).

(iii) Experimental validation of the proposed method us-
ing a robotic manipulator and differential drive robots
(Section 5).

Relevant background is reviewed first in Section 2.

2. PRELIMINARIES

2.1 System Modelling

In this work, agents are modelled with the Hamiltonian
dynamics[

q̇i
ṗi

]
=

[
0ni

Ini

−Ini
0ni

]
∂Hi

∂qi
∂Hi

∂pi

+

[
0ni×mi

Fi

]
τi, (1a)

Hi = 1
2pTi M−1

i pi + Vi(qi), (1b)

where qi,pi ∈ Rni are the coordinates and momenta
respectively, the Hamiltonian Hi is the sum of kinetic and
potential energy in the system and the inputs τi ∈ Rmi

enter the system via input matrix Fi ∈ Rni×mi . We
consider fully actuated systems, for which ni = mi. For
these systems we can assume Fi = Ini

without loss of
generality, due to invertibility of Fi. We define the end-
effector coordinates zi ∈ Rl, which in general relate to the
coordinates via a nonlinear transformation zi = ai(qi).
Additionally, we define the related Jacobian Ji ∈ Rl×ni

such that żi may be expressed as żi = Jiq̇i. We are now
ready to formally define a problem description.

2.2 Problem Definition

Consider N heterogeneous mechanical agents, each de-
scribed by (1a), (1b). The systems communicate over
a directed, bidirectional and strongly connected graph
G(Σ, E). The cooperative objectives are specified by the
desired final inter-agent distances z∗ij = −z∗ji. Agents as-
signed as leaders are given a reference z∗i . The bidirectional
edge pair Eij , Eji ∈ E is subject to distinct and possibly
time-varying delays Tij(t), Tji(t) ≥ 0. The problem is
solved iff

lim
t→∞

||q̇i|| = 0, ∀ i ∈ IN , (2a)

lim
t→∞

||zi − z∗i || = 0, ∀ i ∈ IL, (2b)

lim
t→∞

||zi(t− Tij(t))− zj(t) + z∗ij || = 0, ∀(i, j) ∈ E , (2c)

where IN = {1, . . . , N} and IL the set of leader indices.

2.3 Passivity

A passive system is a system in which energy can only
increase by the energy delivered to it externally. The
received energy is either stored or dissipated. Formally we
may state passivity as follows.

Definition A system is said to be passive if there exists
a C1 storage function V > 0, V (0) = 0 and a dissipation
function S ≥ 0 for which the passivity relation

V (x(t))− V (x(0)) =

∫ t

0

y(s)T τ (s)ds−
∫ t

0

S(s)ds, (3)

holds. The equivalent differential passivity relation ob-
tained by differentiation is given by

V̇ + S = τTy. (4)

Systems for which S(x) > 0 ∀ x 6= 0 are said to be strictly
passive. Systems for which S(x) = 0 are said to be lossless.

2.4 Multi-Agent Passivity-Based Control with
Communication Delays

Typical cooperative control schemes relay agent outputs
over the network, which cannot be guaranteed to be pas-
sive in the presence of delays. The Scattering Transfor-
mation (ST) (Niemeyer and Slotine (1991)) replaces these
outputs (rj , ri) with wave references (rjs, ris) for cooper-
ative control. The wave references are computed from the
wave variables (s−ij , s

+
ji), that are communicated over the

network. Figure 1 depicts this cooperative control scheme
as introduced by Chopra and Spong (2006).

Fig. 1. The cooperative control scheme in Chopra and
Spong (2006), with notation adapted to this work.

The wave-variables and wave references are computed from
the ST as

s+ij =
1√
2b

(−τjsi + brjs) ; s−ji =
1√
2b

(τisj − bris), (5)

rjs =
1

b
(−
√

2bs−ij − τjsi) ; ris =
1

b
(
√

2bs+ji − τisj), (6)

where b > 0 is the virtual impedance of the network.
The variables s−ij , s

+
ji result from propagation through the

delayed network, described by the transport equations

s−ij(t) = s−ji(t− Tji(t)) ; s+ji(t) = s+ij(t− Tij(t)). (7)

The ST ensures losslessness of the network in the pres-
ence of arbitrary constant delays. In Lozano et al. (2002),
this result is strengthened to time-varying delays in
continuous-time by introducing a delay-dependent gain
f(t) on the receiving side of the network that satisfies

f(t) ≤ 1− ∂T

∂t
. (8)

This extension holds under the following assumption:

Assumption 1: The delays do not increase faster than time,
i.e.,

∂Tij(t)

∂t
≤ 1, ∀ t, (i, j) ∈ Eij . (9)
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The cooperative controls are described by a passive func-
tion φjsi(rjsi), with rjsi = rjs−ri, the difference between
the wave references and the agent outputs. The coopera-
tive control input for each agent is computed as the sum
of inputs on each of its edges,

τi =
∑
j∈Ni

φjsi(rjsi), ∀ i ∈ IN . (10)

The scheme depicted in Figure 1 effectively consists of
three distinct passive system components:

• The agents (Vi, Si),

• The network with ST (V ijchannel, 0),
• The cooperative controls (Vjsi, Sjsi).

The cooperative control scheme with agents (1a), (1b), ST
(5) - (7) and controls (10) is shown to be globally stable in
Chopra and Spong (2006) using the Lyapunov-Krasovskii
candidate

V =
∑
i∈IL

Vi +
∑

(i,j)∈E

V ijchannel +
∑
i∈IL

∑
(i,j)∈E

Vjsi, (11)

with its derivative given by

V̇ = −
∑
i∈IL

Si −
∑
i∈IL

∑
(i,j)∈E

Sjsi ≤ 0.

This implies that asymptotically

Sjsi → 0 ∀ (i, j) ∈ E , Si → 0 ∀ i. (12)

Synchronisation properties of the system depend on the
choice of cooperative controls and outputs.

3. COOPERATIVE R-PASSIVITY BASED CONTROL

In this work we build on Chopra and Spong (2006) by
considering cooperative control of task-space coordinates
z. The following section introduces cooperative controls
and outputs that achieve cooperative consensus.

3.1 Modified outputs and passive cooperative controls

The coordinates qi are unobservable from the typical
passive outputs q̇i, which leads to coordinate drift in the
presence of time-varying delays and packet loss, as shown
in Chopra and Spong (2005). We adapt the solution in
Chopra and Spong (2005) designed for synchronisation of
the states qi, to synchronisation of end-effector coordi-
nates zi, resulting in the outputs

ri = żi + λzi, λ > 0. (13)

Notice that the objectives (2c) are observable from these
outputs. To achieve these objectives we define a potential
function Vc ≥ 0, for which

Vc(rjsi) = 0 ⇐⇒ rjsi = 0. (14)

The gradient descend based control inputs are computed
as

φjsi = −Kij
∂Vc(rjsi)

∂rjsi
, (15)

where Kij = Kji is the control gain on the edge Eij . A
storage function of these controls is Vjsi = 0. Substitution
in (4) yields

Sjsi =
∂TVc(rjsi)

∂rjsi
Kijrjsi ≥ 0.

Since the gradient of Vc is odd, these cooperative controls
are strictly passive.

3.2 Synchronisation of the network

In the following, we denote systems that are passive with
respect to the input-output pair (r, τc) as r-passive. We
will show that the proposed modifications to the scheme
Chopra and Spong (2006) result in synchronisation of the
cooperative coordinates z. For this result the following
assumption is necessary.

Assumption 2: Agents are strictly r-passive with damping
on their cooperative velocities, i.e., there exists a Vi, Si(żi)
for which

Si = τTc,iri − V̇i ≥ 0, ∀ i, (16)
holds.

We will develop a controller that satisfies Assumption 2
by design in Section 4.

Theorem 1. In the setting of Problem I the scheme de-
picted in Figure 1 with agents satisfying Assumption 2,
outputs (13), the ST (5), (6) with delay dependent gains
(8) and controls (10), (15) achieve (2c) with z∗ij = −z∗ij =
0 ∀ (i, j) ∈ E , in the presence of time-varying delays
satisfying Assumption 1.

Proof. Since all components in the system are r-passive,
Lyapunov candidate (11) leads to asymptotic properties
outlined in (12). By design of Vc, we have

Sjsi → 0 ⇐⇒ rjsi → 0, τjsi → 0, ∀ (i, j) ∈ E , (17)

while Assumption 2 and (12) imply ri → λzi. Hence we
may write

żjs = −λ(zjs − zi), ∀ (i, j) ∈ E ,
which is a linear system where the input λzi is constant.
The coordinate transformation ẑjs = zjs − zi yields

˙̂zjs = −λẑjs, ∀ j,
which is Hurwitz and hence converges exponentially to
ẑjs = 0. Reverting the transformation shows that

lim
t→∞

zjs = lim
t→∞

zi, lim
t→∞

żjs = 0, ∀ (i, j) ∈ E . (18)

Hence locally the outputs converge to the wave references.
To show cooperative convergence we substitute (5) and (7)
in (6), which yields

lim
t→∞

rjs = lim
t→∞

1

b
(−τisj(t−Tji(t))+ bris(t−Tji(t))−τjsi)

and a similar description for ris for all edge pairs. Since
τjsi → 0 and τisj → 0, we obtain

lim
t→∞

rjs(t) = lim
t→∞

ris(t− Tji(t)), ∀ (i, j) ∈ E . (19)

Using Assumption 2 and (18) we finally obtain

lim
t→∞

zj(t− Tji(t))− zi = 0, ∀ (i, j) ∈ E . (20)

Which together with a strongly connected network implies
(2c) is achieved. 2

3.3 Leaders and formation control

The above result can be extended to formations by modi-
fying the input of the cooperative controls as

r̂jsi = rjs − ri −
λ

2
z∗ij , ∀ (i, j) ∈ E . (21)

Asymptotic properties (12) then imply r̂jsi → 0. Following
the proof of Theorem 1 results in

lim
t→∞

zjs − zi = 1
2z∗ij , ∀ (i, j) ∈ E . (22)
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Substituting the unmodified relation (19) in (22) yields

zj(t− Tji)− zi = z∗ji. ∀ (i, j) ∈ E . (23)

Hence objective (2c) is satisfied.
To include leaders we define an additional cooperative
potential function V ∗i and its associated control function

φ∗i = K∗i
∂V ∗i (z∗i − zi)

∂(z∗i − zi)
, ∀ i ∈ IL. (24)

The cooperative control input with leaders is given by

τi = φ∗i (z
∗
i − zi) +

∑
j∈Ni

φjsi(rjsi). (25)

4. LOCALLY R-PASSIVE AGENT CONTROLS

The results in the previous section rely on r-passivity
of individual agents (Assumption 2). In this section we
present our main results: a control law that renders fully
actuated mechanical systems r-passive.

Theorem 2. Agent i with dynamics (1a) - (1b), with ni =
mi, controlled by

τi = MiJ
†
i (τc,i −Kz,iq̇i) +

∂Hi

∂qi
, (26a)

Kz,i = Ji

(
(λ+ γi)In,i −M−1

i Ṁi

)
+ J̇i, (26b)

with γi > 0 a tuning parameter, render the agent passive
w.r.t. the storage and dissipation function

Vi = 1
2rTi ri + 1

2γiλzTi zi, Si = γiż
T
i żi.

Proof. The following proof is constructive. The derivative
of the storage function is

V̇i = ṙTi ri + γiλżTi zi

= (ṙi + γiżi)
T ri − γżTi żi.

Substituting in differential passivity relation (4) yields

(ṙi + γiżi)
T ri = τTc,iri.

Hence the l-dimensional dynamics that achieve r-passivity
are given by

τc,i = ṙi + γiżi = z̈i + (λ+ γi)żi.

Which may be expanded as

τc,i = J(Ṁ−1
i pi + M−1

i ṗi) + J̇iq̇i + (λ+ γi)Jiq̇i,

= JiM
−1
i ṗi + Kz,iq̇i,

Define the feedback τc,i = τ̂c,i + Kz,iq̇i such that

τ̂c,i = JiM
−1
i ṗi. (27)

To find the corresponding set of n-dimensional system

dynamics, note that JiM
−1
i MiJ

†
i = Il×l, hence

JiM
−1
i

(
MiJ

†
i τ̂c,i − ṗi

)
= 0. (28)

To obtain passivity, we match these dynamics with the
plant momenta equations, i.e.

ṗi = MiJ
†
i τ̂c,i = −∂Hi

∂qi
+ τi. (29)

The proposed control laws satisfy this equation. 2

This result matches the desired cooperative dynamics with
the cooperative behaviour of the plant. In the common case
that ni > l, the system possesses uncontrolled degrees-
of-freedom. These coordinates may be controlled using
subtask optimisation (see Hsu et al. (1988)). Consider the

subtask potential Vs,i(qi) ≥ 0 which is minimised if the
local objective q∗i is achieved. The null space definition

J⊥i = (Ini
− J†iJi) from Hsu et al. (1988) can be used

to influence only the redundant degrees-of-freedom. This
definition satisfies

JiJ
⊥
i = 0l×ni

, J⊥i J†i = 0ni×l, J⊥i J⊥i = J⊥i . (30)

The subspace tracking error may then be defined by

es,i = J⊥i

(
q̇i +

∂Vs,i
∂qi

)
, J⊥i wi. (31)

The second property of (30) prevents the subtask optimi-
sation from modifying the cooperative behaviour.

Theorem 3. Agent i with dynamics (1a) - (1b), where
ni = mi and

τi =
∂Hi

∂qi
+ MiJ

†
i

(
τc,i −Kz,iq̇i

)
−MiJ

⊥
i

(
∂Vs,i
∂qi

+ Kv,iq̇i + J̇⊥i wi

)
,

(32)

with Kz,i defined by (26b) and

Kv,i =
∂T

∂qi

(
∂Vs,i
∂qi

)
+ Ini

−M−1
i Ṁi, (33)

achieve r-passivity w.r.t. the storage and dissipation func-
tions (2), while es,i → 0.

Proof. Consider the following Lyapunov candidate

Ui =
1

2
eTs,ies,i. (34)

The derivative is

U̇i = wT
i J⊥i ẇi + wT

i J⊥i J̇⊥wi.

= wT
i J⊥i

(
q̈i +

˙∂Vs,i
∂qi

)
+ wT

i J⊥i J̇⊥wi.

= wT
i J⊥i

[
Ṁ−1

i Miq̇i − J⊥i

(
∂Vs,i
∂qi

+ Kv,iqi + J̇⊥i wi

)
+

˙∂Vs,i
∂qi

]
+ wT

i J⊥i J̇⊥i wi.

Where we substituted the dynamics described by the
momenta ṗi. Substituting the proposed Kv,i yields

U̇i = −wiJ
⊥
i wi = −eTs,ies,i ≤ 0. (35)

Hence es,i → 0.

A vanishing subspace tracking error, es,i → 0, was shown
in Hsu et al. (1988) to result in tracking of the subtasks as
long as its vector lies in the null space. This result implies
that all velocities in the null space of Ji go to zero, since
convergence of Vs implies wi = q̇i. As a consequence of the
cooperative scheme and cooperative damping, velocities
in the range space of Ji also converge to zero. Hence we
obtain qi → 0, ∀ i ∈ IN , which implies satisfaction of
objective (2a). Since Theorem 1 satisfied objectives (2b),
(2c), we conclude that the continuous-time problem is
solved.

4.1 Cooperative mass matrices

The approach outlined in Theorem 2 is a top down ap-
proach: the desired storage function leads directly to a
control law. In the case of Theorem 2 the cooperative mass
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matrix of each system is the identity matrix, hence systems
become homogeneous in their cooperative dynamics. In
many cases it may be beneficial to tune the cooperative
behaviour per system, e.g. for increased efficiency, over-
coming unmodelled friction or faster responses in a partic-
ular cooperative subspace. The following result generalises
Theorem 2 to general mass matrices.

Theorem 4. Theorem 2 with the modified cooperative
control law

τ̂c,i = Mz,iτc,i −Kz,iq̇i + 1
2Ṁz,iM

−1
z,i ri, (36)

K̂z,i = Ji(λIn,i −M−1
i Ṁi) + J̇i + γiMz,iJi. (37)

results in r-passivity with respect to the storage and
dissipation function

V = 1
2rTi M−1

z,i ri + 1
2λγiz

T
i zi, Si = γiż

T
i żi, (38)

while asymptotic properties remain unchanged.

Proof. The storage function derivative is

V̇i = rTi M−1
z,i ṙi + 1

2rTi Ṁ−1
z,i ri + γiż

T
i (ri − żi), (39)

Which, using differential passivity (4), leads to the input
description

τc,i = M−1
z,i ṙi + 1

2Ṁ−1
z,i ri + γiżi

Mz,iτc,i = ṙi − 1
2Ṁz,iM

−1
z,i ri + γiMz,iżi.

The proposed cooperative control law satisfies this equa-
tion and results in the system dynamics (27). 2

A simple application of Theorem 4 is shaping for a scaled
identity mass M−1

z,i = ηiIl. Since Ṁz,i = 0l×l, the mod-

ification to the control law is a simple gain of 1
ηi

on

the received cooperative input τc,i. Hence the system is
virtually made heavier by reducing its input.

This concludes the approach in continuous-time. We have
solved the continuous-time problem for fully actuated
mechanical systems using local controllers (32) to achieve
r-passivity of agents and Theorem 1 to achieve cooperative
objectives. The proposed scheme can be applied in a
discrete-time context with time-varying delays and packet
loss by applying a Communication Management Module
(CMM). In the following experiments we apply Wave-
Variable Modulation (WVM) as developed in Liu and
Puah (2014). This CMM buffers incoming messages, which
are timestamped, and is read by the controller at the
network frequency. With decreasing delays, two packets
may arrive at the same instance. In this case we keep only
the most recent packet. Increasing delays and packet loss
may lead to an empty buffer when sampling (Berestesky
et al. (2004)). In these cases WVM locally computes
a passive reconstruction of the wave-variable, increasing
performance while remaining stable.

5. RESULTS

Experimental results of the proposed control scheme are
presented in the following. The setup, depicted in Figures
2(a) and 2(b), consists of a 7 Degree-Of-Freedom (DOF)
robotic manipulator 1 and two Differential Drive robots 2 .
1 Franka Emika Panda, see https://www.franka.de/technology/
2 GCtronic Elisa3, see https://www.gctronic.com/doc/index.php/
Elisa-3

Our experiments demonstrate the proposed control scheme
in an abstract picking and packing problem, e.g., the
driving robots could be carrying items that need to be
grasped and moved by the manipulator to another cart.

(a) Photo. (b) Schematic

Fig. 2. The experimental setup

The manipulator is fully actuated with n = 7. We define
the position of the end-effector in 3D space as cooperative
coordinates such that z = (x, y, z) ∈ R3. The matrices
M(q),J(q) required for control are obtained from the
robot controller over a wired Ethernet connection and
gravitational forces are internally compensated. The sam-
pled data control loop is implemented at a rate of 1 kHz.
Matrix derivatives Ṁ, J̇ are obtained by numeric differen-
tiation and low-pass filtering.
The differential drive robots are actuated by two speed-
control motors. We use the model and feedback lineari-
sation around the hand position derived in Lawton et al.
(2003). Virtual accelerations are integrated internally to
generate speed outputs from force inputs. The resulting
cooperative model is a point-mass at the hand position. We
have n = l = 2 and z = (x, y) ∈ R2. The world reference
frame is located at the manipulator base. The positions of
the Elisa3 agents in this frame are measured via a camera
detection system. The controllers of both systems and the
communication network run on a single computer. Thus, to
illustrate performance with respect to time-varying delays
and packet loss, a network is emulated artificially. To limit
the slope of the random delays we generate delays via a
random walk process with 0.2 s ≤ T ≤ 0.4 s, Ṫ ≤ 0.5.
We use a Bernoulli dropout model with p = 0.05 to
emulate packet loss. The methods introduced in this work
are implemented in ROS and C++ (source code available
at https://github.com/oscardegroot/ROS_rPBC).
The objective in the following experiment is to form a
circle in the ground plane with a radius of 0.1 m between
the three agents. The height of the manipulator is con-
strained by defining it as a leader coordinate with 0.3 m
as reference and 1.0 as gain. The main parameter values
are summarised in Table 1. Joint-limits of the manipulator

Table 1. Experimental parameter values.

λ γ κ fN Kij Rw ε α

1.0 0.05 0.05 100 Hz 1.5In 30.0 0.0004 35.0

are evaded using a quadratic local potential around the
central angle of the joints. The transient response is sped
up by setting its mass to η = 0.015. Similarly for the
differential drive robots we set η = 0.05. Figures 3 and
4 show the trajectories and cooperative coordinates of the
agents respectively. The circular formation is achieved by
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the agents. Notice that the height of the leader converges
to the reference of 0.3 m. Although the effects of the delays
are visible in slight oscillations of the trajectories, their
deteriorating effect on the performance is small and the
system converges without drift. The cooperative velocities
depicted in Figure 5 converge to zero.

-0.4

-0.3

-0.2

-0.1

x
 (

m
)

-0.5-0.4-0.3-0.2-0.100.10.20.30.4

y (m)

Fig. 3. Trajectories of the agents in the ground plane. The
initial and final positions of the agents are denoted
with a square and circle respectively. The bounds in
the x and y axes are drawn as a black solid line.
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Fig. 4. Cooperative coordinate evolution over time.
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Fig. 5. Cooperative velocities over time.

To show the robustness of the proposed method we per-
form multiple consensus experiments with the manipulator
and a single differential drive robot. In the first set of
experiments, the minimum- and maximum delay are in-
creased in 200 ms increments, while packet loss is disabled.
In the second set of experiments delays are varied between
200 ms and 400 ms, while packet loss is increased in 5%
increments. We plot the last time where the Euclidean
distance between agents exceeds 0.02 m (“settling time”).
The results are visible in Figure 6. The systems settle for
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Fig. 6. Robustness results of the presented method towards
time delays and packet loss.

all the presented delays, at the expense of performance.
We claim that this trend proceeds for higher delays. For
packet loss higher than 80% we start to observe drift.
The presented results motivate the applicability of the
proposed approach in a wide range of network conditions.

6. CONCLUSIONS AND FUTURE RESEARCH

In this work we developed a unified cooperative control
scheme for nonlinear fully actuated heterogeneous agents
using passivity theory. Where existing methods selectively
achieve robustness to time-delay or cooperative nonlinear
control, we have derived a method that accomplishes both.
We have additionally shown that the coordinates of each
agent may be split into local and cooperative coordinates
which may be influenced separately via control. Accord-
ingly, the designer is provided with an intuitive set of
weights to tune for appropriate local and cooperative be-
havior. The set of introduced cooperative controls based on
Navigation Functions incorporates constraints such that
obstacles, other agents or singularities may be avoided.
We have successfully demonstrated the efficacy of the
approach experimentally.
Future work will be focussed on the extension of the pro-
posed methodology to underactuated systems. Matching
of the underactuated degree, which is the key ingredient
of Interconnection- and Damping Assignment Passivity-
Based Control (IDA-PBC), may be applicable to the pro-
posed framework in the case of underactuated systems.

REFERENCES

Berestesky, P., Chopra, N., and Spong, M.W. (2004).
Discrete time passivity in bilateral teleoperation over
the Internet. In IEEE ICRA, volume 5, 4557–4564.

Chopra, N. and Spong, M.W. (2006). Output Synchroniza-
tion of Nonlinear Systems with Time Delay in Commu-
nication. In Proc. of the 45th IEEE CDC, 4986–4992.

Chopra, N. and Spong, M.W. (2005). On Synchronization
of Networked Passive Systems with Time Delays and
Application to Bilateral Teleoperation. In SCIE Annual
Conference, 3424–3429. Okayama Japan.

Hsu, P., Hauser, J., and Sastry, S. (1988). Dynamic
control of redundant manipulators. In Proc. IEEE Conf.
Robotics and Automation, volume 1, 183–187.

Lawton, J., Beard, R., and Young, B. (2003). A de-
centralized approach to formation maneuvers. IEEE
Transactions on Robotics and Automation, 19, 933–941.

Leitner, J. (2009). Multi-robot cooperation in space: A
survey. Advanced Technologies for Enhanced Quality of
Life, 144–151.

Liu, Y. and Puah, S. (2014). Passivity-based control for
networked robotic system over unreliable communica-
tion. In 2014 IEEE ICRA, 1769–1774.

Lozano, R., Chopra, N., and Spong, M. (2002). Passivation
Of Force Reflecting Bilateral Teleoperators With Time
Varying Delay. In Proceedings of the 8th Mechatronics
Forum, 24–26.

Niemeyer, G. and Slotine, J.J.E. (1991). Stable adaptive
teleoperation. IEEE Journal of Oceanic Engineering,
16, 152–162.

Wurman, P., D’Andrea, R., and Mountz, M. (2008). Coor-
dinating hundreds of cooperative, autonomous vehicles
in warehouses. AI Magazine, 29, 9–20.

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

3543


