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Abstract: This paper presents a novel approach for continuous gait phase estimation for human
level walking, stair ascent and stair descent relying only on the kinematic variables of the shank,
which are measurable by a single Inertial Measurement Unit (IMU) placed at the shank. We use
data from an experiment with an instrumented stair to train Artificial Neural Networks (ANNs)
and to obtain the data necessary for a k-Nearest-Neighbour (kNN) method. Both methods are
used for a continuous gait phase estimation separately for each of the three locomotion modes
level walking, stair ascent and stair descent. The so called pseudo-velocities are introduced, a
substitution for translational velocities as input values. The presented gait phase estimation
with ANNs achieves a good performance (mean absolute error < 6 %) for all three locomotion
modes for one test subject and is much faster in comparison to a kNN approach. The use of
ANNs seams promising regarding performance and speed for a future implementation on an
active prosthesis.

Keywords: Gait Phase, Gait Analysis, Machine Learning, Artificial Neural Network,
Locomotion, Stair Climbing, Assisted Walking, Prosthesis, Inertial Measurement Unit.

1. INTRODUCTION

Active lower limb prostheses have the potential to improve
the mobility of people with lower limb amputation. Aside
from the mechanical design, the development of an ap-
propriate control for different locomotion modes is still
challenging [Herr and Grabowski (2011), Rezazadeh et al.
(2018), Sup et al. (2009), Windrich et al. (2016)].

The support given by a lower limb prosthesis to a person
with amputation depends on the knowledge of the current
or intended locomotion mode and the so called gait phase.
This paper focuses on the gait phase. It represents the
relative progression between start and end of one specific
stride. The gait phase has a value between 0 % to 100 %
and starts at 0 % with the contact of the foot with the
ground (in general the heel, therefore called heel-strike)
and ends with the same foot touching the ground again at
100 %.

During one stride two distinct phases are essential for
human walking. The stance phase and the swing phase are
distinguished by the foot having contact with the ground
(stance) or being in the air (swing). The stance phase
is the part of a stride, that allows to interact with the

? The authors gratefully thank the German Research Foundation
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environment and the swing phase is used to move the
foot to a new position for the next ground contact. For
an active support with a prosthesis the stance phase is
the most important part. A good estimation of the gait
phase is especially important for a person wearing the
active prosthesis at tasks with a higher risk of injuries,
due to the danger of falling or stumbling, such as stair
ambulation [Jacobs (2016)].

As a consequence, besides the knowledge of the current
locomotion mode, a appropriate gait phase estimation is
very important for the control of an active prosthesis
and its save use. A controller setup for an active ankle
prothesis can consist of a high-level gait phase estimation
and locomotion mode classification followed by a mid-
level control using the gait phase and locomotion mode to
select a specific position or torque [Holgate et al. (2009),
Grimmer et al. (2017) . Finally a low-level control realizes
the desired position or torque of the active ankle prothesis.

For level ground walking a continuous gait phase estima-
tion can be realized e.g. by phase plane approaches intro-
duced by Holgate et al. (2009) and used for example by
Rezazadeh et al. (2018) or Quintero et al. (2017). Recently,
model based approaches have been used for level ground
walking too, e.g. by Seo et al. (2019) or Kang et al. (2020).

For walking on stairs, using kinematic data from the thigh
was demonstrated to be a viable option [Quintero et al.
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(2017), Bartlett and Goldfarb (2018)]. However, prosthe-
ses for users with transtibial amputation do not have
kinematic information from the thigh available without
additional instrumentation. Ledoux and Goldfarb (2017)
use four discrete states during one stride cycle of stair
ascent to eliminate the need of a continuous gait phase
value, but need the input of the user to transition between
the states.

To the best of the authors’ knowledge no approach for
continuous gait phase estimation for stair ambulation,
with only kinematic data from the shank, can be found
in literature up to now.

Therefore, this paper presents a novel approach for esti-
mating the gait phase continuously during level walking,
stair ascent and stair descent that only uses the kinematic
data acquirable with an Inertial Measurement Unit (IMU)
mounted at the shank.

As mentioned earlier, active prostheses need the knowledge
of the current locomotion mode for a proper support of
the user. The classification of the locomotion mode and
the estimation of a transition is part of a lot of different
research [Young and Hargrove (2016), Stolyarov et al.
(2018), Xu et al. (2018), Simon et al. (2018)]. Hence,
we presume knowledge of the current locomotion mode
is given. Therefore, we develop three individual gait phase
estimators for level walking, stair ascent and stair descent.

We hypothesize that by using more than two input fea-
tures a gait phase estimation with only kinematic shank
information is feasible not only for ground level walking
but also for stair ascent and descent.

The approach is not to manually search for additional can-
didates to further develop the phase plane method (like in
Villarreal and Gregg (2014)), but to use a set of kinematic
data of the shank as input values to generate an estimator
for the gait phase for each of the three locomotion modes
using machine learning regression methods. A k-Nearest-
Neighbour (kNN) approach and Artificial Neural Networks
(ANNs) are compared in this work. These selection was
made to consider a simple model free approach (kNN) and
a more complex model based approach (ANN).

The limitation to kinematic data from the shank is more
challenging but favourable because the acquired values
are generally available when using an active transtibial
prosthesis with an integrated IMU. Therefore, kinematic
shank data offers suitable candidates for an easy imple-
mentation in existing and future systems without the need
of additional sensors.

The remainder of the paper is structured as follows. Sec. 2
gives an overview of the used dataset, the input and output
variables including a novel surrogate for translational
velocity and it presents the approach for the gait phase
estimation with kNN and ANNs. Sec. 3 evaluates and
discusses the results of the tests for one subject of the
experimental dataset with a final conclusion given in
Sec. 4.

2. METHOD

The estimation of gait phase can be treated as a regression
problem and is therefore approached with a regression

method capable of utilizing an existing dataset of level
and stair walking.

2.1 Experimental Dataset

The dataset used in this work was measured during a stair
walking experiment at the Locomotion Laboratory of the
Technical University of Darmstadt and will be presented in
detail in a further publication. The necessary information
for this work is given by a short overview.

Twelve subjects without mobility impairments (age: 25.4±
4.5 years, height: 180.1 ± 4.6 cm and mass: 74.6 ± 7.9 kg)
walked at an instrumented track including a staircase and
a level area before and after the staircase. The study proto-
col was approved by the institutional review board of TU
Darmstadt. The track was equipped with a motion capture
system (Qualisys, Sweden) to track the subjects kinemat-
ics in the 3D-space and force plates (Kistler, Switzerland)
to capture the ground reaction forces (GRF). Each subject
was equipped with several IMUs from which only the
shank IMUs are of interest for this work. Each subject
walked on the track ten times upstairs and downstairs at
three different stair slopes (19◦, 30◦ and 40◦).

After the experiment the data was further processed to
extract each stride and label it with the corresponding
locomotion mode and continuous gait phase values. The
start of a stride was determined by the heel strike event
and the end of a stride was determined by the next heel
strike of that foot. Both events were determined by the
GRF. The gait phase was determined by two continuous
heel strike events. Based on both heel strike timings, the
progress can be determined (in percent of stride time).

Overall 2128 strides of level walking, 1067 strides of stair
ascent and 1415 strides of stair descent could be measured,
extracted and labelled from the twelve subjects.

Despite the limitation to kinematic values available by
measurement through a shank mounted IMU, the shank
angle ϕ and the shank angular velocity ϕ̇ in this work are
obtained from the motion capture data from the dataset
with OpenSim [Seth et al. (2018)]. The use of motion
capture data is not a violation of the limitation of available
values, because all used values can be measured by the
IMU respectively calculated from measured values. The
motion capture data had to be used, because the angular
velocity data from the IMU of the dataset was not available
at the time of this work.

2.2 Input Features

The choice of input features has a huge influence on
the quality of the gait phase estimation, but is in this
work limited to values that can be measured or computed
only from data available from a shank mounted IMU.
That choice was made to develop a method that can be
implemented on an active ankle prosthesis without the
need for additional wearable sensors or other measurement
devices.

The shank IMU can measure translational accelerations
and angular velocities in three dimensions. First trials
showed, that only using translational accelerations and
angular velocities do not result in an acceptable estimation
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of the gait phase. Therefore, additional input features had
to be chosen.

The phase plane approach shows, that shank angle infor-
mation is useful to estimate the gait phase [Holgate et al.
(2009)]. By using only one IMU, the shank angle can be
calculated from angular velocities and translational accel-
erations through a Kalman-filter approach [Rehbinder and
Hu (2001)] or a complementary filter [Gui et al. (2015)].
Hence, the shank angle meets the constraints and is used
as an input feature.

Another candidate for an input feature is the translational
velocity. A new approach to substitute it is presented
in this work. We assume that the additional benefit of
adding the translational velocity as an input feature comes
primarily from the information of prior sample points,
that is always present when integrating a value from
acceleration to velocity. For a suitable input feature of the
gait phase estimation it is not important to get a correct
velocity, but a value that contains the needed additional
information for a better regression.

Such a value is generated in this paper by integration
of the translational acceleration and following high-pass
filtering to eliminate the offset and drift of an integrated
acceleration. The result is an input feature we refer to as
pseudo-velocity for which no knowledge of the offset or
complex post-processing of the IMU data is required.

The combination of an integration followed by a first order
high-pass filter can be condensed to a first order low-pass
filter:

1

s

s

Ts+ 1
=

1

Ts+ 1
.

The time constant of the low-pass filter is set to T = 1
3 s.

With this low-pass filter the pseudo-velocities in y- and
z-direction are generated.

In the end, six input features are used, which are presented
in Table 1. The orientation of the shank coordinate system
is defined as shown in Fig. 1 and the gait is simplified to
a two dimensional motion in the sagittal plane.

Table 1. Input features for the gait phase
estimation using only kinematic data of the

shank.

Shank angle ϕ
Shank angular velocity ϕ̇

Translational acceleration ÿ and z̈

Pseudo-velocities ˜̇y and ˜̇z

2.3 Outputs

The gait phase g% can accept values between 0 % and
100 % and g% = 100 % is the same as g% = 0 % of the
following stride because of the periodic nature of walking.
This generates a problem because the regression has to fit
very similar input data belonging to the output g% = 0 %
or g% = 100 %, which leads to a discontinuity and reduces
the output quality of the regression significantly.

This work presents a solution for this problem by trans-
forming the gait phase into polar coordinates, which are
represented by a radius r and an angle ϑ, but can also be

z

y

ϕ

Fig. 1. Shank coordinate system in sagittal plane used for
kinematic values.

x

y

r sinϑ

r cosϑ

r

ϑ

50% 0, 100%

75%

25%

Fig. 2. Representation of the transformation from polar to
Cartesian coordinates of the gait phase to generate
continuous values.

represented by two coordinates x and y in the Cartesian
coordinate system (see Fig. 2). A similar approach was
development and presented independently by Seo et al.
(2019).

To transform the gait phase g% to x and y coordinates the
gait phase g% first is converted to radian and afterwards
to x- and y-coordinates with

x = r cos

(
g%2π

100

)
,

y = r sin

(
g%2π

100

)
and a constant radius r = 1. The additional dimension of
information available with the radius r is not used for the
moment.

With this transformation a continuous calculation of the
gait phase is possible and no jump at 0 %/100 % occurs.
As a result of the transformation the regression problem
has the two output values x and y. The estimated output
values have to be transformed back to obtain the estimated
gait phase ĝ%.

2.4 k-Nearest-Neighbour

The first method investigated is k-Nearest-Neighbour
(kNN), which is a model free approach. It is implemented
with the euclidean norm as distance measure. The number
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Table 2. Hyperparameter settings of the three
Artificial Neural Networks for gait phase esti-

mation after hyperparameter optimization.

Mode Layers Nodes Dropout Regularization

Level Walking 2 50, 50 0.2 0.001
Stair Ascent 2 20, 50 0.2 0.015
Stair Descent 2 50, 50 0.2 0.001

of neighbours used for the regression is set to k = 5
during a validation phase as a trade-off between accuracy
and computation time. With regard to implementation
purposes the kNN is challenging because of the storage
space required for the data set.

2.5 Artificial Neural Network

A model based method is used as a second method
besides the kNN, because the potential of using the trained
method on unknown test subjects or users of prostheses
should be high. This is necessary because the process of
training a method for a specific user can be cumbersome.
The Artificial Neural Network (ANN) was chosen because
of its well known capability of generalization and the
property of being able to be a general approximator
[Cybenko (1989)].

The hyperparameters of the ANN were chosen by a sys-
tematic trial and error optimization. Upper limits for the
depth (max. 3 layers) and the height (max. 50 neurons
per layer) have been defined to take into account a possi-
ble implementation of the trained networks on an active
prosthesis in the future.

The chosen hyperparameters of the selected ANNs are
presented in Table 2. The ANNs are implemented using
Python 3.7 [Van Rossum and Drake (2009)] and Keras
2.2.4 [Chollet et al. (2015)]. For training the Adam-
Algorithm [Kingma and Ba (2014)] is used and a dropout
rate is implemented. Start values of the weights are ran-
domly initialized with the default uniform distribution.
The activation function in the hidden layers is a ReLu
function and because of the regression-type problem, the
output layer has a linear activation function.

2.6 Dataset Processing

The dataset from the experiment is separated for training
(nine subjects), validation (two subjects) and testing (one
subject) purposes with the ANN.

The training data is used to train the ANN in combination
with the validation data to tune the hyperparameters and
validate the training quality. To prevent the ANN from
over-fitting to the training data, the validation data is also
used during training in order to stop the training based on
the regression quality of the validation data. Therefore, the
training is stopped after 5 consecutive epochs of the whole
training data without an improvement of the validation
loss. The trained model of the last epoch is then selected.

After finalizing the hyperparameters and training the
ANN, the test data is used to evaluate the presented
method with data that was not used for training the ANN
or for selecting the hyperparameters. This is important
because every human has specific individual characteristics

Table 3. Error comparison of gait phase esti-
mation for three locomotion modes for the test
data with k-Nearest-Neighbour and Artifical

Neural Networks.

MAE in %
Mode Strides kNN ANN

Level Walking 180 3.2 2.9
Stair Ascent 90 4.1 5.6
Stair Descent 119 5.4 3.3

in its gait and by training the ANN partially learns these
patterns of the training subjects too. Therefore, the use of
a new subject as test data is a greater challenge for testing
and evaluating the quality of the gait phase estimation
with ANN after final training and hyperparameter choice.

The kNN uses the same training data as dataset, the same
validation data to set the hyperparameter k, and the same
testing data as used for ANN.

2.7 Evaluation Method

To evaluate the quality of the gait phase estimation a
comparison between kNN and ANN is performed. Due
to the nature of being a new approach for stair ascent
and descent no results from the literature can be used to
compare the results.

The quality of the estimation is evaluated with the testing
data. Complete strides are used to simulate continuous
walking. With this approach the change of the estimated
gait phase from sample point to sample point can be
evaluated. This is important because too large jumps or
changes in the estimated gait phase could lead to unwanted
behaviour of an active prosthesis using the estimation
for its controls. Additionally, the quantitative quality of
the estimation through the mean absolute regression error
(MAE) is evaluated.

For later implementation purposes the computation time
is important too. Therefore, the execution times for KNN
and ANN were conducted. For each method an execution
of the entire test data with both methods is conducted
at a workstation ten times. To take variability during
computation into account, the mean computation time per
sample of all ten trials is calculated.

3. RESULTS & DISCUSSION

The presentation of results of the gait phase estimation
for the test data of one subject and their discussion has
to be separated into the different locomotion modes and is
evaluated over multiple strides of each locomotion mode.
The mean absolute regression error (MAE) is used as
general measurement for the quality of the two regression
methods. Additionally, the gait phase estimation during
a single stride is evaluated, because a smooth course of
the gait phase is desired. As last evaluation criteria the
computation time is examined.

3.1 Estimation Performance

The MAE of the kNN and ANN over the tested strides
are listed in Table 3 and shows lower error values for level
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Fig. 3. Gait phase estimation of k-Nearest-Neighbour and
Artificial Neural Network for two exemplary strides
of level walking from the test data of one subject.

walking and stair descent for the ANN, but higher error
values for stair ascent compared to the kNN.

To further evaluate the regression performance of both
methods a complete stride has to be evaluated especially
with regard to smoothness. For the evaluation two exem-
plary strides are chosen from the test data. The following
Figs. 3 to 5 show on the x-axis the real gait phase from the
test data and on the y-axis the gait phase estimation. For
level walking the performance of the gait phase estimation
of the kNN and the ANN is very similar as can be seen in
Fig. 3. During the two presented strides both methods can
estimate the gait phase quite well but the ANN shows a
smoother overall behaviour. The results (courses of plots)
are comparable to the quality of the shown gait phase es-
timation results with the phase plane approach in Holgate
et al. (2009).

Compared to level walking, stair ascent and stair descent
are more difficult tasks for the gait phase estimation as can
be seen in higher MAEs, but both the kNN and the ANN
show promising results. With the chosen input features
setup the gait phase estimation during stair ascent seems
to be more challenging than during stair descent, which
results in the higher MAEs.

For stair ascent Fig. 4 shows an offset in the estimation
during the first half of a stride for the kNN and the ANN
with overall better performance of the ANN because of the
smoother behaviour, despite the higher MAE mentioned
before. The high frequency disturbances at the beginning
of a stride of the ANN in Fig. 4 may be linked to
disturbances that occur in the acceleration data due to
the impact of the foot during heel-strike. Why this effect
is only visible in the gait phase estimation for stair ascent
and not for the other two locomotion modes, despite
having similar disturbances in the acceleration data, has
to be further investigated. Stair descent shows the best
performance for the ANN of all three locomotion modes
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Fig. 4. Gait phase estimation of k-Nearest-Neighbour and
Artificial Neural Network for two exemplary strides
of stair ascent from the test data of one subject.
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Fig. 5. Gait phase estimation of k-Nearest-Neighbour and
Artificial Neural Network for two exemplary strides
of stair descent from the test data of one subject.

with regard to smoothness. The kNN method has high
frequency disturbances during the transition from stance
to swing phase, which do not occur for ANN (Fig. 5).

For level walking and stair ascend the gait phase estima-
tion is more accurate for gait phase values between 60%
and 100% than it is for gait phase values between 0% and
60%. This timing fits to the transition from stance phase
to swing phase occurring at g% ≈ 60% [Grimmer et al.
(2020)].

Based on this result, we assume that it is easier to detect
the gait phase during swing, compared to stance.
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Table 4. Computation time per sample point
of the gait phase estimation of k-Nearest-
Neighbour and Artificial Neural Network for

the test data on a common workstation.

Time in s
Mode kNN ANN

Level Walking 2.918× 10−4 6.8× 10−6

Stair Ascent 1.511× 10−4 6.9× 10−6

Stair Descent 1.780× 10−4 6.7× 10−6

3.2 Computation Time

The mean computation time per sample of all ten trials
is shown in Table 4 for each of the three locomotion
modes. For all locomotion modes the computation time
of one sample point of the ANN is over one order of
magnitude smaller compared to the kNN. In addition, with
a larger dataset the kNN is going to become even slower,
because the access of the dataset and the identification
of the nearest neighbours need more time and result in a
higher computation time per sample point. This limits the
possibility of adding more data from other experiments in
the future or adding additional input features. The ANN
is not affected by this after training.

The results suggest that the kNN needs too much com-
putation time to be implemented for an online gait phase
estimation on a prosthesis because of the in general more
limited computation power of a micro controller. For the
sampling frequency of the dataset of f = 200 Hz respec-
tively tsample = 5 × 10−3 s the computation time of the
kNN is too close to the sample time. Regarding the com-
putation on a workstation, the feasibility of an implemen-
tation of the kNN on the micro controller of a prosthesis
in real-time is questionable. With regard to computation
time the ANN approach is much more preferable.

3.3 Cross-Validation

In Weigand et al. (2020) we conducted a Leave-P-Groups-
Out Cross-Validation (LPGOCV) and tested all combina-
tions of one training subject and two validation subjects
for the dataset and ANNs presented in this paper. The
results suggest the use of all subjects of the dataset to be
viable. The subject selected for the test data in the dataset
split mentioned in section 2.6 (subject twelve) is the worst
case selection with regard to the MAE of the regression.

The LPGOCV results support the feasibility of the pre-
sented ANN based gait phase estimation.

4. CONCLUSION

This work presents a new approach for gait phase estima-
tion using solely kinematic data from the shank in combi-
nation with two regression methods, k-Nearest-Neighbour
and Artificial Neural Network, and a higher dimensional
input space.

The presented transformation of the gait phase to carte-
sian coordinates enables the use of regression methods for
the gait phase estimation because of the continuity of the
surrogate variables. In addition, the transformation offers
a new degree of freedom for the regression because the

radius r can be used to encode additional information like
walking speed or stair slope.

The introduction of the pseudo-velocity yields a good
substitute for the real velocity, which is more difficult to
measure or calculate. The results imply that the informa-
tion incorporated in the pseudo-velocity is of interest, not
the absolute value of the velocity. Further research will be
done to look into the possibility of substituting the shank
angle with a pseudo-angle too.

The gait phase can be estimated for the three locomotion
modes level waking, stair ascend and stair descent for the
test data of one subject with a mean absolute error < 6 %.
The results of Weigand et al. (2020) show that this is the
worst case MAE for the given dataset.

Future work should also focus on post-processing of the
estimated gait phase, to improve the overall performance
and in particular increase the smoothness. For the ANN
additional topologies like Recurrent Neural Networks can
be investigated.

We believe that ANNs are a promising method to deter-
mine the gait phase of level walking and stair ambulation
as part of the control of an active transtibial prosthesis.
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