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Abstract: In reinforcement learning (RL) algorithms, exploratory control inputs are used
during learning to acquire knowledge for decision making and control, while the true dynamics
of a controlled object is unknown. However, this exploring property sometimes causes undesired
situations by violating constraints regarding the state of the controlled object. In this paper, we
propose an automatic exploration process adjustment method for safe RL in continuous state
and action spaces utilizing a linear nominal model of the controlled object. Specifically, our
proposed method automatically selects whether the exploratory input is used or not at each
time depending on the state and its predicted value as well as adjusts the variance-covariance
matrix used in the Gaussian policy for exploration. We also show that our exploration process
adjustment method theoretically guarantees the satisfaction of the constraints with the pre-
specified probability, that is, the satisfaction of a joint chance constraint at every time. Finally,
we illustrate the validity and the effectiveness of our method through numerical simulation.

Keywords: Reinforcement learning, Learning algorithm, Safe exploration, Safety-critical,
Chance constraint

1. INTRODUCTION

Reinforcement learning (RL) methods are used to acquire
knowledge for decision making and control, i.e., “policy”
or “control law” in online data-driven manners. In order to
learn appropriate policies with RL methods, it is necessary
to use exploratory control inputs, and they sometimes
result in undesired situations. This is not a serious issue in
the problems in which situations can be reset or recovered
easily such as the video games (Mnih et al., 2015) or
strategy board games (Silver et al., 2018); however, we
cannot ignore this in many kinds of engineering problems.
For addressing this issue, RL methods guaranteeing the
“safety” during learning are demanded.

RL methods guaranteeing the “safety” have been dis-
cussed in literatures with different definitions of safety
and some of them are called “safe reinforcement learning
(safe RL) methods”. According to the survey paper by
Garćıa and Fernández (2015), approaches for safe RL are
classified into two fundamental categories; “transforming
the optimization criterion” and “modifying the exploration
process”. This paper adopts the latter one. In particular,
we deal with the safety based on the constraints which are
explicitly defined in control problems. More specifically,
we define the probability of satisfaction of the constraints
regarding the state of the controlled object as the quantita-
tive index to evaluate the safety. In this paper, we propose
an automatic exploration process adjustment method for
1 This work is done while he worked at Fujitsu Laboratories Ltd.

a Gaussian policy guaranteeing that the probability noted
above is equal to or greater than its pre-specified lower
bound, which is a kind of chance constraint (Shapiro
et al., 2014). Our method automatically selects whether
the exploratory input is used or not at each time depending
on the state and its predicted value as well as adjusts
the variance-covariance matrix of a normal distribution
utilizing a linear nominal model of the controlled object
and upper bounds of its approximation error. We show
that an RL algorithm combined with our exploration
process adjustment method theoretically guarantees the
satisfaction of the joint chance constraint with the pre-
specified probability.

The rest of this paper is organized as follows. In Sec-
tion 2, we describe a problem formulation of this paper.
Subsequently, in Section 3, we introduce our automatic
exploration process adjustment method for the Gaussian
policy and show a theoretical guarantee of probabilistic
satisfaction of the constraints. In this section, we also
show one concrete example of safe RL algorithms with
our exploration process adjustment method. In addition,
we compare our study with some related work for safe
RL. In Section 4, we verify the validity and effectiveness
of our method through numerical simulations, and finally,
we conclude this paper in Section 5.

2. PROBLEM FORMULATION

Consider a discrete-time affine nonlinear system given by
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xk+1 = f(xk) + g(xk)uk, (1)

where xk ∈ Rn and uk ∈ Rm are the state and the control
input at time k, respectively, and f : Rn → Rn and
g : Rn → Rn×m are unknown nonlinear functions. We
assume that the state xk can be observed directly, and
also, an instantaneous cost ck ∈ R given by

ck+1 = ℓ(xk, uk) (2)

as well. Here ℓ : Rn × Rm → [0,∞) is an unknown
instantaneous cost function. As described in the left hand
side of (2), we denote the instantaneous cost by ck+1

following the convention adopted in Sutton and Barto
(2018), while it is produced with the state xk and the
input uk at time k.

The objective of control is to minimize the cumulative
discounted cost J given by

J =

∞∑
k=0

γkck+1, (3)

where γ ∈ (0, 1] is a discount rate.

In addition, we consider the situation where desirable
conditions about the state is given by the following linear
inequalities:

Hx ⪯ v, (4)

where v = [v1, . . . , vnc ]
T ∈ Rnc and H = [h1, . . . , hnc ]

T ∈
Rnc×n, and the symbol ⪯ represents that every inequality
≤ on R is satisfied regarding each component in the vector.
We suppose that the inequalities (4) is known, and we
define the safety in this paper based on them.

Let the set X ⊂ Rn be

X := {x ∈ Rn |Hx ⪯ v} , (5)

and X int be the interior point set of X . We suppose the
existence of the state x∗ ∈ X int which satisfies f(x∗) = x∗

and ℓ(x∗, 0) = 0, while we do not suppose that x∗ is known.
This means that some kind of consistency is held between
the cost and safety in the control problem, and the state
satisfying both of them is maintainable. For simplicity, we
also suppose that the initial state x0 satisfies x0 ∈ X .
Next, we describe the goal of this paper. The common goal
of RL methods is to acquire a policy, which corresponds
to a control law in control engineering, to minimize (or
maximize) evaluation functions related to the instanta-
neous cost (or the instantaneous reward) obtained at each
time. If we know both complete dynamics of the controlled
object and the evaluation function, the problem leads to
the usual optimal control problem. However, in many cases
the above-mentioned information is not completely known
beforehand, and the usual optimal control methods cannot
attain desired performance. A fundamental appeal of RL
methods is that we can obtain the optimal policy or at
least an improved one even in such a situation by updating
the current policy with the information obtained online.

In order to acquire an appropriate policy while the prop-
erties of the controlled object are unknown, we have to
select exploratory inputs during learning which are not
optimal according to the current policy. This means that,
the possibility of violating desirable conditions given by
(4) increases because of the exploration.

In general, stochastic policies are used in RL methods to
carry out the above exploration, and thus, the state xk

of the controlled object also transits stochastically. To
evaluate the satisfaction of the conditions given by (4)
quantitatively, we consider the (joint) chance constraint

Pr {Hxk ⪯ v} ≥ η. (6)

(⇔ Pr
{
hT
j xk ⪯ vj ,∀j = 1, 2, · · · , nc

}
≥ η)

In the above inequality, Pr{·} denotes the probability of
the satisfaction of the inequalities in {·}. We call this
“probability of constraint satisfaction” in the rest of this
paper, and use it as the metric of safety. For simplicity, we
assume η ∈ (0.5, 1).

The goal of this paper is to propose an automatic explo-
ration process adjustment method for safe RL which guar-
antees the satisfaction of the joint chance constraint (6) at
every time k ≥ 1 with η determined before learning. 2

Throughout this paper, we assume that the following two
most basic conditions are satisfied.

Assumption 1. The following linear approximate (nomi-
nal) model of the nonlinear system in (1) is known:

xk+1 ≃ Axk +Buk, (7)

where A ∈ Rn×n and B ∈ Rn×m.

Let e(·, ·; f, g, A,B) : Rn×Rm → Rn be the following func-
tion which denotes the approximation error between the
nonlinear system given in (1) and its linear approximate
model given in (7):

e(x, u; f, g, A,B) := f(x) + g(x)u− (Ax+Bu) (8)

=: [e1(x, u; f, g, A,B), . . . , en(x, u; f, g, A,B)]T. (9)

We make the next assumption regarding this function.

Assumption 2. Regarding the functions ei(·, ·; f, g, A,B),
i = 1, 2, . . . , n defined in (9), scalar values ēi ∈ [0,∞),
i = 1, 2, . . . , n satisfying the following relation are known:

ēi ≥ sup
x∈Rn,u∈Rm

|ei(x, u; f, g, A,B)| . (10)

An example satisfying this assumption is given in Sec-
tion 4.1.

Under Assumption 2, let E ⊂ Rn be the set of the vectors
ϵ = [ϵ1, . . . , ϵn]

T ∈ Rn whose elements are

ϵi = ēi or − ēi. (11)

Note that the size of the set E is 2n by definition.

Assumptions 1 and 2 mean that we do not know the exact
system dynamics but have certain level of prior knowledge
about it somehow (e.g. by physical considerations). We
introduce three other assumptions right before we use
them in the next section.

We describe our proposed method in detail and show a
theorem which theoretically guarantees the joint chance
constraint satisfaction in the following section.

Remark 1. In order to simplify the notations in the rest
of this paper, we generalize the joint chance constraint (6)
and denote Pr {Hξ ⪯ v} ≥ λ for an arbitrary ξ ∈ Rn and
λ ∈ (0.5, 1) by CC(ξ, λ). That is,

CC(ξ, λ)
def⇐=⇒ Pr {Hξ ⪯ v} ≥ λ. (12)

2 In this paper, we describe the chance constraint (6) as a joint
chance constraint, while it is not a “joint” one if nc = 1.
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For example, with this notation, the joint chance con-
straint (6) can be denoted by CC(xk, η).

In addition, it is sometimes difficult to deal with the
joint chance constraint (6) directly since it is a condition
with respect to the probability of the simultaneous sat-
isfaction of all nc constraints. Therefore, we show some
supplemental theoretical results with respect to individual
constraints before showing our main result in Theorem 1.
For this purpose, similar to the notation CC(·, ·), we de-
note

{
Pr

{
hT
j ξ ≤ vj

}
≥ λ, ∀j = 1, . . . , nc

}
for an arbitrary

ξ ∈ Rn and λ ∈ (0.5, 1) by CC′(ξ, λ). That is,

CC′(ξ, λ)
def⇐=⇒

{
Pr

{
hT
j ξ ≤ vj

}
≥λ,∀j = 1, . . . , nc

}
. (13)

Regarding the relationship between the above two kinds
of chance constraints (12) and (13), we can easily prove
based on Bonferroni’s inequality that CC′(ξ, 1− 1−λ

nc
) is a

sufficient condition for CC(ξ, λ).

3. MAIN RESULT

As described in Section 1, approaches for safe RL are
classified into two fundamental categories; “transforming
the optimization criterion” and “modifying the exploration
process”. We adopt the latter one. In the rest of this
section, Subsection 3.1 shows the case in which the ex-
ploration is completely removed in the RL algorithm as
preliminaries. Next, based on the results shown in Subsec-
tion 3.1, we introduce an automated exploration process
adjustment method for the Gaussian policy and show a
theorem which gives our method a theoretical guarantee
regarding the satisfaction of the joint chance constraint
in Subsection 3.2. Finally, in Subsection 3.3, we show an
example of safe RL methods based on our exploration
process adjustment method. We compare our study with
related work for safe RL in Section 3.4.

3.1 Chance constraint satisfaction regarding the input
without exploration

When we consider satisfaction of the constraints by mod-
ifying the exploration process in an RL algorithm, it is
natural to use an input without exploration in some situ-
ations. However, even if we do so, the satisfaction of the
chance constraint is not always guaranteed. Therefore, we
have to select the input carefully even in such a situation.
In this subsection, we show two particular cases in which
the input can be selected to guarantee the satisfaction of
the chance constraint.

Firstly, let us consider the case in which the function f in
(1) obeys the following assumption.

Assumption 3. If x ∈ X holds, then f(x) ∈ X holds．

It is straightforward to see Pr{Hxk+1⪯v}=1 holds if we
use uk = 0 for xk ∈ X in this case.

Next, we consider the case in which the particular inputs
to return the state into X from the outside of X can be
obtained. Specifically, we make the following assumption.

Assumption 4. Suppose that xk = x /∈ X at time k ≥ 1.
Regardless of time k and the state x, we can make the
state be in X within τ step with the particular successive
inputs. That is, we previously know the successive inputs

uback
k , uback

k+1 , . . . , u
back
k+j−1 or its calculation procedure to let

the state be xk+j ∈ X (1 ≤ j ≤ τ) for any k and x.

In this case, we obtain the following lemma.

Lemma 1. Let Assumption 4 hold. In addition, we assume
that CC(xk+1, p) is satisfied if xk ∈ X . Then, CC(xk+1, p

τ )
is satisfied if x0 ∈ X .

Proof. At time k, we define “xk ∈ X” as State 1 and
“xk−i ∈ X∧(xk−i+1, . . . , xk ̸∈ X )” as State i+1. With this
definition, the state transition is expressed by the Markov
chain in Proposition 1 described in Appendix A, and thus,
this lemma is proven with x0 ∈ X and ρ1 ≥ p. 2

3.2 Automatic exploration process adjustment method for
Gaussian policy

Next, we propose an automatic exploration process ad-
justment method which includes usage of the inputs with
exploration. In this method, we basically generate the
inputs based on a Gaussian policy, which can be applied to
problems in continuous state and action space. Specifically,
we use the following Gaussian probability density function
as the policy function:

Π(u |x; w,Σ)

=
1

(
√
2π)m

√
|Σ|

exp

(
−1

2
(u−µ(x;w))TΣ−1•

)
, (14)

where • represents the omission of (u − µ(x;w)) and
w ∈ RNw is the policy parameter. We generate an input
u stochastically according to the m-dimensional normal
distribution with the mean µ(x;w) ∈ Rm and the variance-
covariance matrix Σ ∈ Rm×m. We express this as

u ∼ N (µ(x;w),Σ) . (15)

The degree of exploration, in other words, how different
input is selected from its mean, depends on Σ.

Let µk denote the mean of the input corresponding to the
state xk of the controlled object at time k and the policy
parameter wk, that is,

µk := µ(xk;wk). (16)

Now we restrict the variance-covariance matrix Σ to the
following diagonal matrix determined by σ2 (σ > 0):

Σ = σ2Im, (17)

where Im is an m×m identity matrix.

Consider the case in which the following assumption holds
between the linear nominal model of the controlled object
and the constraints.

Assumption 5. The coefficient matrix B of the nominal

model in (7) and H = [h1, . . . , hnc
]
T
in the constraints in

(4) satisfies

hT
j B ̸= 0, ∀j = 1, 2, . . . , nc. (18)

In this case, we have the following lemma regarding the
relationship between the standard deviation σ of the
Gaussian policy and the satisfaction of the joint chance
constraint.

Lemma 2. Let Assumptions 1, 2 and 5 hold, and let the
input uk be selected according to the normal distribution
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Fig. 1. Block diagram of the closed loop system with our
automatic exploration process adjustment method

with mean µk and variance-covariance matrix σ2Im. In
addition, assume hT

j (Axk+Bµk+ϵ) < vj ,∀j = 1, 2, . . . , nc.
Then,

σ = min
j,ϵ

1

∥hT
j B∥2Φ−1(q)

{
vj−hT

j (Axk+Bµk+ϵ)
}

(19)

is a sufficient condition for CC′(xk+1, q) being held with
q ∈ (0.5, 1). Here Φ(·) is the cumulative distribution
function of a zero mean unit variance Gaussian random
variable.

Proof. The conclusion follows from Corollary 3 in Ap-
pendix B and the assumption hT

j (Axk + Bµk + ϵ) < vj ,
∀j = 1, 2, . . . , nc. 2

In the rest of this paper, we assume that Assumptions 1-
5 hold. Based on the results described in Subsection 3.1
and Lemma 2, we propose the following control law as an
automatic exploration process adjustment method for the
Gaussian policy.uk ∼ N (µk, σ

2
kIm) if xk ∈ X ∧ (x̄ϵ

k+1∈X int,∀ϵ ∈ E)
uk = 0 else if xk∈X
uk = uback

k otherwise
,

(20)

where x̄ϵ
k+1 := Axk + Bµk + ϵ. In addition, we define σk

in the top of (20) as

σk := min
j,ϵ

1

∥hT
j B∥2Φ−1(η′)

(
vj−hT

j x̄
ϵ
k+1

)
, (21)

where η′ := 1 − 1−η
1
τ

nc
. The block diagram of the closed

loop system including the safe RL controller based on
our exploration process adjustment method is depicted
in Fig. 1. As shown in this figure, the safe RL controller
selects whether the exploratory input is used or not at each
time according to the control law (20) as well as adjusts the
variance-covariance matrix of a normal distribution used
in the Gaussian policy for exploration with σk in (21).
In other words, the safe RL controller contains two kinds
of controllers; the learning controller with a time-varying
variance-covariance matrix and the model-based fixed one,
and selects either of them to generate the control input at
each time 3 .

We have the following theorem regarding the satisfaction
of the joint chance constraint with the above control law
as an automatic exploration process adjustment method.

Theorem 1. Let Assumptions 1-5 hold and the input uk

at time k be selected according to (20). Then, the joint

3 According to the terminology introduced in Okawa et al. (2019),
this is classified as “switching LeFiCo”.

Algorithm 1 Safe one-step actor-critic algorithm with
automatic exploration process adjustment

1: Initialize:
2: θ ← θ0, w ← w0, ι← 1
3: loop (Execute below at t = 0 and every Ts time)
4: Observe x
5: if t ̸= 0 then
6: Get cost c
7: δ ← −c+ γV̂ (x; θ)− V̂ (x−; θ)

8: θ ← θ + αδ ∂V̂
∂θ (x

−; θ)

9: w ← w+βιδ ∂ log Π
∂w (u−|x−;w)

10: end if
11: Select u according to (20)
12: Input u to controlled object
13: x− ← x, u− ← u, ι← γι
14: end loop

chance constraint (6), that is, CC(xk, η), is satisfied at all
time k ≥ 1.

Proof. If xk ∈ X ∧ (x̄ϵ
k+1∈X int,∀ϵ ∈ E), CC′(xk+1, η

′) is
satisfied by selecting the inputs stochastically according to
uk ∼ N (µk, σ

2
kIm) from Lemma 2, and this is a sufficient

condition for CC(xk+1, η
1
τ ). In addition, if xk ∈ X ∧

¬(x̄ϵ
k+1 ∈ X int,∀ϵ ∈ E), xk+1 always satisfies xk+1 ∈ X

with the input uk = 0 from Assumption 3. Therefore,
CC(xk+1, η

1
τ ) is satisfied at all time k ≥ 1 with the control

law (20) if xk ∈ X . Furthermore, this CC(xk+1, η
1
τ ) is a

sufficient condition for CC(xk+1, η) since η
1
τ ≥ η for any

τ ∈ Z≥1.

On the other hand, if xk /∈ X , k ≥ 1, Lemma 1 shows that
CC(xk+1, η) is satisfied for an arbitrary xk ∈ Rn with the
input uk = uback

k according (20).

Consequently, CC(xk, η) is satisfied at all time k ≥ 1. 2

Remark 2. As shown in the proof described in Ap-
pendix B, the pair (B.7) and (B.8) is a sufficient condition
for the state xk+1 at the next time k + 1 to satisfy the
joint chance constraint (6) for more general Σ. In this
case, however, it is difficult to derive Σ which satisfies this
condition.

Remark 3. Theorem 1 requires that the controlled object
satisfies Assumption 3. However, there may not be many
systems satisfying this assumption by themselves. For this
problem, we can expand the applicability of our proposed
method by forming a minor feedback loop with some kind
of pre-designed controllers based on known information
of the controlled object. We can say that this is one of
the advantages of the control approach to use RL and
model-based control simultaneously in parallel (“parallel
LeFiCo”) as discussed in Okawa et al. (2019).

3.3 Safe learning algorithm with the automatic exploration
process adjustment

Algorithm 1 shows a concrete example of the proposed
safe RL method, which is the algorithm of the one-
step actor-critic described in the Section 13 of Sutton
and Barto (2018) with our automatic exploration process
adjustment method shown in the previous subsection. In
this algorithm, V̂ (x; θ) is the estimated value of the state
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value function, θ ∈ RNθ is the sate value weight, and Nθ

is its number. In addition, δ ∈ R is the TD (temporal
difference) error, and α ∈ [0, 1) and β ∈ [0, 1) are the
learning rates (step sizes). In this algorithm, the inputs
are selected according to the control law (20) to adjust its
exploration process automatically at each time as shown in
Line 11, and then the state value weight θ and the policy
parameter w are updated. As a result, we achieve to learn
the appropriate policy by updating policy parameters with
the satisfaction of the joint chance constraint (6) for
the pre-specified η guaranteeing that the probability of
constraint satisfaction is equal to or greater than its pre-
specified lower bound.

3.4 Comparison with related work

In the field of RL, the concept of “safety” (or its opponent,
“risk”) is defined according to many kinds of formulation.
Here we restrict our discussions to the ones regarding
continuous state and action spaces as ours. For example,
Wen and Topcu (2018) proposed an RL method in which
constraints satisfied for safety are defined as the expected
cost over finite-length trajectories. In addition, some RL
methods have been proposed to guarantee their safety
even during learning. Berkenkamp et al. (2017) used a
known policy which guarantees safety to prevent the
system from getting into an unrecoverable or undesired
situation. Also, Achiam et al. (2017) proposed a policy
search algorithm for an RL problem in a constrained
Markov Decision Process, which guarantees constraint
satisfaction throughout training. However, these studies
do not deal with satisfaction of the constraints explicitly
defined in their control problems as their safety.

The following three methods regarding safe RL are the
most similar to our study in the sense that they guar-
antee their safety during learning from viewpoint of sat-
isfying the constraints explicitly defined in their control
problems. Dalal et al. (2018) showed a safe exploration
method for RL algorithms to satisfy its safety constraints
if one-time initial pre-training of a model can be used.
Li et al. (2018) proposed a safe RL framework with a
supervisory element between the RL agent and the linear
control system. Furthermore, Cheng et al. (2019) showed
how to modify existing RL algorithms to guarantee safety
of the nonlinear system whose dynamics consists of par-
tially known autonomous dynamics and completely known
actuated one. However, as compared with these existing
methods, the safe RL method with our exploration process
adjustment method guarantees its safety theoretically even
if we can only use partial information of both autonomous
and actuated dynamics of the nonlinear system: a linear
approximate (nominal) model and upper bounds of its
approximation error.

4. SIMULATION VERIFICATION

This section verifies the validity and effectiveness of the
safe RL method with our automatic exploration process
adjustment method through numerical simulation.

4.1 Simulation condition

Control objective and constraints Let us consider the
following nonlinear function f : R2 → R2:

f(x)=

[
f1(x)
f2(x)

]
=

[
0.3x1 − 0.4 sinx2

−0.1x2 + 0.2 cosx1−0.2

]
, (22)

where x = [x1, x2]
T ∈ R2 and f(0) = 0. Regarding this

function, the Jacobian matrix is given by

∂f

∂x
(x) =

[
0.3 −0.4 cosx2

−0.2 sinx1 −0.1

]
.

Therefore, the Frobenius norm ∥∂f∂x (x)∥F of ∂f
∂x (x) satisfies∥∥∥∥∂f∂x (x)

∥∥∥∥
F

=

√
0.04 sin2 x1 + 0.16 cos2 x2 + 0.1 < 1

for an arbitrary x ∈ R2 since | sinx1| ≤ 1 and | cosx2| ≤ 1.
This means that f is a contraction mapping in entire R2

with the origin being its fixed point.

We let xk = [x1k , x2k ]
T ∈ R2 and uk ∈ R be the state

and the input at time k, respectively, and consider the
following discrete-time affine nonlinear system:

xk+1 = f(xk) + guk, (23)

where f is the function described above and g = [1, 1]T.
In addition, we use the following linear nominal model:

xk+1 ≃ Axk+buk, A=

[
0.3 0
0 −0.1

]
, b=

[
1
1

]
. (24)

According to Assumption 1, we assume A and b are known
while f and g are unknown. The upper bounds of the error
function ei given in (9) become

sup
x∈R2,u∈R

| − 0.4 sinx2| = 0.4, sup
x∈R2,u∈R

|0.2 cosx1 − 0.2| = 0.4.

Therefore, we let ē1 = 0.4 and ē2 = 0.4, and assume that
these values are previously known to satisfy Assumption 2.

On the other hand, we let |x1| ≤ 10 be the constraints.
That is, the set X is given by X =

{
x ∈ R2 |Hx ⪯ v

}
,

where

H=

[
hT
1

hT
2

]
=

[
1 0
−1 0

]
, v=

[
v1
v2

]
=

[
10
10

]
.

Assumption 3 is satisfied since f is a contraction mapping
in R2 with the origin being its fixed point as described
above and X is a convex region containing the origin. We
also let the initial state be x0 = [5, 5]T ∈ X .
Since hT

j b ̸= 0, j ∈ {1, 2}, the pair of the above nominal
model and the constraints satisfies Assumption 5.

In addition, we assume that the instantaneous cost ck+1 =
ℓ(xk, uk) can be measured directly at each time, while the
following cost function ℓ(·, ·) is unknown:

ℓ(xk, uk) = xT
k+1Qxk+1 +Ru2

k

= (f(xk) + guk)
TQ(f(xk) + guk) +Ru2

k, (25)

where Q = 1.0× 105I2 and R = 1.

Control input determination with the proposed exploration
process adjustment method In this verification, we up-
date a policy according to Algorithm 1 described in Sub-
section 3.3. Specifically, we define T (= 15) steps as 1
episode and learn the policy to determine inputs which

minimize the cumulative cost J =
∑T−1

k=0 ck+1 of the
instantaneous cost given in (25) in each episode starting
from the initial state x0.

The estimated state value function V̂ (x; θ) and the mean
µ(x;w) of the input u are, respectively, given by
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Table 1. Simulation parameters

Symbol Definition Value

T Number of simulation steps 15
γ Discount rate 1.0

α, β Learning rates 1.0× 10−10

Nθ, Nw Number of learning parameters 121
N Number of learning episodes 1.5× 104

η
Lower bound of probability
of constraint satisfaction

0.95

V̂ (x; θ) =

Nθ∑
i=1

ϕi(x)θi, µ(x;w) =

Nw∑
i=1

ϕi(x)wi, (26)

where θ = [θ1, . . . , θNθ
]T ∈ RNθ and w = [w1, . . . , wNw ]

T ∈
RNw . In the above equation, ϕi : R2 → R represent the
feature extractors given by the following Gaussian radial
basis functions:

ϕi(x) = exp

(
−∥x− ϱi∥2

2ς2i

)
, i = 1, . . . , Nθ, (27)

where ϱi ∈ R2 and ς2i > 0 are the central points and the
variances of each basis function, respectively. We calculate
the mean value µk = µ(xk;wk) according to (26) with
the state xk at each time and the policy parameters wk,
and then, select the input uk according to the control
law (20). On the other hand, the pair of the coefficient
matrix (A, b) of the nominal model in (24) is controllable
and its controllability index is 2. From this result, we
calculate the inputs uback

k in the control law (20) as follows:[
uback
k , uback

k+1

]T
= B̃−1(x0−A2xk), B̃ := [Ab, b]. (28)

These inputs are designed so as to make the state go
back to the initial point. Indeed, these two successive
inputs make any state x /∈ X return into X within 2
steps. Therefore, Assumption 4 is satisfied. The state value
weight θ and the policy parameter w are updated with the
instantaneous cost given by (25) at each time. The values
of each parameter are listed in Table 1.

4.2 Simulation result

The results of this verification are shown in Figs. 2-7.
Fig. 2 shows the cumulative cost J obtained without
exploration, that is, letting the inputs uk at each step
time be their mean values µk calculated with the policy
parameters wk, at every 50 episodes. Fig. 3 shows the
relative frequencies of the constraint satisfaction with
respect to each time which are obtained by dividing the
number of the episodes satisfying the constraints by its
total number N , and Fig. 4 is the enlarged figure of Fig. 3.
Since the total number of episodes N is large enough and
the occurrence of constraint satisfaction between arbitrary
two episodes is independent of each other, we use relative
frequencies to confirm the validity of Theorem 1. In
addition, Fig. 5 shows the margins from the constraints
and its minimum value at the final episode. Due to the
simulation conditions described in the previous subsection,
the margins vj −hT

j (Axk +Bµk + ϵ), ϵ ∈ E , j ∈ {1, 2} can
be summarized into four scaler values. We denote them
by ∆k(i, j) where i = 1 if ϵ = [ē1, ±ē2]T and i = 2 if
ϵ = [−ē1, ±ē2]T, and show ∆k(i, j) in dashed lines and
its minimum value at each step time in a solid line in this
figure, respectively. Fig. 6 shows σk given in (21) at the
final episode. Furthermore, Fig. 7 shows the trajectory of
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the state with the policy parameter at the final episode.
Among these figures, in Figs. 2-4 and 7, the results by using
the Gaussian policy with the fixed standard deviation
σ = 1 are shown in green, those with the bigger fixed
standard deviation σ = 10 are in blue, and those by
using our proposed method are in red. Furthermore, in this
verification, if |x1k | > 10, k = 1, 2, . . . , T at each episode,
we gave a penalty (T − k + 1)ck+1 and let the estimated

state value be V̂ (x) = 0 to terminate the current episode,
and then, start another episode from the initial state when
we use the Gaussian policy with fixed standard deviations.

We can confirm that the relative frequencies of the con-
straint satisfaction with the fixed standard deviation σ = 1
in green is greater than the lower bound of the probability
of constraint satisfaction η = 0.95 in Fig. 3; however, as
shown in Fig. 2, the corresponding result of the cumulative
cost decreases slowly as the number of episodes increases.
On the other hand, the results with the fixed standard
deviation σ = 10 in blue show that, though the cumu-
lative cost decreases efficiently in Fig. 2, there are some
step times when the relative frequency of the constraint
satisfaction becomes lower than η. As compared with these
results, our proposed method achieves not only to decease
its cumulative cost efficiently but also to guarantee that
the relative frequencies of the constraint satisfaction are
greater than η = 0.95 at all step times, while there
are some step times when its value become lower than
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η′ = 1− 1−η
1
2

2 ≈ 0.987 which is used to derive the standard
deviation σk in (21) as shown in Fig. 4.

In addition, it is shown that the standard deviation σk in
Fig. 6 corresponds to the minimum value among ∆k(i, j)
at each step time in a solid line in Fig. 5. We can confirm
from this result that our proposed method automatically
adjusts its exploration process by changing the variance
σ2
k in the Gaussian policy at each step time, even if the

input is used for exploration.

Furthermore, from the control result with the policy pa-
rameters at the final episode shown in Fig. 7, the learned
policy parameter enables us to transit the state xk of the
system into the origin x = [0, 0]T, which is the fixed point
of f(x) and the instantaneous cost given in (25) becomes
0 with the input uk = 0.

5. CONCLUSION AND FUTURE WORK

In this paper, we considered an RL problem in continuous
state and action spaces with constraints explicitly defined
in the control problem, and proposed an automatic ex-
ploration process adjustment method for safe RL which
achieves the satisfaction of a joint chance constraint de-
rived from the above-mentioned constraints. More specif-

ically, our method adjusts the exploration process au-
tomatically utilizing a known linear nominal model of
the controlled object, and we theoretically showed that
this method attains the pre-specified lower bound of the
constraint satisfaction probability. We also verified the
validity and effectiveness of our method through numerical
simulations and showed that it achieves to learn its policy
appropriately by guaranteeing the satisfaction of the joint
chance constraint with the pre-specified probability.

One of the future work is to develop a safe RL method for
control problems in which reinforcement learning methods
and model-based control methods are used simultaneously
with different sampling times. We have to consider this
situation since updating huge number of parameters in
an RL method requires more computation in general, and
thus, it is required to take a longer time to determine its
control input. However, in such a situation, the probability
of constraint satisfaction is not guaranteed with the explo-
ration process adjustment method presented in this paper
since the state transition with the control inputs from a
model-based control method between the sampling times
of an RL method is not considered. Therefore, we plan
to develop an automatic exploration process adjustment
method to guarantee the satisfaction of the constraints
even in such a situation.
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Appendix A. PROPERTY OF MARKOV CHAIN

Let τ be a natural number greater than or equal to 1. Also,
let a stochastic process {Xk} be a discrete-time Markov
chain whose state space and transition probability matrix,
respectively, are {1, 2, . . . , τ + 1} and

ρ1 1− ρ1 0 · · · 0
ρ2 0 1− ρ2 · · · 0
...

...
...

. . .
...

ρτ 0 0 · · · 1− ρτ
1 0 0 · · · 0

 .

Proposition 1. Consider the above Markov chain {Xk}. If
Pr {X0 = 1} = 1, then Pr {Xk = 1} ≥ ρτ1 for all k ∈ Z≥0.

Proof. We denote by p
(i)
k := Pr {Xk = i} the probability

that the state is i at time k and prove p
(1)
k ≥ ρτ1 by

induction. Firstly, we consider the case in which the state

transits within State 1. In this case, p
(1)
t ≥ p

(1)
0 ρt1 ≥ ρτ1

(t = 0, 1, . . . , τ) holds since p
(1)
0 = 1.

Next, we assume all values less than k+1(> τ) is true. We
obtain the following simultaneous recurrence formulas: p

(1)
k+1 = p

(τ+1)
k +

τ∑
i=1

ρip
(i)
k =

τ+1∑
i=1

ρip
(i)
k

p
(i)
k+1 = (1− ρi−1)p

(i−1)
k (i = 2, 3, . . . , τ + 1)

,

where ρτ+1 := 1. Now,

p
(i)
k = (1− ρi−1)p

(i−1)
k−1 = (1− ρi−1)(1− ρi−2)p

(i−2)
k−2

= · · · =
{ i−1∏

j=1

(1− ρj)
}
p
(1)
k−i+1,

and thus, we obtain

p
(1)
k+1 =

τ+1∑
i=1

{
ρi

i−1∏
j=1

(1− ρj)
}
p
(1)
k−i+1.

Since the sum of the coefficient in the right-hand side of
the above equation is 1, the assertion of the proposition
holds at k + 1 from the assumption of induction. 2

Appendix B. PROPERTY OF GAUSSIAN POLICY

Proposition 2. Let Assumptions 1 and 2 hold. For the
state xk ∈ Rn at time k of the nonlinear system given

in (1), we select the input uk ∈ Rm according to the m-
dimensional normal distributed function with the mean
µk ∈ Rm and the covariance Σ ∈ Rm×m given in (17).
Then, the inequality condition

σ ≤ 1

∥hT
j B∥2Φ−1(q)

{
vj−hT

j (Axk+Bµk+ϵ)
}
,

∀j s.t. hT
j B ̸= 0, ∀ϵ ∈ E , (B.1)

hT
j (Axk + ϵ) ≤ vj ,∀j s.t. hT

j B = 0, ∀ϵ ∈ E (B.2)

is the sufficient condition to satisfy CC′(xk+1, q), where
Φ(·) is the cumulative distribution function of a zero mean
unit variance Gaussian random variable, and q ∈ (0.5, 1).

Proof. Let us denote the nominal value x̂k+1 at time k+1
of the nonlinear system by

x̂k+1 := Axk +Buk. (B.3)

With this value, we obtain

x̂k+1 ∼ N (Axk +Bµk, B
TΣB). (B.4)

Firstly, let us select an arbitrary j. In this case,

CC′(xk+1, q)⇔ Pr{hT
j xk+1 ≤ vj} ≥ q

⇐ Pr{hT
j (x̂k+1 + ϵ) ≤ vj} ≥ q, ∀ϵ ∈ E .

Next, let us select an arbitrary ϵ ∈ E . In this case, the
above chance constraint becomes the following determin-
istic constraint (Boyd and Vandenberghe, 2004):

Pr{hT
j (x̂k+1 + ϵ) ≤ vj} ≥ q

⇔ vj−hT
j (Axk+Bµk+ϵ)≥Φ−1(q)

∥∥∥hT
j BΣ

1
2

∥∥∥
2
. (B.5)

Therefore, the inequality condition

Φ−1(q)∥hT
j BΣ

1
2 ∥2 ≤ vj−hT

j (Axk+Bµk+ϵ),

∀j = 1, 2, . . . , nc, ∀ϵ ∈ E (B.6)

is a sufficient condition for the state xk+1 to satisfy
CC′(xk+1, q) at time k+1. By dividing the above inequality
condition depending on whether hT

j B = 0 or not, we

obtain with 0 < Φ−1(q) <∞ that

∥hT
j BΣ

1
2 ∥2 ≤

1

Φ−1(q)

{
vj−hT

j (Axk+Bµk+ϵ)
}

∀j s.t. hT
j B ̸= 0, ∀ϵ ∈ E , (B.7)

hT
j (Axk + ϵ) ≤ vj ,∀j s.t. hT

j B = 0, ∀ϵ ∈ E . (B.8)

In addition, with the variance-covariance matrix given in
(17), we obtain∥∥∥hT

j BΣ
1
2

∥∥∥
2
= σ∥hT

j B∥2. (B.9)

Therefore, by substituting this into (B.7) with respect to
j which satisfies hT

j B ̸= 0 and dividing its both side by

∥hT
j B∥2, we obtain the condition in (B.1). 2

Corollary 3. Let assumptions used in Proposition 2 hold.
In addition, Assumption 5 holds. Then,

σ ≤ 1

∥hT
j B∥2Φ−1(q)

{
vj−hT

j (Axk+Bµk+ϵ)
}

∀j = 1, 2, . . . , nc, ∀ϵ ∈ E (B.10)

is a sufficient condition to satisfy CC′(xk+1, q).

Proof. We can prove this corollary from Proposition 2
and the assumption hT

j B ̸= 0,∀j = 1, 2, . . . , nc. 2
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