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Abstract: An optimal robust control data-driven learning solution is proposed for an active suspension 

system. The problem is formulated as a zero-sum two-player differential game (ZS-TP-DG), where the 

optimal control law and the worst-case disturbance control law must be searched for. The distinctive 

features of the proposed solution are: a Q-learning-like data-driven model-free (with unknown process 

dynamics) algorithm relying on collected input-state data from the process; neural networks being used 

as generic function approximators; validation on an active suspension system that is easily amenable to 

artificial road profile disturbance generation. The superiority of the ZS-TP-DG controller over another 

optimal controller learned in a disturbance-free context is validated and proven. 
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

1. INTRODUCTION 

Improving passenger ride comfort in cars has been in 

continuous attention since the early developments of the first 

hydro-pneumatic suspension almost 70 years ago. While pure 

active suspensions remained a costlier option designated to 

higher-end cars, the cheaper semi-active systems are more 

widely found. The car suspension system is already a well-

established benchmark within automotive control systems 

design (Acosta Lua et al., 2015; D’Andrea Novel et al., 2016; 

Radac and Precup, 2018a; He et al., 2019; Sardarmehni and 

Heydari, 2019), being subjected to a diversity of control 

techniques (Rettig and von Stryk, 2004; Wang et al., 2018; 

Hua et al., 2018; Rathai et al., 2019). Its main attractive 

feature from a control perspective is the highly underdamped 

character resulting from the common two-masses-springs-

dampers modelling. A large body of scientific literature deals 

with the optimal active suspension control and in particular in 

that of reinforcement learning applied for the suspension 

control, to name a few (Howell et al., 1997), (Tognetti et al., 

2009), (Bucak et al., 2012), (Akraminia et al., 2015), (Wang, 

2018). 

Approximate Dynamic Programming (ADP) (Wang et al., 

2009) is the name by which Reinforcement learning (RL) 

(Busoniu et al., 2018) is better known to control engineering 

and it suggests an attractive optimal control design concept, 

owing its ever-increasing popularity to the ability of 

obtaining high-performance control when the process 

dynamics are (partially) unknown and nonlinear, under 

complete or incomplete process state measurement. With 

more recent applications (de Bruin et al., 2018; Tang et al., 

2019; Treesatayapun 2019), by better exploiting the recent 

computational advances of generic function approximators 

such as neural networks (NNs), ADP has proved its capacity 

to better scale and deal with complex systems with many 

states and control inputs such as the ones stemming from 

video games (Mnih et al., 2016). This way, ADP can better 

handle the “curse of dimensionality” issue and mainstream as 

one of the representative data-driven model-free control 

techniques (Chi et al., 2018; Salvador et al., 2019; Radac and 

Precup, 2019). 

Within the active suspension control problem, the road 

condition is an external disturbance treated as a process input 

that affects the ride comfort. Therefore, the control problem 

straightforward lends itself to the methods employed by H-

infinity optimal robust control design. Fortunately, the H-

infinity framework was translated to an L2-gain optimal 

control problem for general nonlinear systems (Basar and 

Bernhard 1995; Van der Schaft, TAC 1992), where the 

objective is to find the (non-computable analytically) solution 

to the continuous (discrete) time Hamilton-Jacobi-Isaacs 

(HJI) equations. The L2-gain control problem has been 

extensively treated as a zero-sum two-player differential 

game (ZS-TP-DG) where the optimal control law and the 

worst-case disturbance law must be calculated as the 

minimax saddle-point solution to the HJI equation, assuming 

that one exists.  

Several methods for finding state feedback controllers that 

solve the HJI equation using ADP have been developed in 

various works, including model-based implementations like 

(Abu-Khalaf et al., 2006) and   (Vamvoudakis et al., 2010) 

for continuous-time nonlinear systems, (Liu et al., 2013) for 

discrete-time nonlinear systems and also model-free versions, 

like (Al-Tamimi et al., 2007, Kim et al., 2010) for discrete-

time linear systems via Q-learning. 
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In the spirit of the model-free Q-learning methods dedicated 

to solving the ZS-TP-DG problem (Al Tamimi et al., 2007), 

learning the two optimal controllers must rely on collected 

data from the process, in the form of transition samples. 

While an active suspension could be setup to run on realistic 

road conditions for transition samples collection, it must be 

noticed that measuring the unknown road profile disturbance 

is not an acceptable solution in practice. However, artificial 

disturbances emulating road conditions are easily produced in 

fixed stands with the car left on-site. These artificial 

disturbances lead to enhanced state-action space exploration. 

Additionally, that the worst-case disturbance controller is a 

virtual one, used only in the controller learning phase and it 

does not have to be employed in feedback, after the optimal 

controller is found. After terminating the learning process, 

the car can be used in real-world road conditions without 

road profile measurement. 

Upon the above aspects, the paper shows that it is possible to 

learn optimal robust controller in a model-free setting, using 

generic function approximators such as NNs. From the 

author’s knowledge, this is a first successful attempt on a 

nonlinear active suspension, in a model-free context. 

The following Section defines the optimal control problem 

formulation and proposes a model-free Q-learning-based 

solution. The case study in Section 3 validates the proposed 

solution on a realistic quarter-car active suspension model 

and provides discussions and implementation details. Final 

conclusions are the subject of the fourth Section. 

2. THE CONTROL PROBLEM AND THE PROPOSED 

SOLUTION 

In order to solve the ZS-TP-DG problem for a general 

nonlinear process with unknown dynamics 

),,(1 kkkk duxPx 
, (1) 

where, at sample instant k, the state is n

xk Rx  , the 

control input is m

uk Ru   and the disturbance input is 

p

dk Rd  , with  
xduxP :  and with 

domains 
dux  ,,  assumed compact convex subsets of the 

real numbers of corresponding dimensions.  The goal is to 

solve the optimization problem minimizing a cost function 

(c.f.) as 
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where 
uxkk CxCu  :),(  is a state feedback controller 

and 
dxkk DxDd  :),(  is a disturbance controller, 

RxF k  0)(  is a state penalty function, 
DC WW ,  are 

positive definite square weighting matrices and R 0  

is a given constant greater than its smallest value   for which 

the state feedback control system resulting from (1) 

combined with )(),( kk xDxC  is stabilized. In particular, the 

class of admissible controllers are those who render )( kxJ  

finite when starting from any 
kx . 

In general, some restrictions on   apply, in order for (2) to be 

solvable (Al Tamimi et al., 2007). Assuming a solvable ZS-

TP-DG problem (2), the optimal controller )(*

kxC  ensures 

that the L2 gain of the closed-loop makes 
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for any disturbance 
2ldk   within the 

2l  space of square-

integrable functions. Moreover, )(*

kxC  and )(*

kxD  must be 

in minimax saddle-point equilibrium. 

To solve (2) in a model-free style, a batch-fitted variant of Q-

learning is employed. First, )( kxJ  is extended with the Q-

function defined the cost of taking any actions 
kk du ,  in 

current state and then following the fixed control strategies 

)(),( kk xDxC  as 

).(),,$()(

)(),,(

11

2

 



kkkkk

kD

T

kkC

T

kkkkk

xJduxxJ

dWduWuxFduxQ
 (4) 

The previous Q-function fulfils the Bellman equation and its 

optimal version ),,(maxmin),,(*

kkk
DC

kkk duxQduxQ   also 

leads to the optimal c.f. value 

))(),(,()( ****

kkkk xDxCxQxJ   of (2). 

The search for the optimal Q-function is proposed in the 

following. Function approximators are considered for the Q-

function and for the controllers )(),( kk xDxC  and let them be 

parameterized as ),(ˆ),,(ˆ),,,,(ˆ
DkCkQkkk xDxCduxQ  , 

respectively, with },,{, DCQii   vectors of dimension 

corresponding to the number of tunable weights of the 

approximator (e.g. NN weights). 

Starting with an available dataset of transition samples 

containing tuples of the form )},,,{( 1 kkkk xduxS  and with 

initialization },,{,0 DCQii   not necessarily corresponding 

to admissible controllers, the following steps are alternated at 

each iteration j of a Value Iteration-like Q-learning 

algorithm: 

Step 1. Update the c.f. 1ˆ jQ  (i.e. find 1 j

Q
) based on current 

iteration parameters j

D
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Q  ,, . Such an update can be 

formulated, e.g. as the optimization 
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over the entire batch of  S  transition samples. 

Step 2. Improve the controller )(ˆ
kxC  (i.e. find  1 j

C
) as 
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Step 3. Improve the controller )(ˆ
kxD  (i.e. find  1 j

D
) as 
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Step 4. If termination condition is met (j reaches a predefined 

value or no more changes in j

Q ), stop the iterations, else go 

to Step 1. 

Noticeable, the c.f. (5) is a mean squared errors (MSE) 

commonly used in the NNs training phase. Then, a NN with 

input TT

k

T

k

T

k dux ],,[  and output ),,$( kkk dux  
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 built from transition 

samples from S, when subjected to training procedure in term 

of its weights j

Q , actually solves (5). On the other hand, (6) 

and (7) are differently solved. One solution is to set the 

targets of the cascaded NN )),,(ˆ),,(ˆ,(ˆ 1 j

Q

j

Dk

j

Ckk xDxCxQ  

equal to zero for all inputs xk and then minimize (maximize) 

w.r.t. j

C  ( j

D ) by normal NN training procedure, with 1 j

Q
 

kept fixed (Radac et al., 2018; Radac and Precup, 2018b; 

Radac and Lala, 2019). Otherwise, the gradient descent 

(ascent) steps 
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with positive step size learning rates 
21,  can be called for 

a number of times 
1T (

2T ), with gradients cumulated on mini-

batches of randomly selected states 
kx  (counted as 

SBSB  21 , ) or on all states 
kx  from S, starting from j

C  

and j

D , respectively. Upon convergence (maximum number 

of iterations 
1T , 

2T ), 1 j

C
 and 1 j

D
 are obtained. 

Algorithm 1 summarizes the model-free Q-learning based 

solution for the ZS-TP-DG with NNs as follows. 

Algorithm 1. NN-based ZS-TP-DG Q-learning 

1. Available input: dataset S. 

2. Select 
 ,,,,,,,, 212121 TTBBj . Select NNs 

architecture and training settings. Initialize 000 ,,,0 DCQj  . 

3. Train the Q-function NN by solving (5) to find 1 j

Q
. 

4. Select a random mini-batch of 
1B  states 

kx  from S. 

Perform T1 gradient descent steps (8) to find 1 j

C
. 

5. Select a random mini-batch of 
2B  states 

kx  from S. 

Perform gradient ascent steps (9) for 
2T  times to find 1 j

D
. 

6. If  jj   and 


  j

Q

j

Q

1 , make j=j+1 and jump to 3, 

else stop. 

Upon exiting Algorithm 1, the ZS-TP-DG controller holds. 

Algorithm 1 is exemplified in the following section, on a case 

study related to a hydraulic active suspension process. 

3. CASE STUDY 

3.1 The active suspension process 

The continuous-time state-space model of the active 

suspension system for a quarter-car is (Huang et al., 2018) 
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(10) 

where the numerical values of the model parameters used in 

simulation are (Huang et al., 2018) kgms 600 , kgmu 60 , 

mNkt 200000 , mNsbt 1000 , mNksn 1000 , 

mNks 18000 , mNsbs 2500 , 7101  , 11  s , 

241035.3 mA  , PaPs 10342500 , 251310151.4 mN , 

25910545.1 mN . Here, 
1x  and 

3x  are the 

displacements of the sprung and unsprung masses, w.r.t. their 

rest position. The state 
5x  in the fifth equation is the force 

generated by the four-way valve-piston hydraulic actuator 

which is voltage-driven by the control input u. The input 

disturbance d is the second process input and it is the 

derivative of the road profile. The normalization scaling 

constants 001.0,03.0 21   are introduced in (10) to 

ensure that ]1;1[d  results in an equivalent disturbance of 

amplitude 3 cm/s that models the road conditions and that 

]1;1[u  operates in the active area of the active force 

generator. The signum function is sgn(.) . The states are 

normalized after transition samples collection phase and 

illustrated in the following sub-section. 

An equivalent discrete-time model of dynamics (10) is 

obtained with sample period 01.0sT  seconds (s) and used 

for input-state transition samples collection in the following. 

The actual model (10) is not used in the learning process. The 

discrete-time counterpart of (10) is of the form 

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

8157



 

 

     

 

),,(1 kkkk duxPx 
 where T

kkk xxx ],...,[ ,6,1  groups the 

discrete-time states. 

3.2 Transition samples collection 

The transition samples tuples ),,,( 1kkkk xdux  are collected 

using the following settings for uk, dk. The control input 

]1;1[ku  is modelled as successive piece-wise constant 

steps with uniformly random amplitude lasting 0.5 s, upon 

which additive uniform random noise is added every 
sT  

seconds, with amplitude ]31;31[1  ee . The disturbance 

input ]1;1[kd  is modelled as successive piece-wise 

constant steps lasting 0.6 s having uniformly random 

amplitude and additively perturbed by a similar uniform 

random noise. After a 200 s experiment time, 20000S  

tuples are collected and stored in the database S. The states 

are normalized to Skix ki ,1,6,1],1;1[,   by dividing 

each state with its corresponding maximal absolute value 

ki
k

x ,max  from the recorded history. 

3.3 NNs approximators and learning settings 

To implement Algorithm 1, the next settings are used. The 

NN ),,,(ˆ j

Qkkk duxQ   is a feed-forward fully connected one 

with 8 inputs (6 states and 2 control inputs), one hidden layer 

with hyperbolic tangent activation having 30 neurons and an 

output layer with one linearly activated neuron (shortly, 8–

30–1). A fast scaled conjugate batch training is used for 

maximum 500 episodes and the training data is randomly 

divided in 80% actual training data and 20% validation data, 

the latter being used to force early stopping after ten 

successive increases of the MSE (criterion is also used in 

training) measured on the validation data. 

The two controllers ),(ˆ j

CkxC   and ),(ˆ j

DkxD   have similar 

architectures (i.e. 6–6–1), but their training is performed on 

mini-batches using gradient descent/ascent according to (8), 

(9) for a given number of steps. Each NN has 6 inputs (the 

states) and one output (two in total, corresponding to the two 

process control input signals uk, dk). All three NNs weights 

},,{, DCQii   are initialized as zero-mean small uniformly 

random numbers in [–0.005; 0.005]. 

Other learning settings are presented. In (2), the penalty in 

the c.f. is selected as 2222

,120 kkk dux  , for 2  (i.e. 

2

,120)( kk xxF  , 1 DC WW  in (2)). The objective is to limit 

the displacement of the sprung mass (i.e. the car) when 

changes in the road profile occur. In Algorithm 1, 

51,31,50,500 2121   eeTTj . The same 

mini-batch of B1=B2=128 states 
kx  are randomly extracted 

from S at each iteration j of Algorithm 1, then used in the 

gradient descent/ascent Steps 4 and 5 of the Algorithm 1. 

After 500j  iterations, the final optimal controllers 

),(ˆ 500*

CkxC   and ),(ˆ 500*

DkxD   of the converged algorithm 

result. The ZS-TP-DG saddle-point solution corresponding to 

),,,0(ˆ 500*

Qkk duQ   near 0kx  is verified in Fig. 1. 

3.4 Obtained results and discussions 

For comparison, a simple optimal controller (SOC) is 

learned, not using a ZS-TP-DG-type c.f. Instead, it solves 

,20)(where),(minarg 22

,1

* 





ki iikk
C

uxxJxJC  (11) 

and the first part of the penalty is the same with that of the 

ZS-TP-DG c.f. The problem (2) is solved in a quite similar 

manner as the ZS-TP-DG problem, using a variant of 

Algorithm 1 in which only the step 5 is not employed, since 

the SOC relies only on the Q-function estimate ),,(ˆ j

Qkk uxQ   

and on the controller estimate ),(ˆ j

CkxC  . The transition 

samples were collected in the same settings for uk, but 

without a disturbance (dk=0). Meaning that the model (10) is 

reduced to a fifth order one. The NNs architectures for Q̂  and 

Ĉ  are 6–30–1 and 5–5–1, respectively. The gradient descent 

steps in (8) are similarly used for 501 T  times. The rest of 

the parameters in Algorithm 1 are the same and after 500j  

iterations, the optimal controller and Q-function result. 

 

Fig. 1. Saddle point of ),,,0(ˆ 500*

Qkk duQ   after Algorithm 1. 

To assess the performance of the ZS-TP-DG and SOC 

controllers, the attenuation c.f. (Mehraeen et al., 2013; Liu et 

al., 2013) 

     


10000

0

2210000

0

22

,1 /20
k kk kktest duxJ  (12) 

is defined and measured on a 100 s test scenario where the 

used disturbance ]1;1[kd  is a succession of piece-wise 

constant steps having uniform random amplitudes and lasting 

for 0.5 s. This test disturbance was not seen during the 

transition samples collection for the ZS-TP-DG controller 

learning. Note that the ZS-TP-DG disturbance controller 

),(ˆ 500*

DkxD   is not actually used in the loop and it is 

necessary only in the learning phase of Algorithm 1.  
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For measuring attenuation, both the ZS-TP-DG and the SOC 

controllers use their respective learned ),(ˆ 500*

CkxC   in closed 

loop. It is obtained that 498.9  eJ DGTPZS

test
, 

434.57  eJ SOC

test
, clearly indicating the effective 

attenuation with the ZS-TP-DG controller. 1 DGTPZS

testJ  

shows that the finite-horizon version of (3) is verified. 

The CS response with respect to the test disturbance input 
kd  

obtained with the two controllers (ZS-TP-DG and SOC) in 

closed-loop is supplemented with the open-loop response (no 

controller )( kxC  used, meaning 0ku ). The results are 

shown in Fig. 2 only for the first 2000 samples (20 s) and 

reveal that the ZS-TP-DG controller manages to keep 
kx ,1
 

near zero in the presence of the road profile derivative test 

disturbance input 
kd , better than the SOC controller. 

A frequency response function estimator (Tognetti et al., 

2009) is used to measure the transmissibility from the 

disturbance input 
kd  to the output 

kx ,1
, for the approximately 

linear closed-loop CS. The result is shown in Fig. 3. The ZS-

TP-DG controller reduces the CS resonant mode and also 

offers more attenuation at lower frequencies, with respect to 

the SOC one. 

 

Fig. 2. Obtained responses in open-loop (uk=0) (black), and in 

closed-loop with the ZS-TP-DG controller (blue) and with 

the SOC controller (red). 

4. CONCLUSIONS 

The value of the measured attenuation c.f.
testJ , together with 

the results from Fig. 2 and Fig. 3, leads to the conclusion that 

the ZS-TP-DG controller is robust to road disturbances, 

fulfilling the design objective. The ZS-TP-DG control better 

handles disturbances than the SOC, even though the latter 

inherently possesses some disturbance rejection capability. 

 

Fig. 3. Transmissibility
kk xd ,1  in open-loop (uk=0), and with 

the controllers ZS-TP-DG and SOC in closed-loop. 

Especially for the active suspension system, artificial 

disturbances emulating road conditions are easily produced in 

fixed stands, for collecting transition samples, after which 

learning takes place. After the ZS-TP-DG control learning 

process has ended, the disturbance controller )(ˆ *

kxD  is not 

needed and the disturbance input itself must not be measured 

for feedback purposes, since the closed-loop uses only the 

controller )(ˆ *

kxC . The proposed design presents significant 

practical interest, being attractive for physical prototypes. 
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