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Abstract: In this paper, a novel robust adaptive controller based on wavelet neural network
is proposed for voltage-type magnetic levitation system with unknown control direction. First,
coordinate transformation is used to simplify the model of the voltage-type magnetic levitation
system. Second, the mean value theorem and Nussbaum function are used to deal with the
problem of the implicit control input of nonlinear function and unknown control direction,
the approximation to the unknown nonlinear function is realized by wavelet neural network.
Finally, all the signals of the closed loop system are bounded according to Lyapunov function
method.Brdys:99
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1. INTRODUCTION

The electromechanical dynamics of magnetic levitation
device is generally represented by a nonlinear model com-
posed of position, velocity and coil current signal. Because
the system has open-loop instability and non-linearity
in electromechanical system, a series of magnetic levita-
tion controllers are proposed. In Rote (2002), in order to
improve the robustness of feedback linearization control
design, a sliding-mode controller was introduced. However,
under the condition of parameter uncertainty, the stability
and control performance of the system were not clearly
analyzed. In Hajjaji (2001), a robust feedback lineariza-
tion controller suitable for magnetic levitation system was
proposed. Although the stability of the control system was
guaranteed in theory, there seemed to be large overshoots
and transient oscillation in the experimental results.

Recent years, people have developed great interest in using
RBF neural network Yang (2001) and RNN neural net-
work Lin (2007) to deal with magnetic levitation system.
However, the second-order system of magnetic levitation
system was generally considered, which has limitations in
practical application and low approximation accuracy. As
is known to all, fuzzy neural networks can approximate
any continuous function and are widely used in electrical
systems Cao (2006), Brdys (1999). However, FNN is a
static mapping and cannot represent a dynamic mapping
without staggered delay.

In this study, a nonlinear dynamic model is first used to
represent the magnetic levitation device, and the model
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is simplified by coordinate transformation. The velocity
signal can be obtained in the form of pseudo differen-
tial, which can make the state of the whole magnetic
levitation system available. Backstepping design method
is applied to divide the system into three subsystems:
position error signal subsystem, velocity error subsystem
and acceleration error subsystem. Then the mean value
theorem and Nussbaum function are used to deal with the
problem of the implicit control input of nonlinear function
and unknown control direction. The approximation to the
unknown nonlinear function and the design of the adaptive
controller are realized by wavelet neural network and Lya-
punov function respectively. Finally, the effectiveness of
the proposed robust adaptive controller based on wavelet
neural network is verified by simulation.

2. MODEL OF THE MAGNETIC LEVITATION
SYSTEM
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Fig. 1. Schematic diagram of magnetic levitation system
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Considering the magnetic levitation system in Fig.1, the
dynamic equation of MLS is Cho (1993), Wong (1986)

dx

dt
= v

d(L(x)i)

dt
=−Ri+ e

m
dv

dt
=mg − Qi2

2x2
(1)

where x is the position of the steel ball, v is the velocity of
the steel ball, i is the coil current, e is the applied voltage,
R is the coil resistance, L(x) is the coil inductance, g is
gravity acceleration, m is the mass of the steel ball, Q is
the positive constant determined by the characteristics of
the magnetic core. In (1), it is shown that the inductance
L(x) is a nonlinear function about the position x of the
steel ball Wong (1986), where

L(x) =L1 +
L0x0
x

(2)

L1 is the static inductance when the steel ball is not in
the electromagnetic field, L0 is the increased inductance
in the coil when the steel ball is in the electromagnetic
field (that is, the increased inductance when the air gap
is zero), and x0 is the arbitrary reference position relative
to the inductance coil. Substituting (2) into the second
equation of (1), we have

e=Ri+ L
di

dt
− (

L0x0
x2

i)
dx

dt
(3)

Thus, (3) is rewritten as

di

dt
=−R

L
i+

L0x0
L

vi

x2
+

1

L
e (4)

The conservation of energy argument shows that Q =
L0x0. Combining with x = [x1, x2, x3]T = [x, v, i]T, as
the system state variables and u = e, as the control input,
the state equations of MLS in state-space form is

ẋ1 = x2

ẋ2 = g − Q

2m

x23
x21

ẋ3 =−R
L
x3 +

Q

L

x3
x21
x2 +

1

L
u (5)

In order to convert the original nonlinear system into a
simpler system, the following nonlinear coordinate trans-
formation is adopted in the sense of more direct controller
synthesis Yang (2008), Yang (2007).

ξ = [ξ1, ξ2, ξ3]T = [x1, x2, ẋ2]T (6)

Note that ξ is only in the feasible region Ωx = {x|0 ≤
x1 ≤ x1M}, regardless of the control strategy. The result
of (6) is the generation of the new state variables ξ1, ξ2
and ξ3 which are the position, velocity and acceleration of
the steel ball, respectively. Because

ξ̇3 =−Q
m

(−R
L

x23
x21

+
Q

L

x23x2
x41
− x23x2

x31
)− Q

mL

x3
x21
u (7)

Thus, system model (5) is converted to

ξ̇1 = ξ2

ξ̇2 = ξ3

ξ̇3 = ϕ(x, u) (8)

where

ϕ(x, u) =−Q
m

(−R
L

x23
x21

+
Q

L

x23x2
x41
− x23x2

x31
)− Q

mL

x3
x21
u

(9)

Assumption 1 : The reference trajectory yr is designed to

be smooth enough, y
(i)
r ∈ R, ∀i = 0, 1,· · · , 3 exists and

is bounded, and is within the effective induction range of
the laser sensor.

3. THE CONTROLLER DESIGN

The control object is to design an effective and reli-
able wavelet neural network controller for voltage-type
magnetic levitation system with external interference and
model mismatch, so that the system output position signal
ξ1 can effectively track the reference trajectory yr, and en-
sure that all signals of the closed-loop system are bounded.
The detailed design process is given below.

Step1 : Design S1 subsystem.

Define position error signal and velocity error signal re-
spectively, and introduce backstepping design

z1 = ξ1 − yr (10)

z2 = ξ2 − α1 (11)

where α1 is the virtual control to be designed to stabilize
z1 and then subsystem S1 is written as

ż1 = z2 + α1 − ẏr (12)

The virtual control input α1 is designed as

α1 =−k1z1 + ẏr (13)

where k1 > 0. Notice that

α̇1 =−k1(ξ2 − ẏr) + ÿr (14)

Applying α1 to (12), we get

ż1 = z2 − k1z1 (15)

Define the Lyapunov function

V1 =
1

2
z21 (16)

The derivative of V1 along (12) is

V̇1 =−k1z21 + z1z2 (17)

If z1z2 is eliminated in the next design, subsystem S1 will
be stable.

Step2 : Design S2 subsystem.

Define acceleration error

z3 = ξ3 − α2 (18)

where α2 is the virtual control input to stabilize z2. And
then we get subsystem S2:
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ż2 = z3 + α2 − α̇1 (19)

The virtual control input α2 is taken as

α2 =−k2z2 − z1 + α̇1 (20)

where k2 > 0. Notice that

α̇2 =−(k1k2 + 1)ξ2 − (k1 + k2)ξ3 + (k1k2 + 1)ẏr

+(k1 + k2)ÿr +
...
y r (21)

Applying α2 to (19), we have

ż2 = z3 − k2z2 − z1 (22)

Define the Lyapunov function

V2 = V1 +
1

2
z22 (23)

The derivative of V2 along (19) is

V̇2 =−k1z21 − k2z22 + z2z3 (24)

If z2z3 is eliminated in the next design, subsystem S2 will
be stable.

Step3 : Obtain the actual control law u.

The dynamic equation of acceleration subsystem S3 is

ż3 = ϕ(x, u)− α̇2 (25)

Assuming the sign of the current is unknown, according
to the mean value theorem in Ge (2003), there exists a
u∗ ∈ (0, u) such that

ϕ(x, u) = α(x) + β(x, u∗)u (26)

where α(x) = ϕ(x, 0), β(x, u∗) = ∂ϕ(x,u)
∂u |u=u∗ . In actual

control, α(x) and β(x, u∗) are unknown functions, and the
sign of β(x, u∗) is unknown. Then

ż3 = α(x) + β(x, u∗)u− α̇2 (27)

Assumption 2 : β(x, u∗) is a smooth bounded function
whose sign is unknown, and there exists unknown con-
stants βmin and βmax, so that

0 < βmin ≤ |β(x, u∗)| ≤ βmax (28)

The unknown nonlinear function α(x) is approximated by
wavelet neural network as

α(x) =W ∗T
F φ(x, d∗, c∗) + εF (29)

where W ∗
F , d∗ and c∗ are the ideal weight vector, ideal

extension parameter vector and ideal translation parame-
ter vector of the wavelet neural network, respectively. εF
is the approximate error of wavelet neural network, which
satisfies ‖εF ‖ ≤ ‖εFM‖. Since W ∗

F , d∗ and c∗ are hard to

get, then we use ŴF , d̂ and ĉ to estimate, respectively.

Define estimation error W̃F = W ∗
F − ŴF , d̃ = d∗ − d̂,

c̃ = c∗ − ĉ, φ̃ = φ(x, d∗, c∗) − φ(x, d̂, ĉ), abbreviated as

φ̃ = φ∗ − φ̂. Then the actual output of wavelet neural
network is

α̂(x) = ŴT
F φ(x, d̂, ĉ) (30)

Assumption 3 : The ideal weight vector W ∗
F , ideal exten-

sion parameter d∗ and ideal translation parameter vec-
tor c∗ of wavelet neural network are bounded, that is,

‖W ∗
F ‖ ≤ WFM , ‖d∗‖ ≤ dM and ‖c∗‖ ≤ cM , where WFM ,

dM and cM are positive constants.

The error of approximate nonlinear function α(x) by
wavelet neural network is

α̃(x) = α(x)− α̂(x)

=W ∗T
F φ(x, d∗, c∗) + εF − ŴT

F φ(x, d̂, ĉ)

= (W̃F + ŴF )T(φ̃+ φ̂)− ŴT
F φ̂+ εF

= W̃T
F φ̃+ W̃T

F φ̂+ ŴT
F φ̃+ ŴT

F φ̂− ŴT
F φ̂+ εF

= W̃T
F φ̃+ W̃T

F φ̂+ ŴT
F φ̃+ εF (31)

According to Taylor linearization expansion method, φ̃ is
linearly expanded as

φ̃= ITd̃+ JTc̃+ µ (32)

where µ is a higher-order term,

I = [∂φ1/∂d, · · · , ∂φn/∂d]|d=d̂
J = [∂φ1/∂c, · · · , ∂φn/∂c]|c=ĉ

We have the following assumptions.

Assumption 4 : Higher-order term µ, matrices I and J are
bounded, that is, ‖µ‖ ≤ µM , ‖I‖ ≤ IM and ‖J‖ ≤ JM ,
where µM , IM and JM are positive constants.

Substituting (32) into (31), we obtain

α̃(x) = W̃T
F (φ̂− ITd̂− JTĉ) + d̃TIŴF + c̃TJŴF +4

(33)

where

4= W̃T
F I

Td∗ + W̃T
F J

Tc∗ +W ∗T
F µ+ εF

= (W ∗T
F − ŴT

F )ITd∗ + (W ∗T
F − ŴT

F )JTc∗

+W ∗T
F µ+ εF

=W ∗T
F (ITd∗ + JTc∗ + µ)− ŴT

F (ITd∗ + JTc∗)

+εF

≤W ∗T
F (ITd∗ + JTc∗ + µ) + (ITd∗ + JTc∗) + εF

≤ (1 + ‖ŴT
F ‖)[W ∗T

F (ITd∗ + JTc∗ + µ) + (ITd∗

+JTc∗) + εF ]

≤ ζσ (34)

where

ζ = 1 + ‖ŴT
F ‖

σ = max{WT
FM (ITMdM + JT

McM + µM ) + εFM ,

ITMdM + JT
McM}

For the nonlinear function β(x, u∗) with unknown sign,
Nussbaum function is introduced, and the controller is
designed as

u=Nb(ψ)(α̂(x)− α̇2 + z2 + k3z3 + ur) (35)

ψ̇ = z3(α̂(x)− α̇2 + z2 + k3z3 + ur) (36)

where k3 > 0, Nb(ψ) = ψ2 cos(ψ) is the Nussbaum
function. ur = σζ tanh(z3ζ/ι) is the robust term, where
ι > 0. Then
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ż3 = α(x) + β(x, u∗)Nb(ψ)(α̂(x)− α̇2

+z2 + k3z3 + ur)− α̇2 (37)

Define the Lyapunov function

V3 = V2 +
1

2
z23 +

1

2η
W̃T
F W̃F +

1

2η
d̃Td̃+

1

2η
c̃Tc̃ (38)

where η > 0. The derivative of (38) is

V̇3 = V̇2 + z3ż3 −
1

η
W̃T
F

˙̂
WF −

1

η
d̃T

˙̂
d− 1

η
c̃T ˙̂c

=−k1z21 − k2z22 − k3z23 + z3(α(x)− α̂(x))

+[β(x, u∗)Nb(ψ) + 1]ψ̇ − z3ur −
1

η
W̃T
F

˙̂
WF

−1

η
d̃T

˙̂
d− 1

η
c̃T ˙̂c (39)

Substituting (33) into (39), we have

V̇3 =−k1z21 − k2z22 − k3z23 + [β(x, u∗)Nb(ψ) + 1]ψ̇

+
1

η
W̃T
F [η(φ̂− ITd̂− JTĉ)z3 − ˙̂

WF ]

+
1

η
d̃T(ηIŴF z3 − ˙̂

d) +
1

η
c̃T(ηJŴF z3 − ˙̂c)

+z34− z3ur (40)

The adaptive laws of weight ŴF , learning expansion

parameter d̂ and translation parameter ĉ of the wavelet
neural network are respectively taken as

˙̂
WF = η[z3(φ̂− ITd̂− JTĉ)− kF ŴF ] (41)

˙̂
d= η(z3IŴF − kDd̂) (42)

˙̂c= η(z3JŴF − kC ĉ) (43)

where kF , kD and kC > 0, substituting the adaptive law
(41)-(43) into (40), we get

V̇3 ≤−k1z21 − k2z22 − k3z23 + [β(x, u∗)Nb(ψ) + 1]ψ̇

+kF W̃
T
F ŴF + kDd̃

Td̂+ kC c̃
Tĉ+ σ|z3ζ|

−σz3ζ tanh(z3ζ/ι) (44)

According to the inequality 0 ≤ |ζz3|−ζz3 tanh(ζz3/ι) ≤ ι,
we get

V̇3 ≤−k1z21 − k2z22 − k3z23 + [β(x, u∗)Nb(ψ) + 1]ψ̇

+kF W̃
T
F ŴF + kDd̃

Td̂+ kC c̃
Tĉ+ σι (45)

Using inequality

W̃T
F ŴF =

1

2
{W̃T

F (W ∗
F − W̃F ) + (W ∗

F − ŴF )TŴF }

=
1

2
{W̃T

FW
∗
F − W̃T

F W̃F +W ∗T
F ŴF − ŴT

F ŴF }

=
1

2
{−‖W̃F ‖2 + (W ∗

F − ŴF )TW ∗
F − ‖ŴF ‖2

+W ∗T
F ŴF }

=
1

2
{−‖W̃F ‖2 − ‖ŴF ‖2 + ‖W ∗

F ‖2}

≤ 1

2
{−‖W̃F ‖2 + ‖W ∗

F ‖2} (46)

Similarly

d̃Td̂≤ 1

2
{−‖d̃‖2 + ‖d∗‖2} (47)

c̃Tĉ≤ 1

2
{−‖c̃‖2 + ‖c∗‖2} (48)

Then

V̇3 ≤−k1z21 − k2z22 − k3z23 + [β(x, u∗)Nb(ψ) + 1]ψ̇

−kF
2
‖W̃F ‖2 −

kD
2
‖d̃‖2 − kC

2
‖c̃‖2 + χ2 (49)

where

χ2 =
kF
2
‖W ∗

F ‖2 +
kD
2
‖d∗‖2 +

kC
2
‖c∗‖2 + σι (50)

Define χ1 = min{2k1, 2k2, 2k3, ηkF , ηkD, ηkC}, then

V̇3 ≤−χ1V3 + [β(x, u∗)Nb(ψ) + 1]ψ̇ + χ2 (51)

Multiplying both sides of (51) by eχ1t, we get

d(V3e
χ1t)

dt
≤ eχ1t{[β(x, u∗)Nb(ψ) + 1]ψ̇ + χ2} (52)

Integrating (52) over [0, t], we have

V3(t)≤ (V3(0)− χ2

χ1
)e−χ1t +

χ2

χ1

+

∫ t

0

e−χ1(t−τ){[β(x, u∗)Nb(ψ) + 1]ψ̇}dτ (53)

Because 0 < e−χ1t < 1 and χ2

χ1
e−χ1t > 0, so

(V3(0)− χ2

χ1
)e−χ1t <V3(0) (54)

If substituting (54) into (53), we get

V3(t)≤ χ3

+

∫ t

0

e−χ1(t−τ){[β(x, u∗)Nb(ψ) + 1]ψ̇}dτ

(55)

where χ3 = V3(0) + χ2

χ1
.

4. STABILITY ANALYSIS

Due to the continuity of yr(t), · · · , y(3)r (t) and the smooth
non-linearity of the system (8), the solution of the closed-
loop adaptive system exists and is unique. Define an
alternative item of Lyapunov function:

V =
1

2
(z21 + z22 + z23) +

1

2η
W̃T
F W̃F +

1

2η
d̃Td̃+

1

2η
c̃Tc̃

(56)

The time derivative of V is

V̇ = z1ż1 + z2ż2 + z3ż3 −
1

η
W̃T
F

˙̂
WF −

1

η
d̃T

˙̂
d− 1

η
c̃T ˙̂c

(57)

Substituting (15), (22), (33)-(37) and (41)-(43) into (57),
we get

V̇ ≤−k1z21 − k2z22 − k3z23 + σ|z3ζ| − σz3ζ tanh(z3ζ/ι)
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+[β(x, u∗)Nb + 1]ψ̇ + kF W̃
T
F ŴF + kDd̃

Td̂

+kC c̃
Tĉ

Using inequality (46)-(48) and 0 ≤ |ζz3|−ζz3 tanh(ζz3/ι) ≤
ι, we get

V̇ ≤−k1z21 − k2z22 − k3z23 + [β(x, u∗)Nb(ψ) + 1]ψ̇

−kF
2
‖W̃F ‖2 −

kD
2
‖d̃‖2 − kC

2
‖c̃‖2 + χ2 (58)

where

χ2 =
kF
2
‖W ∗

F ‖2 +
kD
2
‖d∗‖2 +

kC
2
‖c∗‖2 + σι (59)

Define χ1 = min{2k1, 2k2, 2k3, ηkF , ηkD, ηkC}, then

V̇ ≤−χ1V + [β(x, u∗)Nb(ψ) + 1]ψ̇ + χ2 (60)

Multiplying both sides of (60) by eχ1t, we get

d(V eχ1t)

dt
≤ eχ1t{[β(x, u∗)Nb(ψ) + 1]ψ̇ + χ2} (61)

Integrating (61) over [0, t]

V (t)≤ (V (0)− χ2

χ1
)e−χ1t +

χ2

χ1

+

∫ t

0

e−χ1(t−τ){[β(x, u∗)Nb(ψ) + 1]ψ̇}dτ (62)

Because 0 < e−χ1t < 1 and χ2

χ1
e−χ1t > 0, so

(V (0)− χ2

χ1
)e−χ1t <V (0) (63)

If substituting (63) into (62), we get

V (t)≤ χ3

+

∫ t

0

e−χ1(t−τ){[β(x, u∗)Nb(ψ) + 1]ψ̇}dτ

(64)

where χ3 = V (0) + χ2

χ1
.

According to lemma 1 in Hong (2009), we can get that

V , ψ and
∫ t
0
β(x, u∗)Nb(ψ)ψ̇dτ are bounded on [0, tf ]. Ac-

cording to lemma 2 in Hong (2009), the above conclusion

is also true when tf =∞. we know that W̃F , d̃, c̃ and thus
zi, i = 1, 2, 3 are bounded. z1 and yr are bounded, so x1 is
bounded on [0,∞].

5. NUMERICAL SIMULATION

In order to demonstrate the performance of the proposed
control design, a digital simulation is presented. MAT-
LAB/Simulink is used to simulate the above MLS control
design and verify its performance. The velocity ξ2 is mea-
sured by pseudo-differentiation of the measured position ξ1
as sξ1/(0.004s+ 1) Yang (2001). The parameters of MLS
in Yang (2007).

m = 0.54kg g = 9.8m/s2 Q = 0.001624Hm

L = 0.8052H R = 11.88Ω

It is worth noting that the proposed controllers do not need
too precise dynamic parameters or their optimal region
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Fig. 2. The output and tracking error waveform after
coordinate reconstruction.
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)

(a)
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Time(sec)

0

10

20
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40

u
(V

)

(b)

Fig. 3. The input current i and Controller u.

of interest. To illustrate the transient performance of the
proposed control design, an active reference trajectory is
used. In order to satisfy assumption 1, the third-order
derivative of the reference trajectory is continuous. Here,
we design the reference trajectory as yr = 0.012m. In the
study of magnetic levitation system, ξ1 is the distance
between the electromagnetic coil and a point on the surface
of the small suspending steel ball. In practice, the distance
between the electromagnetic coil and the centroid of the
small suspending steel ball needs to be considered, so
the centroid distance compensation needs to be carried
out, and the compensating distance is 0.007987m. The
initial position of the steel ball is set as 0.03m, and the
initial velocity is set as 0.01m/s. Wavelet neural network
is used to approximate function α(x), control input are
x1, x2 and x3, the number of product layers is l = 10,
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and the initial value of parameters ŴF , d̂ and ĉ are set
as 0.25, respectively. The control gains of the proposed
controller are chosen as below to obtain the best tracking
performance

k1 = 40 k2 = 40 k3 = 20 ι = 0.3

η = 100 kF = 0.3 kD = 0.3 kC = 0.3

When yr is a fixed constant, the simulation results of
the proposed controller are shown in Fig.2 and Fig.3.
Fig.2 shows the actual trajectory (solid line) ξ1, desired
trajectory (dashed line) yr, and tracking error z1 under
the control of the proposed control design. Fig.3 shows
the waveform of input current i and controller u. Except
the initial time, the current value i and voltage value
u are uniformly adjusted in the range of 1.58A-1.65A
and 18V-20V, respectively. The position ξ1 of the steel
ball fluctuates around the reference track yr=0.012m, the
tracking error z1 approaches zero.

6. CONCLUSION

Aiming at the voltage-type magnetic levitation system
with unknown control direction, this paper proposes a
robust adaptive controller based on wavelet neural net-
work by using coordinate transformation, backstepping,
mean value theorem, Nussbaum function and adaptive
boundary technology. Small changes in coil inductance
will not be ignored since there is a functional relationship
between coil inductance L and position state variable ξ1.
The unmeasurable velocity state ξ2 is obtained by means
of pseudo differentiation, which does not require prior
knowledge of the control direction and can obtain good
tracking performance on the premise that all signals of
the closed-loop system are bounded.
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