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Abstract: This paper presents the design of co-operative collision avoidance algorithms for
Unmanned Aerial Vehicles (UAVs) using vertical avoidance manoeuvres. The co-operative
collision avoidance problem is formulated as an optimal control problem and solved using
an A* search algorithm. Two different approaches are developed and compared: a centralised
approach where the collision avoidance trajectories for all UAVs are planned simultaneously,
and a decoupled approach where the individual collision avoidance trajectories for each UAV is
planned sequentially, with the planning sequence determined by a UAV priority order. The UAVs
co-operate by sharing their state and intent information with one another and with a central
node, if present. The co-operative collision avoidance algorithms are verified and evaluated using
illustrative simulations. These simulations support the expected behaviour of the algorithms.
The centralised approach finds the most optimal solution to the problem while the solution found
by the decoupled approach depends on the priority allocation of the UAVs. The decoupled
approach can find either the most optimal or a sub-optimal solution to the problem, with
the priority allocation occasionally resulting in the decoupled approach being unable to find a
solution. This suggests that the centralised approach will, on average, find solutions more often
and find more optimal solutions than the decoupled approach.

Keywords: Co-operative control, Optimal Control, Path Planning, Collision Avoidance,
Obstacle Avoidance.

1. INTRODUCTION

Interest in autonomous vehicles has increased dramatically
in recent years and this has led to many new developments
in the field of automation. The automation of Unmanned
Aerial Vehicles (UAVs) has vastly increased their uses and
UAVs are now commonly used in many fields, ranging from
the film industry to agricultural applications to military
operations. This boom in the use of UAVs has created
new challenges for automation to overcome, such as the
need for UAVs to fly in crowded airspaces.

One of the key enabling technologies for the integration
of UAVs into commercial airspace, is automatic collision
avoidance, or the ability to “sense and avoid”. Tradition-
ally, research on automatic collision avoidance for UAVs
has focused on using on-board sensors such as vision-based
sensors, lidar, and radar to predict and avoid collisions.
We propose a co-operative framework where all UAVs
communicate their positions, velocities, and intended flight
paths, and therefore act as collision prediction “sensors”
for one another. Additionally, when a collision is predicted,
then all UAVs co-operate to plan and execute collision
avoidance trajectories.

This paper presents two different co-operative collision
avoidance algorithms: a centralised approach where the
collision avoidance trajectories for all UAVs are planned
simultaneously, and a decoupled approach where the in-

dividual collision avoidance trajectories for each UAV is
planned sequentially, with the planning sequence deter-
mined by a UAV priority order. Both algorithms attempt
to find optimal solutions using vertical avoidance manoeu-
vres that avoid collisions, but minimise the deviation of the
UAVs from their original trajectories and minimise the col-
lision avoidance effort. The two algorithms are evaluated
and compared using illustrative simulations.

The remainder of this article is organised into five sections.
Section 2 discusses previous work done in the field. Section
3 discusses the co-operative collision avoidance framework.
Section 4 covers co-operative collision prediction. Section 5
covers co-operative path planning and Section 6 describes
the results obtained.

2. PREVIOUS WORK

Collision avoidance for manned aircraft is currently per-
formed using a combination of ATC (air traffic control),
TCAS (Traffic Collision Avoidance System), EGPWS (En-
hanced Ground Proximity Warning System), and ADS-B
(Automatic Dependent Surveillance - Broadcast). TCAS
is a rules-based collision avoidance system that uses only
vertical maneuvers (climb and descend) to avoid aircraft
to aircraft collisions. TCAS does not control the aircraft
directly but advises resolution actions for the human pilot
to follow (FAA, 2011). EGPWS is a rules-based ground
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collision avoidance system that uses only vertical maneu-
vers to avoid aircraft collisions with terrain (Bateman,
1999). ADS-B is a surveillance technology in which an
aircraft determines its position via satellite navigation and
periodically broadcasts it, enabling it to be tracked. The
ADS-B information can be received by air traffic control
ground stations, and can also be received by other air-
craft to provide situational awareness and to allow self-
separation (FAA, 2015).

A large number of different approaches and technologies
have been developed to provide automatic collision predic-
tion and avoidance (sense and avoid) for UAVs. A survey
of collision avoidance approaches for UAVs was performed
by Albaker and Rahim (2009), and an overview of sense
and avoid technologies applicable to unmanned aircraft
systems was provided by Yu and Zhang (2015).

One approach is to integrate UAVs with the existing
TCAS and ADS-B infrastructure. Asmat et al. (2007)
proposed an unmanned aerial collision avoidance system
(UCAS) designed to interact with the Traffic Alert Colli-
sion Avoidance System (TCAS) implemented on manned
aircraft. Portilla et al. (2007) investigated the feasibility of
a sense and avoid system for UAVs that is compatible with
manned TCAS II-equipped aircraft. Stark et al. (2013)
studied the use of ADS-B for small Unmanned Aerial Sys-
tems. Orefice et al. (2015) performed real-time validation
of an ADS-B based aircraft conflict detection system.

Another approach is for individual UAVs to perform non-
cooperative collision prediction and avoidance using their
onboard sensors. A multitude of vision-based collision
avoidance approaches have been proposed using monocu-
lar vision (Choi et al. (2013), Chiu et al. (2014), Saha et al.
(2014), Ma et al. (2015), Al-Kaff et al. (2016), and Potena
et al. (2019)) and stereo vision (Park and Kim (2012) and
Yu et al. (2018)). Other approaches use onboard radar,
lidar, or multi-sensor systems. Ben et al. (2017) devel-
oped a radar-based detect and avoid system. Fasano et al.
(2008) presented a multi-sensor, non-cooperative collision
avoidance system. Farinella and Bhandari (2016) proposed
system that uses scanning lidar and ADS-B.

Some approaches also incorporate varying levels of coor-
datination and co-operation. The FACES algorithm devel-
oped by Alliot et al. (2000) uses token passing to manage
UAVs replanning by prioritising UAVs based on their
transponder number. UAVs pass tokens amongst those
that they are in conflict with and the UAVs with the
highest transponder number replan first. Many researchers
have studied trajectory generation and control for teams
of UAVs performing co-operative missions (Beard and
McLain (2003)) or multiple UAVs flying in formation
(Wang et al. (2007), Eskandarpour and Majd (2014),
Kuriki and Namerikawa (2015), Seo et al. (2017), Jin et al.
(2018)). These algorithms usually include an element of
collision avoidance. Often the purpose is not to avoid
collisions with other co-operative UAVs, but rather to
co-operatively avoid collisions with static obstacles and
non-cooperative dynamic obstacles (Boivin et al. (2008),
Kothari et al. (2009), Cichella et al. (2014)).

Only rarely is co-operative collision avoidance performed
for independent UAVs executing independent missions.
Alejo et al. (2009) proposed a co-operative collision avoid-

ance method for multiple UAVs and other non-cooperative
aircraft. However, their approach was to modify the ve-
locities of the UAVs, and they did not employ vertical
avoidance manuevers. Lao and Tang (2017) presented a
co-operative multi-UAV collision avoidance system based
on distributed dynamic optimization and causal analysis.
However, their approach assumed a segregated airspace,
and did not include terrain avoidance. Fabra et al. (2019)
developed a co-operative collision avoidance approach for
independent multirotor UAVs following independent mis-
sions. However, they used a rules-based approach and did
not employ path planning for collision avoidance.

In summary, our literature review reveals that co-operative,
path-planning-based collision avoidance for independent
UAVs following independent flight plans in en-route
airspace has not been adequately covered by previous
research. In addition, co-operative collision avoidance for
UAVs has not been solved using both centralised and de-
coupled approaches. We therefore present a co-operative,
path-planning-based collision avoidance system that en-
ables co-operatve UAVs to avoid collisions with one an-
other, with static terrain, and with non-cooperative dy-
namic obstacles. We will formulate the co-operative col-
lision avoidance task as an optimal control problem, and
we will solve it using both centralised and decoupled ap-
proaches.

3. COLLISION AVOIDANCE FRAMEWORK

Our proposed collision avoidance framework consists of
three modules, a modelling module, a collision prediction
module, and a path planning module, that work together
to perform collision avoidance. The collision prediction
module executes continuously to calculate the probability
of future collisions occurring in the short-term prediction
horizon. If the probability of a future collision exceeds a
certain threshold, then the path planning module is acti-
vated to plan new collision-free paths. The collision pre-
diction and path planning modules both use the modelling
module to propagate the vehicles and dynamic obstacles
forward in time, to calculate the probability of future
collisions between vehicles, and future collisions with static
or dynamic obstacles.

4. CO-OPERATIVE COLLISION PREDICTION

The co-operative collision prediction module assumes that
all co-operative UAVs publish and communicate their path
plans for the next N time steps into the future. It also
assumes that a map of all local static obstacles is available,
and that all dynamic obstacles (e.g. uncooperative UAVs)
are being tracked so that their predicted trajectories for
the next N time steps are available. At every time step,
the co-operative collision prediction algorithm simulates
the motion of the co-operative UAVs and the dynamic ob-
stacles forward in time, and checks for predicted collisions
of co-operative UAVs with one another, of co-operative
UAVs with static obstacles, and of co-operative UAVs with
dynamic obstacles. The co-operative UAVs are propagated
along their published path plans, and the dynamic obsta-
cles are propagated along their predicted trajectories, for
N time steps into the future. If any collisions are predicted,
then the co-operative path planning algorithm is activated
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to re-plan the state trajectories of all co-operative UAVs,
and to produce and publish new collision-free path plans
for the next N time steps.

5. CO-OPERATIVE PATH PLANNING

We propose two multi-robot path planning algorithms
to perform co-operative collision avoidance for unmanned
aerial vehicles. We first formulate the co-operative collision
avoidance task as an optimal control problem. We then
solve the optimal control problem using two path planning
algorithms that both apply the A* search algorithm, one
that follows a centralised approach, and another that
follows a decoupled approach.

5.1 The Optimal Control Problem

The co-operative path planning task is formulated as an
optimal control problem with the objective of finding
the optimal state trajectories and the optimal actions
that minimise some cost function. This must be done
while avoiding UAV collisions with one another and with
static and dynamic obstacles and while also obeying the
differential constraints of each individual UAV.

Problem Formulation: Given the reference flight paths
xref(t) for all of the co-operative UAVs, the time-
independent conflict region Cobs representing the static ter-
rain, and the time-varying conflict region Cobs,dyn(t) rep-
resenting the predicted trajectories of the uncooperative
UAVs, the objective is to determine the optimal collision-
free vehicle state trajectories x∗(t) and the optimal vehicle
actions u∗(t) that will avoid all collisions, while minimising
the deviation of the executed flight paths from the original
reference flight paths, and while minimising the avoidance
effort.

System dynamics: The system dynamics are described
by the equations of motion of all of the co-operative UAVs

ẋ(t) = v(t), (1)

where the state vector x is an array containing the posi-
tions of all of the co-operative UAVs, and the input vector
v is an array containing the velocities of all of the co-
operative UAVs.

System state: The state vector x is defined as

x(t) = [x1(t) x2(t) . . . xn(t)]
T
, (2)

where x1 to xn are the positions of the n co-operative
UAVs.

Control input: The control input vector v is defined as

v(t) = [v1(t) v2(t) . . . vn(t)]
T
, (3)

where v1 to vn are the velocity actions of the n co-
operative UAVs.

State constraints: The state constraints are specified by
defining the set of admissible states where none of the co-
operative UAVs are in conflict with one another, with the
static obstacle region, or with the dynamic obstacle region.

xi(t) /∈ Csep(xj (t)), i 6= j (4)

xi(t) /∈ Cobs (5)

xi(t) /∈ Cobs,dyn(t). (6)

Equations 4, 5 and 6 describe these constraints for all i
from 1 to n, where xi is the position of the i’th UAV,
Csep(xj (t)) is the conflict region around the j’th UAV, Cobs
is the static obstacle region, and Cobs,dyn(t) is the dynamic
obstacle region.

Input constraints: The control input constraints are
specified by defining the set of admissible horizontal and
vertical velocity ranges for each of the unmanned UAVs.
The velocity action for each UAV can be decomposed into
a horizontal (forward) velocity and a vertical (climb rate)
velocity as

vi(t) = [vi,hor vi,vert]
T
, (7)

where vi,hor is the horizontal (forward) velocity and vi,vert
is the vertical velocity (climb rate) of the i’th UAV. The
input constraints are then specified as

vi,hor, min ≤ vi,hor(t) ≤ vi,hor, max (8)

vi,vert, min ≤ vi,vert(t) ≤ vi,vert, max, (9)

where vi,hor, min and vi,hor, max are the minimum and
maximum forward velocities, and vi,vert, min and vi,vert, max

are the minimum and maximum climb rates for the i’th
UAV. Since different UAVs can be given different input
constraints, this formulation allows for a heterogeneous set
of co-operative UAVs.

Terminal state constraints: The co-operative collision
avoidance algorithm must provide collision-free planned
trajectories for a minimum planning time interval into
the future. This requirement for a minimum ”planning
horizon” is translated into the following terminal state
constraint

tf ≥ ti + Tplan, (10)

where the ti is the initial time, tf is the final time, and Tplan
is the minimum planning time interval into the future.
Note that no further constraints are placed on the ”final”
positions of the UAVs at the end of the planning time
interval, and that the UAVs are not required to have
returned to their reference paths by the ”final” time.
This is to provide for possibility that the ”final” reference
positions (or goal states) of one or more UAVs may be
occupied by static or dynamic obstacles at the end of the
planning time interval.

Hierarchical multi-objective cost function: A novel hier-
archical multi-objective cost function is designed to repre-
sent the primary objective to minimise the deviation of the
UAVs from their reference trajectories, and the secondary
objective to minimise the avoidance effort.
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The primary cost function Jx is the deviation of the UAVs
from their reference trajectories, defined as

Jx =

∫ tf

ti

|x(t)− xref(t)| dt, (11)

where x(t) are the planned trajectories and xref(t) are the
reference trajectories.

The secondary cost function Ju is the avoidance effort,
defined as

Ju =

∫ tf

ti

gu(v(t))dt, (12)

where gu(v(t)) is an arbitrary function representing the
transition cost of input action v(t).

The hierarchical cost function is minimised as follows:
First, the primary cost function Jx is minimised without
considering the secondary cost function. Next, if more than
one solution minimises the primary cost function, then the
solution that also minimise the secondary cost function Ju
is selected from among the solutions that already minimise
the primary cost function. (The secondary cost function is
not activated frequently, since steep vertical maneuvers
often also result in a smaller path deviation area than
normal maneuvers.)

5.2 The A* Solution: Centralised and Decoupled

The centralised and decoupled path planning approaches
both use the general A* algorithm, shown in algorithm 1,
described in LaValle (2016). The A* algorithm will always
explore the cheapest node first to guarantee that the first
path found it the cheapest. To implement this, the insert
function (line 10 of algorithm 1) will insert nodes into
the open queue such that the nodes in the queue are
arranged in increasing order of cost. The A* algorithm
also makes use of a heuristic in its cost function. The
heuristic estimates the cost to reach the goal from the
current node, and this is added to the cost to reach that
node to produce the total cost for the node that is used
by the insert function.

Algorithm 1 Generic A* Algorithm

1: Qopen.insert(xI)
2: while Qopen not empty and size(Qclosed) < β do
3: x← Qopen.getF irst()
4: if x == xG then
5: return SUCCESS
6: else
7: for all u ∈ U do
8: x′ ← f(x, u)
9: if x′ valid then

10: Qopen.insert(x
′)

11: Qclosed.insert(x)
12: return FAILURE

Algorithm execution: Centralised approach: In the cen-
tralised planning approach, the composite trajectory for all
UAVs is planned simultaneously using the A* algorithm.
A single centralised search graph is created for all UAVs.
Each node in the graph contains the composite state, the

composite action, the composite trajectory deviation cost,
the composite action cost, and the time index for all UAVs.

The composite state transition equation for all UAVs is
used to generate the child nodes from a given parent node
for all of the composite actions in the action space. The
composite state of each child node is checked for collisions
to verify that the new state is admissible before it is added
to the search graph. The individual UAVs’ states within
the composite state are checked against one another to
verify that there are no collisions between co-operative
UAVs, and the individual UAVs’ states are also checked
against the static obstacle and dynamic obstacle maps to
verify that there are no collisions with static or dynamic
obstacles.

The nodes in the open queue are first ordered from
lowest to highest composite trajectory deviation cost, then
ordered from lowest to highest composite action cost, and
finally ordered from highest to lowest time index k. Nodes
with the same composite trajectory deviation cost and
composite action cost are therefore ordered so that nodes
that are closer to the final time index are higher in the
open queue and will be expanded first, to encourage the
A* algorithm to reach the goal state within the minimum
number of iterations.

The A* algorithm terminates when the goal set is reached,
when the open queue is empty, or when the algorithm
exceeds a specified maximum number of iterations. If the
algorithm does not reach the goal state, then either no
solution exists, or no solution could be found within the
specified maximum number of iterations.

Algorithm Execution: Decoupled Approach: In the de-
coupled approach, the individual trajectories for the UAVs
are planned sequentially using the A* algorithm and the
planning sequence is determined by the priority order of
the UAVs. UAVs with higher priority ignore lower priority
UAVs when planning their new trajectories, while UAVs
with lower priority treat higher priority UAVs as dynamic
obstacles that must be avoided.

A decoupled search tree is created for each individual
UAV. Each node in the graph contains the individual state,
the individual action, the individual trajectory deviation
cost, the individual action cost, and the time index of the
UAV. The individual state transition equation for the UAV
is used to generate the child nodes from a given parent
node using the individual actions from the action space.
The individual state of each child node is checked for
collisions to verify that the new state is admissible before
it is added to the search graph.

The individual state of the UAV is checked against the
state trajectories of all higher priority UAVs to check for
collisions with other co-operative UAVs, and the individual
UAV’s state is also checked against the static obstacle
and dynamic obstacle maps to verify that there are no
collisions with static or dynamic obstacles. The nodes in
the open queue are first ordered from lowest to highest
individual trajectory deviation cost, then ordered from
lowest to highest individual action cost, and finally ordered
from highest to lowest time index k. Nodes with the same
individual trajectory deviation cost and individual action
cost are therefore ordered so that nodes that are closer to
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the final time index are higher in the open queue and will
be expanded first, to encourage the A* algorithm to reach
the goal state within the minimum number of iterations.

Once an individual UAV has completed its planning, it
publishes its new state trajectory, and becomes a dynamic
obstacle for all of the UAVs lower in the priority order. The
next UAV in the priority order then proceeds to plan its
new state trajectory, using the published state trajectories
of all the previous UAVs. This cycle is repeated until all of
the UAVs have performed their individual planning. The
A* algorithm terminates when the goal set is reached,
when the open queue is empty, or when the algorithm
exceeds a predefined maximum number of iterations. If
for any of the individual UAVs the A* algorithm does not
successfully reach its goal state, then a solution does not
exist for that specific priority order. However, a solution
may still exist if a different priority order is used. The
priority order should then be modified, and the sequential
planning should be repeated using the new priority order.

Individual state transition equation: The following state
transition equation for an individual UAV is used to
generate the child nodes from a given parent node

xi(k + 1) = xi(k) + vi(k)∆t. (13)

xi(k) and vi(k) are the UAV position and UAV climb rate
action at the parent node, xi(k + 1) is the UAV position
at the child node, and ∆t is the sampling period of the
discrete time step.

Individual action space: The following discrete action
space for individual UAVs, consisting of a finite set of avail-
able velocity actions, is used to generate the child nodes
from a given parent node, in the decoupled approach.

vi(k)∈Ui (14)

Ui ∈


vi,steep climb

vi,climb

vi,level

vi,dive

vi,steep dive

 . (15)

The available actions for each UAV are chosen as “main-
tain level flight”, “climb”, “dive”, “steep climb”, and
“steep dive”. (This research assumes that the UAVs only
use vertical actions for collision avoidance and as such
horizontal actions or speed changes are not considered.)
The velocity actions assume that the UAV is travelling
horizontally at its cruise speed vi,cruise, and that it only
adjusts its flight path angle γ. The velocity action for
an individual UAV can therefore be represented by the
following horizontal (forward) velocity and vertical (climb
rate) velocity actions.

vi(k) = [vi,cruise vi,cruise tan γ(k)]
T
. (16)

Individual cost to come: The individual cost to come for
each UAV is calculated incrementally as nodes are created
and added to the search tree. The individual cost to come
of a child node is the sum of the individual cost to come

of the parent node and the incremental cost to transition
from the parent node to the child node.

Trajectory deviation cost to come: The individual cost to
come for a UAV due to its deviation from its reference
trajectory is calculated with

Gxi(k + 1) = Gxi(k) + ∆Gxi(k, k + 1), (17)

where Gxi
(k + 1) is the total cost to come of the child

state, Gxi
(k) is the total cost to come of the parent state,

and ∆Gxi
is the incremental state transition cost. The

incremental state transition cost is the area of the surface
that is formed between the UAV’s reference trajectory and
its actual trajectory over the given time step.

Avoidance effort cost to come: The individual cost to come
for a UAV due to its avoidance effort is calculated with

Gui
(k + 1) = Gui

(k) + ∆Gui
(vi(k)), (18)

where Gui
(k + 1) is the total cost to come of the child

state, Gui
(k) is the total cost to come of the parent

state, and ∆Gui
(vi(k)) is the incremental action cost.

The incremental cost ∆Gui
(vi(k)) of an individual UAV’s

avoidance effort is arbitrarily defined as

∆Gui
(vi(k)) =



0, for vi(k) = vlevel

1, for vi(k) = vclimb

1, for vi(k) = vdive

3, for vi(k) = vsteep climb

3, for vi(k) = vsteep dive

. (19)

The action costs have been chosen so that a steep climb
action is more expensive than two consecutive normal
climb actions, and a steep dive action is more expensive
than two consecutive normal dive actions.

Individual cost to go heuristic: The individual cost to
go for an individual UAV is calculated using a heuristic
function that estimates the cost of the cheapest path from
the child node to a goal node.

Trajectory deviation: The cost to go for the trajectory
deviation is estimated to be the area of the triangle that
is formed when the UAV returns to the reference altitude
from its current altitude using a “steep climb” or “steep
dive” action.

Hxi(k + 1) =
1

2
|hi(k + 1)|

∣∣∣∣hi(k + 1)

tan γsteep

∣∣∣∣ . (20)

The ”steep climb” or ”steep dive” action will produce
the smallest future trajectory deviation and therefore
represents the lowest cost to go. The lowest cost to go
is selected for the trajectory deviation to ensure that the
cost to go is underestimated.

Avoidance effort: The cost to go for the avoidance effort
is selected to be zero, to make sure that the cost to go for
avoidance effort is underestimated.

Hui(k + 1) = 0. (21)
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Individual total path cost: The total path cost for an
individual UAV is the sum of its individual cost to come
and its individual cost to go.

Jxi(k + 1) =Gxi(k + 1) +Hxi(k + 1) (22)

Jui
(k + 1) =Gui

(k + 1) +Hui
(k + 1). (23)

Jxi is the total trajectory deviation path cost, Gxi is the
trajectory deviation cost to come, andHxi is the trajectory
deviation cost to go for an individual UAV. Jui is the total
avoidance effort path cost, Gui is the avoidance effort cost
to come, and Hui is the avoidance effort cost to go for an
individual UAV.

Composite state transition equation: The following com-
posite state transition equation for all UAVs is used to
generate the child nodes from a given parent node, in the
centralised approach:

x(k + 1) = x(k) + v(k)∆t, (24)

with

x(k) = [v1(k) k2(t) . . . vn(k)]
T

(25)

v(t) = [v1(k) v2(k) . . . vn(k)]
T
. (26)

x(k) and v(k) contain all UAV positions and all UAV climb
rate actions at the parent node, x(k+ 1) contains all UAV
positions at the child node, and ∆t is the sampling period
of the discrete time step.

Composite action space: The following composite action
space for all UAVs, consisting of all possible combinations
of individual UAV actions, is used to generate the child
nodes from a given parent node, in the centralised ap-
proach:

v(k) ∈ U (27)

U = U1 × U2× . . .×Ui × · · · × Un. (28)

The composite action space U for all of the UAVs is the
Cartesian product of the individual action spaces U1 to Un

for the individual UAVs.

Composite costs: The composite cost to come, composite
cost to go, and composite total path cost for all UAVs, is
the sum of the individual costs to come, individual costs to
go, and individual total path costs of the individual UAVs.

Gx(k) =

n∑
i=1

Gxi
(k) (29)

Gu(k) =

n∑
i=1

Gui
(k) (30)

Hx(k) =

n∑
i=1

Hxi(k + 1) (31)

Hu(k) =

n∑
i=1

Hui(k + 1) (32)

Jx(k) =

n∑
i=1

Jxi(k) (33)

Ju(k) =

n∑
i=1

Jui(k). (34)

6. SIMULATION AND RESULTS

The centralised and decoupled collision resolution strate-
gies were tested through implementing the simultaneous
co-operative collision avoidance algorithm in a simulation
environment. The simulation environment implements the
specific formulation of the optimal control problem, the
centralised and decoupled approaches, and approximates
terrain as rectangular obstacles. This simulation environ-
ment was used to perform illustrative simulations on the
algorithm for different numbers of UAVs replanning their
routes simultaneously, namely all together (centralised
approach) or individually (decoupled approach). To do
this, a simulation environment was developed and results
obtained and discussed.

Figure 1 shows an illustrative case of collision and obstacle
avoidance for the centralised approach. The bottom UAV
flying left-to-right (red) must climb to avoid the obstacle
which causes the UAV above it (blue) to have to climb too.
The UAV flying right-to-left (green) cannot pass between
the blue and red UAVs and as such must avoid them. This
solution is chosen as it has a lower global cost than causing
the red and blue UAVs to detour.

Figure 2 shows an illustrative case of collision and obstacle
avoidance for the decoupled approach. This solution ap-
pears different to the centralised solution shown in figure 1
as the green UAV finds a different route, but the resultant
cost is the same. The decoupled approach merely chooses
to climb instead of dive and as these actions have the
same cost the solutions are considered equivalent. The
A* algorithm does not differentiate between actions with
identical costs and, as such, if there are equal-cost options
available, which one is chosen depends only on which one
the A* algorithm finds first.

The solution found by the decoupled approach is depen-
dent on the priority order of the UAVs. Figure 3 shows the
same scenario as in figure 2 but with a different priority
order. In this scenario, the green UAV has a higher priority
than the red or blue UAVs and such replans first. It chooses
to go straight, causing both the red and blue UAVs to
have to detour around it. As two UAVs are performing
avoidance manoeuvres, the resultant cost is higher than
the solution shown in figure 2 and, as such, the solution
found for this priority scheme is less optimal.

A further consequence of the choice of the priority alloca-
tion of the UAVs is illustrated in figure 4. This is the same
scenario as the previous examples, but the red UAV has the
lowest priority and the blue UAV has the highest priority.
As a result, the blue UAV replans first and chooses to go
straight. The green UAV then chooses to go as straight as
possible, but avoids the blue UAV. The red UAV replans
last. As the blue UAV has chosen to fly straight, the red
UAV is unable to avoid the terrain obstacles. As a result,
this scenario is unsolvable for this priority scheme.
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Fig. 1. Example of Solution for Centralised Strategy
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Fig. 2. Example of Optimal Solution for Decoupled Strat-
egy

The centralised approach find the most optimal solution
to the collision avoidance scenario. The solution found by
the decoupled approach is dependent on the priority order
of the UAVs. The priority chosen can cause the decoupled
approach to find either the most optimal approach or a
sub-optimal approach. The priority allocation can also
result in the decoupled approach being unable to find
a solution to the scenario. From this it can be assumed
that, due to the decoupled approach being dependent on
the priority allocation to find a solution, the centralised
solution will find solutions more often than the decoupled
approach as it is guaranteed to find a solution if one exists.
The reliance of the decoupled approach on the priority
allocation also means that the centralised approach will,
on average, find cheaper solutions than the decoupled
approach as the centralised approach will always find the
most optimal solution and the decoupled approach cannot
make the same claim.

t = 0
t = 4
t = 6

Fig. 3. Example of Suboptimal Solution for Decoupled
Strategy

t = 0
t = 4
t = 6

Fig. 4. Example of Unsolvable Solution for Decoupled
Strategy
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