
Synchronism Recovery of Discrete Event
Systems ?

Lucas V. R. Alves ∗ Patŕıcia N. Pena ∗∗

∗ Technical College and the Graduate
Program in Electrical Engineering

Universidade Federal de Minas Gerais
Belo Horizonte, Brazil

lucasvra@ufmg.br
∗∗ Electronics Engineering Department
Universidade Federal de Minas Gerais

Belo Horizonte, Brazil
ppena@ufmg.br

Abstract: Most of the systems are build of components that should stay synchronized for the
system to work properly. Usually, the synchronism of these subsystems is maintained through
communication and this communication is subject to failures, leading the system to a undesirable
state, where the states of the components do not match. In this sense, this paper deals with
the problem of resynchronizing components of a system, leading to a global state where the
individual states of the subsystems match with each other. In order to do so, an algorithm, using
ideas of synchronizing automata, automata that reach a specific state when a synchronizing word
is executed, regardless the origin state, is presented.

Keywords: Discrete Event Systems, Recovery, Synchronizing Automata

1. INTRODUCTION

Fault recovery is an important issue in modern industries.
Once a fault has happened, the desynchronization of the
components may follow. This problem can happen in
industrial systems, for example, when the controller loses
observation on the plant, in aerospace systems, when the
mission control loses, for some time, communication with
a satellite, in communication systems, when two pieces
of software, interacting through the network, temporarily
lose communication and many other situations.

Usually these problems, in discrete event systems modelled
as automata, lead to a situation where the state of the
components of the system do not match, leading to an
incorrect behavior. The solution to theses problems are
not always straightforward and, in many situations it is
not possible to just restart the system (Abad et al., 2016).

In this work we deal with the problem of recovering
desynchonized Discrete Events Systems (DES), leading the
system to a safe operation, where the states of all the
components match with each other. In order to do so, some
assumptions must be obeyed regarding the operation of the
system. Such assumptions are introduced later.

The error recovery problem in Discrete Event Systems can
be divided into three sub-problems (Loborg, 1994):

(1) Detection: Consists in detecting discrepancies be-
tween the state of the system components (Carvalho
et al., 2018).

? This work has been supported by the Brazilian agency CAPES,
the National Council for Scientific and Technological Development
CNPq grant 443656/2018− 5 and Fapemig.

(2) Diagnostic: Consists in detecting the fault that gen-
erated the discrepancy. In DES, this problem may be
handled using techniques of diagnosability of Discrete
Event Systems (Lafortune et al., 2018).

(3) Recovery: After eliminating the cause of the fault,
the recovery may be about changing the state of the
system and supervisor to be consistent.

There are several approaches to deal with recovery in
Discrete Event Systems, most of then in the industrial
field. Shu (Shu, 2014) deals with the problem of recovery
in systems using recovery events, fired when the system
reaches a failure state. On the other hand, Andersson and
coauthors (Andersson et al., 2009, 2010, 2011), Berga-
gard and coauthors (Bergagrd and Fabian, 2013; Bergagrd
et al., 2015) present a method to recover manufacturing
systems, modelled by operations and coordination of oper-
ations (COP), using the concept of restart states, allowing
the recovery process to lead the physical plant and the
COP to matching states.

This paper proposes a general method for the recovery of
Discrete Event Systems based on the search for a single
sequence that, regardless the faulty state the system is,
will always lead the system to a safe state.

If the system components are modeled by synchronizing
automata (Volkov, 2008) then it is always possible to
lead the system to a known state. An automaton is
said to be synchronizing when there is a word, called
synchronizing word, such that, when executed by the
automaton, regardless of the state of origin, leads the
automaton to the same destination state. So, two identical
automata, in different states (desynchonized), will always
evolve to the same state when a synchronizing word is
executed (Volkov, 2008), becoming synchronized again.

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

Copyright lies with the authors 10609

The existence of a synchronizing word has applications
in many fields, such as robotics, assembling, loading and
packing of products (Natarajan, 1986, 1989). More theo-
retical development was presented in the context of indus-
trial automation (Eppstein, 1988; Goldberg, 1993; Chen
and Ierardi, 1995). Synchronizing automata were also ap-
plied to problems with partial observability (Larsen et al.,
2014) and problems modeled with Petri Nets (Pocci et al.,
2013, 2014a,b, 2016).

In fact, synchronizing automata may solve desynchroniza-
tion problems not only when the components of the system
are identical, but also when they share at least a syn-
chronizing word (Benenson et al., 2003). Typically, each
component of the system have a distinct automaton model
such that, even if all the components are synchronizing
automata they may not share a synchronizing word.

We propose a two-step method, where first we turn each
component of the system into a complete automaton, with
complete transition function, by adding self-loops, and
then we use an algorithm to search for a resynchronizing
word which leads the system to a synchronizing state.

The resynchronizing word differs from the original syn-
chronization concept, because, instead of leading the sys-
tem to a single state, it leads the system to tuples of states
composed by safe states, where all system components are
synchronized.

This paper is organized such that Section 2 has the
preliminaries, where we show the main concepts needed
to understand the results. Section 3 presents the main
results. In Section 4, an example is presented showing the
methodology being applied to an industrial system. The
conclusions are in Section 5.

2. PRELIMINARIES

In this section, we summarize some fundamental concepts
of Discrete Event Systems modelled as automata, that are
needed for the theoretical development of the paper. We,
also, define some concepts and notation on synchronizing
automata.

2.1 Languages and Automata

Let Σ be a finite nonempty set of events, referred to as an
event set. Behaviors of DES are modeled by finite words
over Σ. The Kleene closure Σ∗ is the set of all words on Σ,
including the empty word ε. A subset L ⊆ Σ∗ is called a
language. The concatenation of words s, u ∈ Σ∗ is written
as su. A word s ∈ Σ∗ is called a prefix of t ∈ Σ∗, written
s ≤ t, if there exists u ∈ Σ∗ such that su = t. The prefix-
closure L of a language L ⊆ Σ∗ is the set of all prefixes of
words in L, i.e., L = { s ∈ Σ∗ | s ≤ t for some t ∈ L }.
A common operation over words and languages is the
natural projection. Given two event sets Σ and Σi, such
that Σi ⊆ Σ, the natural projection PΣ→Σi : Σ∗ → Σ∗i is
defined as:

PΣ→Σi(ε) = ε

PΣ→Σi
(σ) =

{
σ if σ ∈ Σi

ε if σ ∈ Σ \ Σi

PΣ→Σi
(sσ) = PΣ→Σi

(s)PΣ→Σi
(σ)to s ∈ Σ∗, σ ∈ Σ.

The inverse projection maps a word built from an event
set Σi to a language in the event set Σ as:

P−1
Σ→Σi

(t) = {s ∈ Σ∗ |PΣ→Σi(s) = t}.

Both operations can be extended to operate over lan-
guages. For L ⊆ Σ∗:

PΣ→Σi
(L) = {t ∈ Σ∗i | (∃s ∈ L) [PΣ→Σi

(s) = t]}.

For L ⊆ Σ∗i :

P−1
Σ→Σi

(L) = {s ∈ Σ∗ | (∃t ∈ PΣ→Σi
(L)) [PΣ→Σi

(s) = t]}.
Definition 1. A Deterministic Finite Automata (DFA) is
a 5-tuple G = (Q,Σ, δ, q0, Qm), where Q is a finite set of
states, Σ is an event set, δ : Q × Σ → Q is the transition
function, q0 ∈ Q is the initial state and Qm ⊆ Q is the set
of marked states.

The transition function can be extended to recognize
words over Σ∗ as δ(q, σs) = q′ with δ(q, σ) = x and
δ(x, s) = q′.

The execution of a word s in a state q, δ(q, s), is denoted
by the concatenation q.s. The same notation is used
to represent this operation over sets. The notation A.s
denotes the set of destination states when the word s is
executed from the set of states A ⊆ Q.

The active event function, defined by Γ : Q → 2Σ, is,
given a state q, the set of events σ ∈ Σ for which δ(q, σ) is
defined.

The generated and marked languages are, respectively,
L(G) = {s ∈ Σ∗|q0.s = q′ ∧ q′ ∈ Q} and Lm(G) =
{s ∈ Σ∗|q0.s = q′ ∧ q′ ∈ Qm}. Another language is
defined to include words starting in any state q of G
as LG(q) = {s ∈ Σ∗|q.s = q′ ∧ q, q′ ∈ Q} such that
LG(q0) = L(G). An automaton is said to be nonblocking

if Lm(G) = L(G).
Definition 2. Let G1 = (Q1,Σ1, δ1, q01, Qm1) and G2 =
(Q2,Σ2, δ2, q02, Qm2) be two automata. The parallel com-
position of G1 and G2, denoted by G12 = G1||G2 is:

G12 = (Q1 ×Q2,Σ1 ∪ Σ2, δ12, (q01, q02), Qm1 ×Qm2)

where

δ((q1, q2), σ) =


(δ1(q1, σ), δ2(q2, σ)), if σ ∈ Γ1(q1) ∩ Γ2(q2)

(δ1(q1, σ), q2), if σ ∈ Γ1(q1)\Σ2

(q1, δ2(q2, σ)), if σ ∈ Γ2(q2)\Σ1

undefined, otherwise.

Also, let PΣ1∪Σ2→Σ1
: (Σ1 ∪ Σ2)∗ → Σ∗1 and PΣ1∪Σ2→Σ2

:
(Σ1 ∪ Σ2)∗ → Σ∗2 be natural projections:

L(G12) = P−1
Σ1∪Σ2→Σ1

(L(G1)) ∩ P−1
Σ1∪Σ2→Σ2

(L(G2))

Lm(G12) = P−1
Σ1∪Σ2→Σ1

(Lm(G1)) ∩ P−1
Σ1∪Σ2→Σ2

(Lm(G2)).

2.2 Synchronizing Automata

A synchronizing deterministic finite automaton is a DFA
that has a word that, when executed from any state of the
automaton, leads to a known state.
Definition 3. (Volkov, 2008) A complete automaton G =
(Q,Σ, δ, ,) is synchronizing if and only if for any pair
of states q, q′ ∈ Q there exists a word w ∈ Σ∗, called
synchronizing word, such that q.w = q′.w, ∀q, q′ ∈ Q.

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

10610

A complete automaton in the definition refers to an au-
tomaton with a complete transition function, that is, tran-
sitions labeled with all the events in the event set are
available in each state. Also, the initial state is irrelevant to
the property, so it is intentionally omitted in the following
example.
Example 1. Consider the synchronizing automaton A =
(Q,Σ, , ,) of Fig. 1. The word w = ab3ab3a leads the
automaton to state 1, regardless the origin state. Using
the notation established before, Q.w = 1, Q = {0, 1, 2, 3}.
It is straightforward that any word sw, s ∈ Σ∗, also leads
the automaton to state 1.

0 1

3 2

a, b

b

b

b

a

aa

Fig. 1. Example 1- Conventional synchronizing automaton
(Volkov, 2008).

If the word w is a synchronizing word, the operation Q.w
results in a singleton set. Also, the set of all synchronizing
words of an automaton G is denoted by Syn(G):

Syn(G) = {w ∈ Σ∗| |Q.w| = 1}.

3. DEVELOPMENT

The main idea of this work is to adapt the theory of
synchronizing automata to the situation in which there are
multiple distinct automata that need to be synchronized.
To do so, instead of finding a synchronizing word which
leads to a single destination state regardless the origin
state, we want to find a resynchronizing word that leads to
a state synchronizing tuple (one state for each component
of the system) regardless of the original state tuple.

It is very usual that the automaton models of a system
have partial transition function, so some events are forbid-
den to occur in some states. In order to apply the concepts
already defined, it is necessary to complete the transition
function of the automata. To do so, consider that, the
forbidden events are self-loops in the automaton and, in
practice are ignored.
Definition 4. Let G = (Q,Σ, δ, q0, Qm) be the automaton
model of a component of the system and δ be a partial tran-
sition function. We can define a new complete automaton
Gc = (Q,ΣGc

, δc, q0, Qm), with Σ ⊆ ΣGc
, where:

δc(q, σ) =

{
q, δ(q, σ) is undefined

δ(q, σ), otherwise
(1)

If follows from this operation that L(Gc) = Σ∗Gc
. Usually,

ΣGc
=
⋃n

i=1 Σi and Σi is the event set of the i-th system
component.
Example 2. Consider a system composed by two au-
tomata, G1 and G2 presented in Fig. 2. Both automata
are not complete and the event set is Σ = {a, b, c, d}. The
automata shown in Fig.2 are neither complete nor have the
same event set. The procedure used to turn the automaton

1 2

3 4

a

b
c d

a

b

d c

(a) Original G1

1 2

b

c

a

(b) Original G2

Fig. 2. The components of the system

into a complete automaton (Fig. 3) consists on adding self-
loops to each state with the missing events. These self-loops
indicate that the system components ignore events that are
not supposed to happen in the state, and their occurrence
does not cause problems to the execution of the system.

1 2

3 4

a

b
c d

a

b

d c

b, d a, d

c, b a, c

(a) Automaton G1

1 2

b

c

a, c, d

a, b, d

(b) Automaton G2

Fig. 3. The components of the system with complete
transition function

It is important to note that, to apply this transformation,
the automata models of the system must be robust so they
do maintain a correct behavior even when forbidden events
occur and the occurrence of these events are ignored by the
real system.
Definition 5. Let Gi = (Qi,Σ, δi, ,), i ∈ {1 . . .m}, be
the components of the system, with the same event set (Σ)
and complete (L(Gi) = Σ∗). The complete behavior of the
system can be modelled by the automaton T = ||mi=1Gi =
(QT ,Σ, δT , ,).

Each state of T is a tuple of states (q1, q2, . . . , qm), such
that qi ∈ Qi. If T is a synchronizing automaton, it
is possible to find a synchronizing word that leads the
system to a state where all the states of the system are
synchronized. In this work we do not care to which state
of T the system goes, only if in the destination state is in
Qs, so instead of finding a sequence that leads the system
to unique state, we expect to find a sequence that leads
the system to any state in which the system components
are synchronized.
Definition 6. Let T = (QT ,Σ, δT , ,) be an automaton
that models the complete behavior of the system, a state set
Qs ⊂ QT is called a synchronizing set when for all states in
Qs, the correspondent states of the system components are
synchronized. On the other hand, a state set Qf = QT \Qs

is called failure set if the states of the system components
are not synchronized.

Each state in QT is a tuple of states of the n com-
ponents of the systems, namely, qT = δT (q0T , s) =
(δ1(q01, s), δ2(q02, s), . . . , δn(q0n, s)) = (q1, q2, . . . , qn).
Example 3. The automaton T for the system presented
in Example 2 is shown in Fig. 4. The states colored in gray
are the states in the synchronizing set (Qs). In a normal
operation, the system will never reach a state outside Qs.

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

10611

However, may a failure happen, the two automata will lose
synchronization and a state in Qf is going to be reached. In

1|1

2|1

1|2

3|1

2|2

3|2

4|1

4|2

b

a

c

a

b

d

c

b

c

a

a

bc

c
d

a

c

d

c

d

a, d

b

b, d

c

b

a, d

a, bd

Fig. 4. Automaton T for the system presented in Exam-
ple 2

this case, as the automata components are those in Fig. 2,
we defined Qs as the state set of the composition of the
automata G1 and G2 of Fig. 2. The other states in QT

should not be reached in normal conditions.

Our objective is to find a resynchronizing word wr in
the automaton T , such that QT .wr ⊆ Qs. To do so, we
present a heuristic algorithm that searches for at least one
resynchronizing word. The algorithm is not guaranteed to
succeed given that the existence of such word depends on
the topology of the system.

3.1 Algorithm

Given that we have the automaton T which models the
complete behavior of the system, it is necessary to find a
sequence wr that always leads to a state in Qs regardless
the state of the system. To do so, we represent the system
as a powerset automaton:
Definition 7. Let T = (QT ,Σ, δT , q0, QmT) be a complete
automaton which models the complete behavior of the
system. We can define a new complete automaton P =
(QP ,Σ, δP , q0P , QmP) where:

QP = 2QT \ ∅,
QmP = 2Qs \ ∅,
δP (qP , σ) = {δT (q, σ) | q ∈ qP ∧ qP ∈ QP }.

Example 4. The powerset automaton P for the automa-
ton T , presented in Example 3, is and automaton with 18
states, and 9 of then are marked. Reaching one of these
states leads the system to resynchronization. For space
limitation, only part of automaton P is shown in Fig. 5,
the marked states are denoted in gray.

It is important to note that, as the automaton T has 12
states, the automaton P has, in the worse scenario, 212 −
1 = 2047 states, but the algorithm will only evaluate 42 of
then, given that it is only necessary to use the accessible
part of P .

In this sense, any wr ∈ Lm(P) leads the system to a
safe state because it leads to a marked state of P , so our
algorithm only has to find a word that leads the system to
a marked state.

Algorithm 1: Resynchonization Word Search

Data: P = (QP ,Σ, δP , q0P , QmP)
Result: wr

frontier ← {q0P }
path[q0P] ← ε
visited ← ∅

while |frontier| > 0 do

visited ← visited ∪ frontier
new frontier ← ∅

foreach qo ∈ frontier do
matcho ← |qo ∩Qs|/|qo|
foreach σ ∈ Σ do

qd ← δP (qo, σ)
matchd ← |qd ∩Qs|/|qd|

if qd ∈ visited OR matchd > matcho then
continue

path[qd] ← path[qo] σ

if qd ∈ QmP then
wr ← path[qd]
return

new frontier ← new frontier ∪{qd}

frontier ← new frontier

The algorithm consists on an Breadth First Search, start-
ing at the initial state of P and visiting each state of
P until a marked state is reached. The set visited has
the states already visited by the algorithm, to avoid that
the same state is evaluated multiple times given that the
automaton is, usually, cyclic. The structure path holds the
sequence that leads to each visited state.

The first frontier is the initial state, composed of all states
of T , and the path to the initial state is ε (the empty
sequence). After the initialization, at each iteration the
algorithm builds a new frontier composed by the adjacent
states that were not visited yet.

For each state, the algorithm evaluates its match value, a
percentage measure of how many of the states of T in the
current state (in P) belong to Qs. The match value varies
from 0%, when none of the states belong to Qs, to 100%,
when all states belong to Qs

The heuristic step of the algorithm consists on only adding
a state to the frontier if it has the same or greater match
value. This heuristic makes sense since it is the variable
we want to maximize (leading to 100%), but there is no
guarantee that a decrease in the match value cannot lead
to a faster increase after. If the algorithm is applied with-
out the heuristic it will find the shortest resynchonization
word, when it exists, but when the heuristic is applied
there is no guarantee that a sequence will be found or
that it will be the shortest.

The algorithm stops when a state with 100% match is
reached, returning the first sequence wr found.

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

10612

[1|1, 1|2, 2|1, 2|2, 3|1, 3|2, 4|1, 4|2]

[2|1, 2|2, 3|1, 3|2, 4|1, 4|2]

. . .

a

[1|1, 1|2, 2|1, 2|2]

. . .

d

[1|2, 3|2]

[2|2, 4|2]

. . .

a

[3|1]

. . .

c
[1|2]

. . .

d

b

[3|1, 4|1]

. . .

c

b

Fig. 5. First levels of the automaton P of the system presented in Example 2

Example 5. Applying the algorithm to the automa-
ton P presented in Fig. 5, the algorithm starts at state
[1|1, 1|2, 2|1, 2|2, 3|1, 3|2, 4|1, 4|2] and stops at the first iteration
when it reaches one of the marked states [1|2, 3|2] or [3|1, 4|1].
The sequence wr = b is one of the sequences that is ob-
tained by the algorithm, and when executed in the automa-
ton T (Fig. 4), regardless the starting state always leads to
state 1|2 or state 3|2, both in Qs so, meaning that in these
states the components of the system are synchronized. The
match value for each state presented in Fig. 5 is shown in
Table 1.

Table 1. Match value calculated for the states
in Fig. 5

State Match
[1|1, 1|2, 2|1, 2|2, 3|1, 3|2, 4|1, 4|2] 75%
[2|1, 2|2, 3|1, 3|2, 4|1, 4|2] 63%
[1|2, 3|2] 100%
[3|1, 4|1] 100%
[1|1, 1|2, 2|1, 2|2] 75%
[2|2, 4|2] 0%
[3|1] 100%
[1|2] 100%

3.2 Implementation Notes

In the worse case, when the heuristic has no effect on
reducing the branch factor, the time complexity of the
algorithm is O(|QP | + |Σ|), but it is important to note
that QP is usually very large, given that it represents all
the combinations of states of the components. in this sense,
it is necessary to be careful on the implementation of the
algorithm.

The automaton P should not be computed at once, but on-
the-fly during the execution of the algorithm such that the
large number of states in QP will not have to be stored in
the memory. Other simplification is to limit the size of the
frontier, reducing the branching factor of the algorithm,
so after the next frontier if reaches the maximum allowed
size, the states in the current frontier are not evaluated
anymore.

4. CASE STUDY

As an example of application, we are going to use an indus-
trial system called Linear Cluster Tool (Su et al., 2012),

where the Supervisory Control Theory (Ramadge and
Wonham, 1989) is applied in order to create a controller
(supervisor) for the system. This system is extensible, by
adding clusters to the system, allowing to test the method
in small to medium size systems.

The Linear Cluster Tool , Fig. 6 consists on process-
ing chambers (C1, C2, . . . , Cn), robots (R1, R2, . . . , Rn), unit
buffers between the robot and the chamber (B1, B2, . . . , Bn),
and between the robots (B1|2, B2|3, . . . , Bn−1|n). Neither the
automata of the plants nor the automaton of the super-
visor are complete, so we apply the method presented in
Definition 4.

Each state of the system consists on a tuple q = (qp, qc),
qp ∈ Qp, qc ∈ Qc where Qp is the state set of the plant
and Qc is the state set of the controller. Some of the pairs
Qs ⊆ Qp×Qc indicate the correct behavior of the system,
but when q /∈ Qs the system is in a failure state and,
so, the correct control action is not being applied to the
system, leading to a deadlock or allowing that incorrect
actions are executed. In this situation, when possible the
presented algorithm could be executed in order to find a
sequence that, regardless the state of the system, always
leads to a state in Qs.

We applied the algorithm for the plant and controller
(supervisor) of Cluster Tools with 2, 3, 4 and 5 robots
and the results are shown in Table 2.

Table 2. Algorithm Execution for the Cluster
Tool

Robots
States in
the Plant

States in
the Controller

Length
of wr

Algorithm
Exec. Time

2 48 45 07 events 0.15 sec.

3 384 419 11 events 11.21 sec.

4 3,072 4,184 15 events 260.21 sec.

5 24,576 42,964 19 events 46,147.23 sec.

R2

B2

C2

Rn

Bn

CnC1

R1

B1

B1|2

Fig. 6. Cluster Tool Diagram

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

10613

As we can see, the algorithm is able to solve small to
medium size problems, when given enough time. The size
of automaton P is the main limitation of the algorithm, for
the Cluster Tool with 5 robots, the upper bound of states
in P is given as 224,576×42,964. The tests were made in a
server with an Intel Xeon E5-2470 processor, at 2.4GHz,
and 96GB of RAM memory.

5. CONCLUSIONS

This paper presents an algorithm to resynchronize au-
tomata components of a system when a fault occurs lead-
ing the system to a state where the states of the compo-
nents of the system do not match. In order to do so, the
models of the components need to be complete automata
or, at least, they need to be robust to the execution of
events forbidden in their states, what allow us to model
these automata as complete.

We presented a case study, showing each step of the
method applied to a Linear Cluster Tool, a system in the
industrial field. The same technique is applicable in any
field if the assumptions made hold.

The complexity of the algorithm is linear, but we apply
nonlinear transformations on the original automata an
so, it is necessary to deal with state explosion on the
automaton P . This is illustrated in the example, where
a pair of automata with 4 and 6 states end up in an
automaton with 113 states. The algorithm is applicable
to real life problems, but, in some cases, some additional
heuristics must be applied.

As a future research in this topic, we pretend to modularize
this method, so, instead of working with one large automa-
ton P , we could work with a set of smaller automata in
parallel.

REFERENCES

Abad, F., Mancuso, R., Bak, S., Dantsker, O., and Cac-
camo, M. (2016). Reset-based recovery for real-time
cyber-physical systems with temporal safety constraints.
In 2016 IEEE 21st International Conference on Emerg-
ing Technologies and Factory Automation (ETFA), 1–8.

Andersson, K., Lennartson, B., and Fabian, M. (2010).
Restarting manufacturing systems; restart states and
restartability. IEEE Transactions on Automation Sci-
ence and Engineering, 7(3), 486–499.

Andersson, K., Lennartson, B., Falkman, P., and Fabian,
M. (2011). Generation of restart states for manufactur-
ing cell controllers. Control Engineering Practice, 19(9),
1014 – 1022. Special Section: DCDS09 The 2nd IFAC
Workshop on Dependable Control of Discrete Systems.

Andersson, K., Lennartson, B., and Fabian, M. (2009).
Synthesis of restart states for manufacturing cell con-
trollers. IFAC Proceedings Volumes, 42(5), 263–268.

Benenson, Y., Adar, R., Paz-Elizur, T., Livneh, Z., and
Shapiro, E. (2003). Dna molecule provides a computing
machine with both data and fuel. Proceedings of the
National Academy of Sciences, 100(5), 2191–2196.

Bergagrd, P. and Fabian, M. (2013). Calculating restart
states for systems modeled by operations using supervi-
sory control theory. Machines, 1(3), 116–141.

Bergagrd, P., Falkman, P., and Fabian, M. (2015). Mod-
eling and automatic calculation of restart states for
an industrial windscreen mounting station. IFAC-
PapersOnLine, 48(3), 1030 – 1036. 15th IFAC Sym-

posium on Information Control Problems in Manufac-
turing.

Carvalho, L.K., Wu, Y.C., Kwong, R., and Lafortune, S.
(2018). Detection and mitigation of classes of attacks in
supervisory control systems. Automatica, 97, 121 – 133.

Chen, Y.B. and Ierardi, D. (1995). The complexity of
oblivious plans for orienting and distinguishing polygo-
nal parts. Algorithmica, 14(5), 367–397.

Eppstein, D. (1988). Reset sequences for finite automata
with application to design of parts orienters. In Pro-
ceedings of the 15th International Colloquium on Au-
tomata, Languages and Programming, ICALP ’88, 230–
238. Springer-Verlag, London, UK.

Goldberg, K.Y. (1993). Orienting polygonal parts without
sensors. Algorithmica, 10(2), 201–225.

Lafortune, S., Lin, F., and Hadjicostis, C.N. (2018). On the
history of diagnosability and opacity in discrete event
systems. Annual Reviews in Control, 45, 257–266. doi:
10.1016/j.arcontrol.2018.04.002.

Larsen, K.G., Laursen, S., and Srba, J. (2014). Synchro-
nizing strategies under partial observability. In Inter-
national Conference on Concurrency Theory, 188–202.
Springer.

Loborg, P. (1994). Error recovery in automation an
overview. AAAI Spring Symposium on Detecting and
Resolving Errors in Manufacturing Systems, 94–100.

Natarajan, B.K. (1986). An algorithmic approach to the
automated design of parts orienters. In Proceedings of
the 27th Annual Symposium on Foundations of Com-
puter Science, SFCS ’86, 132–142. IEEE Computer So-
ciety, Washington, DC, USA.

Natarajan, B. (1989). Some paradigms for the automated
design of parts feeders. The International Journal of
Robotics Research, 8(6), 98–109.

Pocci, M., Demongodin, I., Giambiasi, N., and Giua, A.
(2013). A new algorithm to compute synchronizing
sequences for synchronized petri nets. In TENCON
2013-2013 IEEE Region 10 Conference (31194), 1–6.
IEEE.

Pocci, M., Demongodin, I., Giambiasi, N., and Giua, A.
(2014a). Testing experiments on synchronized petri
nets. IEEE Transactions on Automation Science and
Engineering, 11(1), 125–138.

Pocci, M., Demongodin, I., Giambiasi, N., and Giua, A.
(2014b). Testing experiments on unbounded systems:
synchronizing sequences using petri nets. IFAC Pro-
ceedings Volumes, 47(2), 155–161.

Pocci, M., Demongodin, I., Giambiasi, N., and Giua, A.
(2016). Synchronizing sequences on a class of unbounded
systems using synchronized petri nets. Discrete Event
Dynamic Systems, 26(1), 85–108.

Ramadge, P.J.G. and Wonham, W.M. (1989). The Control
of Discrete Event Systems. Proc. of the IEEE, 77(1),
81–98.

Shu, S. (2014). Recoverability of discrete-event systems
with faults. IEEE Transactions on Automation Science
and Engineering, 11(3), 930–935.

Su, R., van Schuppen, J.H., and Rooda, J.E. (2012). The
synthesis of time optimal supervisors by using heaps-of-
pieces. IEEE Transactions on Automatic Control, 57(1),
105–118.

Volkov, M.V. (2008). Synchronizing Automata and the
Černý Conjecture, 11–27. Springer Berlin Heidelberg,
Berlin, Heidelberg.

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

10614

