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Abstract: Interval observers have been investigated by many researchers during the last
decade, especially for those classes of systems that can be described by finite-dimensional
continuous-time ordinary differential equations, discrete-time difference equations, and sets of
partial differential equations in which both, system parameters and external disturbances, may
be subject to bounded uncertainty. In contrast to this, only preliminary investigations were
performed for fractional-order models. Due to the fact that many electro-chemical processes
such as the charging and discharging dynamics of batteries can be described in good accuracy
by using fractional-order models, this paper focuses on the design and numerical validation of
interval observers for such systems. Here, we present a cooperativity-enforcing observer structure
leading directly to decoupled lower and upper bounding systems for the sets of reachable states.
This is visualized by a battery model with interval uncertainty in the output equation.

Keywords: Uncertain dynamic systems, Fractional-order dynamics, Robust state estimation,
Observers, Energy storage, Convex optimization.

1. INTRODUCTION

Interval observers are powerful tools for enclosing those
sets of reachable states that can be reached by a dynamic
system with bounded uncertainty in the state equations
as well as bounded measurement noise (Räıssi and Aoun,
2017). Despite the fact that interval observers are well
explored for classical ordinary as well as partial differen-
tial equations, their application to fractional-order system
models is yet a topic for which further developments are
necessary to bridge the gap between existing theoreti-
cal results and real-life industrial applications. Suitable
applications can be found for electro-chemical systems,
where, for example, the estimation of the state of charge
(SOC) of batteries as an energy storage is crucial for
the implementation of reliable monitoring systems, model-
based aging detection, and the implementation of robust
and highly efficient power management concepts. As de-
scribed in Erdinc et al. (2009) and Wang et al. (2017),
batteries can be modeled either by using electric equiva-
lent circuits with a finite number of SOC-dependent RC-
subcircuits or alternatively by state-space representations
which contain a finite number of fractional-order constant
phase elements. Here, especially the latter approach allows
for tightly fitting frequency responses that are obtained
experimentally by impedance spectroscopy methods. From
a system theoretic point of view, the first option mentioned
before can be interpreted as a finite-dimensional trunca-

tion of the infinite horizon memory property associated
with the latter fractional-order models (Podlubny, 1999;
Oustaloup, 1995). In addition to these low-order, usually
real-time capable models, also electro-chemical represen-
tations focusing on dynamic effects on a microscopic scale
exist. However, the required computational complexity of
such battery models typically prevents their usage in the
frame of the application scenarios mentioned above.

To make interval observers applicable to the task of SOC
estimation for batteries by using readily available data
such as terminal currents (as the system input) and mea-
sured terminal voltages, interval observers are designed
firstly for point-valued system models and secondly for
fractional-order state-space representations with bounded
(i.e., interval) uncertainty in the state equations and the
disturbance model for the measured system output. For
that, we employ design conditions stated in terms of
linear matrix inequalities (LMIs) which directly enforce
cooperative, positive error dynamics of the observer, cf.
Räıssi and Efimov (2018). In such a way, it becomes pos-
sible to evaluate lower and upper bounding trajectories
for each component of the state vector in a decoupled
form. The prerequisite for this is the Metzler structure
of the dynamic matrices of the designed state observers.
Although such kind of structure may exist in the frame of
battery models, the associated structural restrictions go
along with a reduction of the available degrees of freedom
that can be used for enhancing the tracking behavior of
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the observer (in terms of short transient operating phases)
and for achieving insensitivity of the computed estimates
with respect to noise. The latter aspect was addressed,
e.g. by Ichalal et al. (2018), where despite bounded noise,
the observer gain was optimized by an H∞ methodology
dealing with random disturbances within the prespecified
error bounds.

In Sec. 2, preliminaries with respect to the system descrip-
tion, controllability, observability, and stability analysis of
fractional-order linear time-invariant models (FLTI) are
given. Sec. 3 summarizes the aforementioned procedures
for the interval observer design of FLTI models, before
numerical simulations are presented in Sec. 4 to highlight
the practical applicability in the frame of SOC estimation
for Lithium-Ion batteries. This paper is concluded with an
outlook on future work in Sec. 5.

Throughout the paper, the following set of notations is
used: The transpose of a matrix M is denoted by MT ,
its conjugate is M̄ and its conjugate transpose MH .
Sym{M} means M + MH . The left and right endpoints
of an interval [x] are denoted respectively by x and x such
that [x] = [x ; x]. For any two vectors x1,x2 or matrices
M1,M2, the relations x1 ≤ x2 and M1 ≤ M2 are
understood element-wise. The relation M ≺ 0 (M � 0)
means that the matrix M ∈ Cn×n is negative (positive)
definite. The symbol I denotes the identity matrix.

2. PRELIMINARIES

In this paper, commensurate FLTI systems are considered
permitting a state-space representation{
Dγt x(t) = Ax(t) + Bu(t) + Ez(t), x(t0) = x0

y(t) = Cx(t) + Du(t) + Fz(t), γ ∈ (0, 2)
(1)

with the state vector x(t) ∈ Rn, the input vector u ∈ Rp,
the output vector y(t) ∈ Rm, and the disturbance input
vector z(t) ∈ Rq. Additionally, A, B, C, D, E, and F are
constant real matrices. Dγ is the fractional differentiation
operator of order γ, whereby the presented results are valid
regardless of the definition used, e.g. Grünwald-Letnikov,
Riemann-Liouville, Caputo etc. (Podlubny, 1999). The
transfer function matrix between u(t) and y(t) is H(s) =
C(sγI −A)−1B + D.

The properties of controllability and observability influ-
ence the solvability of control problems significantly. In
Monje et al. (2010), it was shown that, as with LTI
systems, a necessary and sufficient criterion for the con-
trollability and observability exists, mainly depending on
the structure of the analyzed system.

Theorem 1. An FLTI system of the form (1) is fully
controllable if and only if the controllability matrix

QC =
[
B AB A2B . . . An−1B

]
(2)

satisfies the condition rank{QC} = n.

Theorem 2. An FLTI system of the form (1) is fully
observable if and only if the observability matrix

QO =
[
CT (CA)T (CA2)T . . . (CAn−1)T

]T
(3)

satisfies the condition rank{QO} = n.

Throughout the paper, the dynamic system is always as-
sumed to be fully controllable and observable. Stability in

terms of the location of eigenvalues, is checked by extended
the well-known stability domain of LTI systems (the com-
plex left half-plane) to the more general commensurate
FLTI case, cf. Sabatier and Farges (2012).

Theorem 3. The system (1) is asymptotically stable if and
only if the following condition is satisfied∣∣arg(eig(A))

∣∣ > γ
π

2
, γ ∈ (0, 2), (4)

where eig(A) represents the set of all eigenvalues of the
matrix A. A corresponding graphical interpretation of the
stability region is shown in the shaded areas in Fig. 1.
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stable
region

unstable
region

γ
π

2

Re

Im

(b) Order: γ ∈ [1, 2).

Fig. 1. Stability regions of FLTI systems.

In this paper, LMIs are used to verify and ensure the
global asymptotic stability of uncertain systems. Alongside
Lyapunov’s method, the bounded real lemma forms the
basis of many LMI approaches in robust control. Although
the bounded real lemma is used in both, linear and
nonlinear control engineering, the actual result is based on
the state-space representation of an LTI system (partially
after overbounding nonlinear dynamics). The worst case
performance of a stable system measured in terms of the
maximum amplification between the input and output is
quantified by the H∞ norm

‖H(s)‖∞ = sup
Re(s)>0

δ(H(s)) = sup
ω∈R

δ(H(jω)), (5)

where δ denotes the maximum singular value. The H∞
norm for an integer-order system can be written in terms
of an LMI. The result is called the bounded real lemma,
see VanAntwerp and Braatz (2000).

Theorem 4. Let µ > 0 be a given real number and the
order of the system (1) be γ = 1. Then ‖H(s)‖∞ < µ is
equivalent to the existence of a symmetric matrix ∃P =
P T ∈ Rn×n satisfying the LMIsPA + ATP PB CT

BTP −µI DT

C D −µI

 ≺ 0, P � 0. (6)

Moreover, LMIs can be used to test whether the eigenval-
ues of a matrix belong to a specific area in the complex
plane. Thus, existing approaches do not try to extend the
bounded real lemma to FLTI systems of the form (1), but
rather to find conditions describing the stability region in
terms of performance requirements such as damping ratios,
cf. Chilali et al. (1999), in Fig. 1.

Theorem 5. Let µ > 0 be a given real number and the
fractional order of the system (1) be in the range of γ ∈
[1, 2). Then, ‖H(s)‖∞ < µ is equivalent to the existence
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of a Hermitian matrix ∃P = PH ∈ Cn×n satisfying the
LMIs rPA + r̄ATP rPB CT

r̄BTP −µI DT

C D −µI

 ≺ 0, P � 0, (7)

where r = ej(1−γ)
π
2 and r̄ = e−j(1−γ)

π
2 .

In contrast, the description of the stability region for the
case γ ∈ (0, 1) is anything but trivial. The main issue when
dealing with LMIs is the convexity of the optimization
problem. Briefly, a set is said to be convex if for two points
belonging to the set the connecting line is also contained in
the respective set. Fig. 1 shows that for the order γ ∈ (0, 1)
the set of eigenvalues is not convex. To solve this problem,
there are different approaches. The most promising for
control engineering is based on a decomposition of the
stability region. For more details, see Sabatier et al. (2010).

Theorem 6. Let µ > 0 be a given real number and the
fractional order of the system (1) be in the range of
γ ∈ (0, 1). Then, ‖H(s)‖∞ < µ is equivalent to the
existence of the Hermitian matrices ∃P1 = PH

1 ∈ Cn×n,
∃P2 = PH

2 ∈ Cn×n satisfying the LMIsSym{(rP1 + r̄P2)A} (rP1 + r̄P2)B CT

BT (rP1 + r̄P2)H −µI DT

C D −µI

 ≺ 0,

P1 � 0, P2 � 0 .

(8)

The LMI conditions to analyze stability of FLTI systems
in Theorems 5 and 6 are obtained by a congruence trans-
formation of those given in Farges et al. (2013) under
consideration of identical feasible solution sets.

3. FRACTIONAL-ORDER OBSERVER DESIGN

In this section, the LMI conditions for the H∞ control
synthesis by Farges et al. (2013), see the previous section,
are transferred to the dual task of observer synthesis.
Then, a novel additional condition is introduced to ensure
cooperativity of the error dynamics before applying it to
the design of a robust observer for Lithium-Ion batteries.

3.1 Observer Synthesis for Point-Valued Systems

A state observer for an FLTI system (1) is defined as{
Dγt x̂(t) = Ax̂(t) + Bu(t) + L(ym(t)− ŷ(t))

ŷ(t) = Cx̂(t) + Du(t)
(9)

with the estimated state vector x̂(t), the estimated output
vector ŷ(t), and the measurement ym(t). Therefore, the
estimation error dynamics have the following form{

Dγt x̃(t) = (A−LC)x̃(t) + (E −LF )z(t)

ỹ(t) = Cx̃(t) + Fz(t) ,
(10)

where x̃(t) = x(t)− x̂(t) and ỹ(t) = ym(t)− ŷ(t).

The aim of the H∞ observer is to determine a constant
observer gain L such that the estimation error dynamics
are asymptotically stable according to the stability crite-
rion (4) and that the H∞ norm of the transfer function
between z(t) and ỹ(t)

G(s) = C
(
sγI − (A−LC)

)−1
(E −LF ) + F (11)

is less than a given real number µ > 0. To solve the
synthesis problem, the following LMIs are obtained.

Theorem 7. For an FLTI system (9) of order γ ∈ [1, 2),
there exists a stabilizing observer gain L with ‖G(s)‖∞ <
µ, if matrices ∃X = XT ∈ Rn×n and ∃Y ∈ Rn×m exist
such that the following LMIs holdSym{rXA− rY C} rXE − rY F CT

ET r̄X − F T r̄Y T −µI F T

C F −µI

 ≺ 0,

X � 0, µ > 0 .

(12)

If a feasible solution exists, the observer gain is given by

L = X−1Y , L ∈ Rn×m . (13)

Theorem 8. For an FLTI system (9) of order γ ∈ (0, 1),
there exists a stabilizing observer gain L with ‖G(s)‖∞ <
µ, if matrices ∃X = XH ∈ Cn×n and ∃Y ∈ Rn×m exist
such that the following LMIs holdSym{(rX + r̄X̄)A− Y C} ∗ ∗

ET (rX + r̄X̄)T − F TY T −µI ∗
C F −µI

 ≺ 0,

X � 0, µ > 0 .

(14)

If a feasible solution exists, the observer gain is calculated
by

L = (rX + r̄X̄)−1Y , L ∈ Rn×m. (15)

Here, Theorems 7 and 8 are obtained directly from The-
orems 5 and 6 by exploiting the duality between control
and observer design, namely, by replacing A with A −
LC, B with E − LF and D with F , and using the
linearizing changes of variables Y = XL for Theorem 7
and Y = (rX + r̄X̄)L for Theorem 8.

Note, for Theorem 7 the matrix variable P = X is
restricted to purely real-valued entries to generate a real-
valued observer gain L. A certain conservatism is then
expected in the LMI condition. For Theorem 8, the matrix
variable P1 = X remains complex. However, by defining
the matrix variable P2 = X̄ as the conjugate of P1, a real
observer gain L is generated because rX+ r̄X̄ and, hence,
Y are both real matrices. Here, it was proven by Farges
et al. (2010) that there is no additional conservatism.

3.2 Interval Observer Synthesis

For an FLTI system (1), an interval observer consisting of
two conventional observers — one for each bound —, is
defined as

Dγt x(t) = Ax(t) + Bu(t) + L(ym(t)− y(t))

Dγt x(t) = Ax(t) + Bu(t) + L(ym(t)− y(t))

x(t0) = x0, x(t0) = x0

(16)

with the output equations{
y(t) = Cx(t) + Du(t)

y(t) = Cx(t) + Du(t)
, (17)

where x(t),x(t) and y(t),y(t) are the estimated lower as
well as upper bounds of the state and output vectors,
respectively, and ym(t) characterizes the measurement.
The objective of this interval observer is to compute two
sets of trajectories x(t) and x(t), such that starting from
an initial domain x0 ≤ x0 ≤ x0 the true state x(t) is
always guaranteed to be included by

x(t) ≤ x(t) ≤ x(t), ∀t > 0. (18)

This condition is satisfied if an observer gain L can be
found so that the system matrix A−LC is asymptotically
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stable according to (4) and simultaneously satisfies the
property of being a Metzler matrix, see Räıssi and Efimov
(2018). Determining the observer gain on the basis of
Theorems 7 and 8 is possible by means of LMIs. For
uncertain systems given by intervals in either of their sys-
tem matrices, the LMIs are evaluated for a joint solution
including all vertex matrices of a polytopic description.

Theorem 9. For the FLTI system (16) of order γ ∈ [1, 2),
there exists an observer gain L, if a diagonal matrix
∃Z ∈ Rn×n and a matrix ∃Y ∈ Rn×m exist, such that
the following LMIs holdSym{rZA− rY C} rZE − rY F CT

ET r̄Z − F T r̄Y T −µI F T

C F −µI

 ≺ 0,

ZA− Y C + κZ ≥ 0, Z � 0, µ > 0,

(19)

where a sufficiently large value κ has to be given. If a
feasible solution exists, the observer gain is calculated
according to

L = Z−1Y , L ∈ Rn×m. (20)

Theorem 10. For the FLTI system (16) of order γ ∈ (0, 1),
there exists an observer gain L, if a diagonal matrix
∃Z ∈ Rn×n and a matrix ∃Y ∈ Rn×m exist, such that
the following LMIs holdSym{(rZ + r̄Z)A− Y C} ∗ ∗

ET (rZ + r̄Z)T − F TY T −µI ∗
C F −µI

 ≺ 0,

(rZ + r̄Z)A− Y C + (rZ + r̄Z)κ ≥ 0, Z � 0, µ > 0,

(21)

where a sufficiently large value κ has to be given. If a
feasible solution exists, the observer gain is calculated by

L = (rZ + r̄Z)−1Y , L ∈ Rn×m. (22)

To ensure the Metzler property of the system matrix, the
following inequality constraint can be formulated

(A−LC) + κI ≥ 0. (23)

Note that the term κI is added to the Metzler constraint,
since only off-diagonal elements of the matrix must be non-
negative. To eliminate the bilinearity caused by inserting
(20) or (22) in (23), Z is restricted to being diagonal.

4. APPLICATION SCENARIO: BATTERY SYSTEMS

To evaluate the efficiency of the proposed method, it is
implemented for estimating the SOC of a Lithium-Ion
battery. Since the required estimation model should cap-
ture the battery dynamics with sufficient accuracy and
have a simple structure to reduce computing times, the
mathematical modeling by means of an equivalent circuit
was adopted. This is motivated by an electro-chemical
impedance spectroscopy and attempts to describe exper-
imentally measured impedance data using electrical ele-
ments. By using fractional calculus, a generalized capaci-
tive element

ZCPE(ω) =
1

Q(jω)γ
, γ ∈ (0, 1), (24)

of the fractional order γ with the pseudo capacitance Q is
introduced. The additional degree of freedom in the dif-
ferential order γ allows the model to predict the electrical
behavior of a battery more accurately than in the case of
a purely integer-order system representation. A fractional

equivalent circuit model 1 is shown in Fig. 2. For more
details, see Zou et al. (2018) and Andre et al. (2011).

vOC(t)
+
−

i(t) R0

R v(t)

+

−

Q

v1(t)

Fig. 2. Typical fractional-order equivalent circuit model.

Considering the Lithium-Ion battery model in Fig. 2, the
following governing equations can be formulated based on
Kirchhoff’s current and voltage laws

D1
t σ(t) = − η

3600CN
,

Dγt v1(t) = − 1

RQ
v1(t) +

1

Q
i(t),

v(t) = vOC(t)− v1(t)−R0i(t),

(25)

where σ(t) ∈ (0, 1) describes the SOC, i(t) the input
current and v(t) the terminal voltage of the battery. Ad-
ditionally, R0, R, and Q are the lumped circuit element
parameters, η the Coulomb efficiency, and CN the nominal
capacity in Ah. Furthermore, for the nonlinear character-
istics of the open-circuit voltage, it was assumed that

vOC(t) =

4∑
k=0

ckσ
k(t) + d0e

d1σ(t)i(t), (26)

according to the observations of Hu et al. (2012), holds.
The observer’s design presupposes a commensurate and
quasi-linear form. To reduce the complexity of the model,
the fractional derivative order of the model is set to γ = 0.5
complying with a previous parameter identification. This
leads to the state-space representation

D0.5
t x(t) = Ax(t) + Bi(t)

v(t) = C(σ(t))x(t) +D(σ(t))i(t)

x(t0) = x0 ∈ R3 ,

(27)

with the state vector x(t) =
[
σ(t) D0.5

t σ(t) v1(t)
]T

, the
system matrices

A =

0 1 0
0 0 0
0 0 − 1

RQ

 , B =

 0
− η

3600CN
1
Q

 , and

C(σ(t)) =

[
4∑
k=0

ckσ
k−1(t) 0 −1

]
as well as the feedthrough term D(σ(t)) = −R0+d0e

d1σ(t).
Table 1 lists the parameter values under consideration,
which were identified on the basis of the measurement data
published by Reuter et al. (2016).

Table 1. Parameters of the Lithium-Ion battery model.

R0 [Ω] Q [F/s0.5] R [Ω] η [−] CN [Ah] c0 [V]

+1.7e−5 +20.591 +0.1005 +1.0000 +3.1000 +3.0607

c1 [V] c2 [V] c3 [V] c4 [V] d0 [Ω] d1 [−]

+3.2965 −8.3942 +11.088 −4.8992 −0.2477 −14.302

1 Note that additional (generalized) capacitive elements can be
included via a series connection similar to Erdinc et al. (2009).
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Here, the uncertainty of the system model lies within the
variability of the SOC. Hence, the terms in the system’s
output equation depending on it are replaced by the two
reasonably chosen and independent parameter intervals

4∑
k=0

ckσ
k−1(t) ∈ [p1] = [1, 250] and

−R0 + d0e
d1σ(t) ∈ [p2] = [−0.25, 0],

(28)

so that the parameter-dependent output vector and
feedthrough factor

C(σ(t)) ∈ C([p1]) =
[
[p1] 0 −1

]
and

D(σ(t)) ∈ D([p2]) = [p2]
(29)

are obtained. Thus, the system behavior is described by
N = 22 vertex matrices forming the polytopic representa-
tion. To estimate the SOC σ(t) of the Lithium-Ion battery
system (27), the nonlinear state observer

D0.5x̂(t) = Ax̂(t) + Bi(t) + L(vm(t)− v̂(t)),

v̂(t) = C(σ̂(t))x̂(t) +D(σ̂(t))i(t),

x̂(t0) = x̂0,

(30)

is proposed with the vector of the estimated states x̂(t),
the estimated terminal voltage v̂(t), and the measured
terminal voltage vm(t).

Solving the LMIs formulated in Theorem 8 for all N = 22

vertex matrices with the Matlab toolboxes Yalmip and
Mosek yields the constant observer gain

L =
[
0.0098 0.0003 −0.0309

]T
(31)

for µ = 1.5423 according to Eq. (15). Here, E = B
and F = D were chosen for an appropriate weighting of
external disturbances. To demonstrate the efficiency of the
observer, the initial SOC was disturbed. Fig. 3 illustrates
a comparison of measurements and the estimated terminal
voltage as well as a comparison of a reference SOC gen-
erated by a simulation on the basis of measurements and
the estimated SOC for the initial conditions

x0 =
[
0.90 0.00 0.00

]T
, x̂0 =

[
0.75 0.00 0.00

]T
. (32)

The upper graph shows the time evolution of the discharge-
recharge current used as input. For the numerical solution
of the fractional-order differential equations, the Matlab
routines of Garrappa (2018) were utilised. Since the pre-
vious observer design neglected possible disturbances and
variations of the battery parameters due to changing op-
erating conditions, a robust interval observer is designed,
which additionally allows for estimating guaranteed lower
and upper bounds of the SOC and the terminal voltage.
For the efficient implementation, the structural property
of cooperative systems is exploited. For the design, it was
assumed that the occurring disturbances and parameter
uncertainties are not exactly known, but lie within a-
priori given, finitely large bounds. The resulting quantifi-
able ranges were added to the measured terminal voltage,
yielding the following measurement interval

vm(t) ∈ [vm, vm](t) = vm(t) + [−∆vm,+∆vm], (33)

so that the true voltage is guaranteed to be within this
interval. Under the previous assumptions, the interval
observer for the Lithium-Ion battery system (27) is defined
as 

D0.5
t x(t) = Ax(t) + Bi(t) + L(vm(t)− v(t)),

D0.5
t x(t) = Ax(t) + Bi(t) + L(vm(t)− v(t)),

x(t0) = x0, x(t0) = x0,

(34)

Fig. 3. Result of the state observer for estimating the SOC.

with both output equations{
v(t) = C(σ(t))x(t) +D(σ(t))i(t),

v(t) = C(σ(t))x(t) +D(σ(t))i(t).
(35)

By solving the LMIs formulated in Theorem 10 for all
N = 22 vertex matrices, the jointly computed observer
gain is obtained as

L =
[
0.02 0.00 0.00

]T
(36)

for E = B, F = D, and κ = 5 according to Eq. (22).
Therefore, the resulting system matrix of the estimation
error dynamics(

A−LC([p1])
)

=

[−5.00,−0.02] 1.00 0.02
0.00 0.00 0.00
0.00 0.00 −0.48

 (37)

fulfills the property of a Metzler matrix. However, the
resulting requirement may appear to be too restrictive for
the considered model of the battery system, since some
eigenvalues of the system matrix cannot be shifted. Despite
the resulting loss of observability, this concept still allows
for proving detectability and input-to-state stability (ISS)
as a less strong requirement, because all eigenvalues are
compliant with the stability domains in Fig. 1(a). The
results of the interval observer approach for a measurement
uncertainty of ∆vm = 0.04 V and the initial conditions

x0 =
[
0.90 0.00 0.00

]T
,

x0 =
[
0.85 0.00 0.00

]T
, x0 =

[
0.95 0.00 0.00

]T
,

(38)

which describe an uncertainty of the SOC at the starting
point are shown in Fig. 4. These graphs show the mea-
surement of the terminal voltage and the SOC with the
respective estimated lower and upper bounds. Note, the
same discharge-charge current as in Fig. 3 was used as the
system input.

5. CONCLUSIONS AND FUTURE WORK

In this paper, a robust observer for the nonlinear fractional-
order system model of a Lithium-Ion battery was designed
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Fig. 4. Result of the interval-based SOC estimation.

to estimate the SOC. Global asymptotic stability (respec-
tively, ISS) of the estimation error dynamics was ensured
on the basis of LMIs. While the LMIs for a controller
synthesis of FLTI systems were mostly known from the
literature, the LMIs for the observer synthesis had to
be derived on the basis of a congruence transformation.
The simulation results showed that the observer is able to
accurately reconstruct the SOC.

Based on this, an interval observer was designed which
estimates guaranteed upper and lower bounds for the SOC
and the terminal voltage. Therefore, an observer gain had
to be determined, so that the system matrix of the esti-
mation error dynamics was simultaneously asymptotically
stable and ensured the property of a Metzler matrix. A
structural analysis showed that these requirements may
under some circumstances be too restrictive for the model
of a Lithium-Ion battery. Therefore, combining the interval
observer synthesis with state-space transformations as in
Kersten et al. (2018) and Rauh et al. (2019) is recom-
mended for future work, where these transformations help
to fully exploit the benefits of an H∞ optimization as in
the design procedure presented in this paper. This will
allow for computing state bounds in an efficient manner,
although the result of the observer design may no longer
be given directly by cooperative dynamics.
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