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Abstract: Traditionally, the calibration of robots is pursued either using model-based or model-
free methods. Only a few attempts to combine both approaches were reported, particularly
the combination of geometric calibration and artificial neural network (ANN). The latter
was mostly used to compensate the positioning error, however. This paper introduces an
ANN for compensation of residual positioning as well as orientation error. Moreover, the
ANN compensation can be applied with or without prior geometric calibration. An automatic
measurement procedure was developed and nearly 14 000 robot poses were measured using a laser
tracker. Five-fold cross validation on the training data was applied to find the best parameters
of the ANN. These tests indicate that better accuracy is achievable by combining geometric
calibration and ANN. Applying this combination on the test data reduced the maximum/average
position error to 6.28 %/4.26 % and the maximum/average orientation error to 7.41 %/3.34 % of
the original values (obtained without calibration).

Keywords: Robot calibration, model identification, neural networks, positioning accuracy,
orientation accuracy, robot kinematics, industrial robots

1. INTRODUCTION

Modern industrial robots are more and more used for
automated manufacturing tasks like grinding, milling, or
measuring. Thus, high positioning and orientation accu-
racy is essential and can only be achieved by robot cal-
ibration. According to Elatta et al. (2004), calibration
methods are typically classified as model-based or model-
free approaches.

Model-based approaches take error sources in the robot
model into account. As mentioned in Roth et al. (1987),
many researcher considered deviations in the geometric
parameters of the kinematic model, which is also known as
geometric calibration. Neubauer et al. (2015) additionally
compensated non-geometric error sources like joint and
drive stiffness to achieve an improved robot accuracy.
While this parametric calibration procedure works very
well, at the same time, requires some effort in robot
modelling.

Model-free, or rather non-parametric approaches do not
rely on modelling of error sources. Instead, error com-
pensation is pursued directly on measurement. Bai (2007)
used a 3D grid to divide the robot workspace in small
discrete areas and measured the end effector error at all

? This work has been supported by the “LCM - K2 Center for
Symbiotic Mechatronics” within the framework of the Austrian
COMET-K2 program.

grid points. The error compensation of a distinct robot
pose was achieved by fuzzy interpolation of the measured
errors of the surrounding grid points. Meggiolaro et al.
(2005) used polynomial approximations to consider errors
due to geometric and elastic deformation of a patient
positioning system.

Some preliminary work of combining the advantages of
parametric and non-parametric approaches was carried
out several years ago by Zhong et al. (1996) who applied
an artificial neural network (ANN) for inverse calibration
compensation. However, the training data was inaccurate
due to the usage of nominal inverse kinematics. Nguyen
et al. (2015) geometrically calibrated a robot and further
used an ANN with the robot joint angles as inputs to
compensate residual positioning errors due to unmod-
elled error sources, which represents a forward calibration
compensation procedure. Zhao et al. (2019) revised this
approach and used many more measurements to compen-
sate the non-linear residual positioning errors even better.
However, the orientation error was not considered and just
a limited workspace was used.

The aim of this paper is to amend the approach of Zhao
et al. (2019) and extend it with orientation information for
combined compensation of positioning and orientation er-
ror within the whole workspace. This paper also addresses
the question as to what extent geometric calibration prior
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to ANN error compensation further improves robot accu-
racy.

2. ROBOT KINEMATICS

2.1 Forward Kinematics
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Fig. 1. COMAU R5 robot with defined frames

Figure 1 shows the 6-DOF-robot COMAU Racer5-0.80
with joint angles q1 to q6 and corresponding body-fixed
frames F1 to F6. The z-axes of frames F1 to F6 are defined
by the rotation axes, respectively. The inertial frame FI

serves as a point of reference for the application. The frame
at the end effector (calibration tool) is denoted by FE. The
position of the end effector is measured with a Leica laser
tracker with reference frame FL.

For the modelling of the kinematics, homogeneous trans-
formation matrices are used and the notation is as follows.
The relative configuration of frames FB and FI is described
by the homogeneous transformation matrix

TIB =

[
RIB ItIB

0 1

]
, (1)

where ItIB ∈ R3 is the coordinate vector of the origin
of FB, measured and resolved in FI and RIB ∈ SO(3)
represents the orientation of frame FB in FI . Rotation
matrices are parameterized in terms of Cardan angles (x−
y − z rotations), denoted as R(α, β, γ).

Table 1 summarizes the nominal translation and orienta-
tion of the zero reference configuration of the COMAU
Racer5-0.80 using nominal parameters pgeo. For example,
the nominal coordinate transformation from F0 to FI is
determined by the rotation matrix RI0(π/2, 0, π/2) and

the translation vector ItI0 = (LI0x, LI0y, LI0z)
>

, which leads
to the homogeneous transformation matrix

TI0 =

[
RI0 ItI0

0 1

]
. (2)

Table 1. Transformations with its nominal ge-
ometric parameters and joint coordinates

T
pgeo

qϕCardan t
in rad in m

TI0

π/2 LI0x

0 LI0y

π/2 LI0z

T01

0 0
0 0
0 L01z q1

T12

−π/2 L12x

0 0
−π/2 L12z q2

T23

0 L23x

0 0
π/2 0 q3

T
pgeo

qϕCardan t
in rad in m

T34

π/2 L34x

π/2 L34y

0 0 q4

T45

−π/2 0
0 0
−π/2 L45z q5

T56

π/2 L56x

π/2 0
0 0 q6

T6E

0 L6Ex

0 L6Ey

π/4 L6Ez

The transformation matrix for adjacent frames is

Ti−1,i =

[
Ri−1,i Rz(qi) i−1ti−1,i

0 1

]
(3)

with i = 1 . . . 6 and the one for the end effector is

T6E =

[
R6E 6t6E

0 1

]
. (4)

Finally, this leads to the overall transformation matrix
from FE to FI

TIE = TI0 T01 T12 T23 T34 T45 T56 T6E . (5)

2.2 Geometric Error Modelling

The kinematic model with geometric errors accounts for
ne = 48 error parameters, as shown in Table 2. The vector
of geometric error parameters pe ∈ Rne consists of the
parameter vector pL due to length deviations as well as
the parameter vector pR due to inaccurate zero positions
and axes misalignment.

Table 2. Geometric error parameters

T̂

pe

pL pR

in m in rad

T̂I0

pL I0x pRI0x

pL I0y pRI0y

pL I0z pRI0z

T̂01

pL 01x pR 01x

pL 01y pR 01y

pL 01z pq1

T̂12

pL 12x pR 12x

pL 12y pR 12y

pL 12z pq2

T̂23

pL 23x pR 23x

pL 23y pR 23y

pL 23z pq3

T̂

pe

pL pR

in m in rad

T̂34

pL 34x pR 34x

pL 34y pR 34y

pL 34z pq4

T̂45

pL 45x pR 45x

pL 45y pR 45y

pL 45z pq5

T̂56

pL 56x pR 56x

pL 56y pR 56y

pL 56z pq6

T̂6E

pL 6Ex pR 6Ex

pL 6Ey pR 6Ey

pL 6Ez pR 6Ez

Considering these error parameters, the corresponding
parameter dependent rotation matrices are

R̂I0 = RI0 R(pRI0x, pRI0y, pRI0z), (6)

R̂i−1,i = Ri−1,i R(pR i−1,ix, pR i−1,iy, qi + pq,i), (7)

R̂6E = R6E R(pR 6Ex, pR 6Ey, pR 6Ez), (8)

and the translation vectors are
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I t̂I0 = ItI0 + (pL I0x, pL I0y, pL I0z)
>
, (9)

i−1̂ti−1,i = i−1ti−1,i + (pL i−1,ix, pL i−1,iy, pL i−1,iz)
>
, (10)

6̂t6E = 6t6E + (pL 6Ex, pL 6Ey, pL 6Ez)
>

(11)

where i = 1 . . . 6. Hence, (5) changes to

T̂IE = T̂I0 T̂01 T̂12 T̂23 T̂34 T̂45 T̂56 T̂6E

=

[
R̂IE It̂IE

0 1

]
,

(12)

where It̂IE is the position of the end effector, represented
in FI . The rotation matrix R̂IE describes the orientation
of FE relative to FI .

2.3 Elimination of Linear Dependent Parameters

Considering position and orientation measurement, the
end effector error ∆z ∈ R6 is defined as

∆z =

(
∆ItIE
∆ϕIE

)
(13)

with positioning error ∆ItIE ∈ R3 and orientation error
∆ϕIE ∈ R3. Therein ∆ϕIE is proportional to the rotation
axis that can be associated to the relative rotation (see
Axis–Angle representation of Shuster (1993)).

Setting (13) to zero, i.e. ∆z = 0, provides six independent
equations and leads to a non-linear optimization problem
(root-finding) to find the geometric error parameters pe.
This problem can be solved iteratively using a Taylor series

of ∆z = ∆z(zmeas,q,pe) at the start parameters p
(0)
e , i.e.

∆z(zmeas,j,qj,p
(0)
e ) +

∂∆z

∂pe

∣∣∣∣
p

(0)
e︸ ︷︷ ︸

Θj

∆pe + . . . = 0 (14)

or after evaluating (14) with j = 1 . . .m measurements ∆z(zmeas,1,q1,p
(0)
e )

...

∆z(zmeas,m,qm,p
(0)
e


︸ ︷︷ ︸

Q

+

 Θ1

...
Θm


︸ ︷︷ ︸

Θ

∆pe = 0. (15)

Using position and orientation measurement for the geo-
metric calibration leads to the regressor matrix Θ ∈ Rn,ne

with n = 6m rows for m measurements. Not all of the ne
parameters deviations ∆pe ∈ Rne are independent. There-
fore, s linear dependent columns of Θ are eliminated via
a QR Decomposition Θ = Q̂ R̂. This determines the iden-
tifiable geometric error parameter vector pe ∈ Rne=ne−s,
which is also called base parameter vector. Using nominal
forward kinematics with random joint angles instead of
real measurements and following the procedure of Khalil
and Gautier (1991), yields

Q + Θ ∆pe = 0 (16)

with regressor matrix Θ ∈ R6m,ne , parameters deviation
vector ∆pe ∈ Rne and Q ∈ R6m, 1, which is a reordered
version of Q after doing the same permutation as used for
Θ. The ne = 30 determined base parameters are given in
Table 3.

3. MEASUREMENT PROCEDURE

As stated in Zhao et al. (2019), an ANN needs a large
amount of training poses to guarantee successful modelling

Table 3. Base parameters of COMAU R5

# Identifiable Parameters

1 pL I0x − pL 01y − 0.189 pR 01x

2 pL I0y − pL 01z − pL 12z

3 pL I0z + pL 01x − 0.189 pR 01y

4 pL 12x

5 pL 12y + pL 23z + pL 34z − 0.050 pR 12x

6 pL 23x

7 pL 23y − 0.370 pq3 − 0.370 pR 34y

8 pL 34x + pL 45z − 0.050 pR 34y

9 pL 34y − 0.041 pR 34y 20 pq6 + pR 6Ez

10 pL 45x 21 pRI0x + pR 01x

11 pL 45y + pL 56z 22 pRI0y + pR 01y

12 pL 56x + pL 6Ez 23 pR 12y

13 pL 56y − 0.080 pR 56y 24 pR 23x

14 pL 6Ex − 0.040 pR 6Ez 25 pR 23y

15 pL 6Ey − 0.016 pR 6Ez 26 pR 34x

16 pq1 + pRI0z + pR 12x 27 pR 45y

17 pq2 + pq3 + pR 34y 28 pR 56x

18 pq4 + pR 45x 29 pR 6Ex

19 pq5 + pR 56y 30 pR 6Ey

of the residual end effector error. The developed automatic
measurement procedure consists of four stages: robot pose
selection, suitability check, trajectory planning between
poses and automatic measurement using laser tracker.

The used laser tracker LTD 800 from Leica Geosystems
has a resolution of 1 µm and an accuracy of ±25 µm. To be
able to measure position and orientation at the same time,
three spherically mounted retroreflectors (SMR) are used.
Figure 1 shows the setup of SMRs involving two red ring
reflectors (RRR) and one break resistant reflector (BRR).
The whole calibration setup is shown in Fig. 2. Using the
SMRs for the measurement of the centre and respective
points on x and y-axes of FI , allows the determination
of TLI , which is constant for a rigid calibration setup.
However, it should be noted that the robot setup stands
on slightly elastic ground, i.e. compliant wooden structure.
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Fig. 2. Calibration setup with robot and laser tracker
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The first stage of the measurement procedure requires to
appropriately discretize the range of joint variables of the
COMAU Racer5-0.80 with respective limits

−168◦ ≤ q1 ≤ 168◦

−83◦ ≤ q2 ≤ 133◦

−178◦ ≤ q3 ≤ 63◦

−198◦ ≤ q4 ≤ 198◦

−98◦ ≤ q5 ≤ 98◦

−180◦ ≤ q6 ≤ 180◦.

(17)

For example the first axis should be discretized with a
higher resolution than the last one because a movement
of q1 has a higher impact on the end effector translation.
Following this idea, the chosen discretization delivers joint
values q1 to q6 every 19.80◦, 21.60◦, 24.10◦, 28.30◦, 32.70◦

and 36.00◦, respectively, and results in 1 428 000 possible
poses. These poses need to be checked for validity and
suitability.

The suitability check involves three criteria. Firstly, the
robot for selected joint coordinates must be outside the
collision area, i.e. the minimal spatial distance between
robot and collision objects must be greater than 3.50 cm.

Secondly, the calibration tool must be visible for the laser
tracker, i.e. the calibration tool has to be above the wall
as shown in Fig. 2. Finally, the opening angle α between
laser and all three reflectors must be |α| ≤ 30◦. To consider
possible deviations of the reflector orientation and the
shape of BRR, we decided to limit the allowed cone angles
even more, i.e. |αRRR| ≤ 26.50◦ and |αBRR| ≤ 20◦. This
results in 13 919 suitable poses for measurement of all three
reflectors for position and orientation information.

The third stage of the measurement procedure is the tra-
jectory planning between suitable poses. After separating
the robot poses into poses in front of the wall and behind
the wall, the trajectory is planned in joint coordinates.
Simulating this trajectory and continuously calculating
the minimal distance shows at which poses a collision
between robot and environment would happen. After a few
iterations of changing the order of critical poses, a valid
trajectory without collision can be found.

The fourth stage is the automatic measurement itself. The
laser tracker and the robot controller (B & R Automa-
tion PC) are able to communicate with each other using
TCP/IP and allow to automatically measure the position
of all three SMRs. At first the robot moves to a pose and
gives a signal to the tracker after reach. Then the tracker
measures all three reflectors and returns a signal after
finish. This procedure is repeated until all poses are mea-
sured in the experiment. The measurement of all 13 919
poses took about 3.5 days and needed no supervision at
all. Assuming known homogeneous transformation matrix
TLI , the measurement of all three SMRs defines position

ItIE and orientation via rotation matrix RIE .

4. GEOMETRIC CALIBRATION

Considering (16) and using well known method of least
squares, the base parameters vector results in

∆pe = −[Θ
>

Θ]
−1

Θ
>

Q (18)

assuming enough measurements so that regressor matrix
Θ has a full rank, i.e. rank(Θ) = ne. However, the full
rank of Θ should be guaranteed due to the usage of
regularization and randomly selected calibration poses.

The usage of Equ. (18) leads to the first solution p(1)
e =

p(0)
e + ∆pe of the geometric error parameters. For a more

accurate solution of the non-linear model, more iterations
are necessary, i.e.

p(n+1)
e = p(n)

e − [Θ
>

Θ]
−1

Θ
>

Q. (19)

The parameters p(0)
e = 0 can serve as the start parame-

ters and the nominal parameters pgeo can be taken from
publicly available CAD data. Table 4 summarizes the de-
termined base parameters pbase = p(20)

e using 220 random
and independent from the previously derived 13 919 poses
due to measurements for another research project.

Table 4. Determined geometric error parame-
ters of COMAU Racer5-0.80

# pbase Unit

1 7.752× 10−4 m
2 2.343× 10−3 m
3 −2.720× 10−3 m
4 −2.567× 10−4 m
5 6.334× 10−5 m
6 1.676× 10−3 m
7 5.611× 10−4 m
8 8.479× 10−4 m
9 −3.293× 10−4 m

10 8.669× 10−5 m
11 −7.575× 10−4 m
12 −6.430× 10−4 m
13 −2.026× 10−5 m
14 −1.524× 10−3 m
15 −1.639× 10−3 m

# pbase Unit

16 8.150× 10−4 rad
17 −1.054× 10−4 rad
18 3.050× 10−3 rad
19 −2.759× 10−3 rad
20 1.279× 10−2 rad
21 −8.877× 10−4 rad
22 2.778× 10−3 rad
23 −5.821× 10−5 rad
24 −1.393× 10−4 rad
25 −2.455× 10−4 rad
26 2.380× 10−4 rad
27 −1.934× 10−2 rad
28 7.956× 10−3 rad
29 2.588× 10−4 rad
30 1.134× 10−3 rad

Figures 3 and 4 show the achieved reduction of positioning
as well as orientation error. Yet unmodelled error sources,
in particular the elastic ground of the robot setup, have a
major negative influence on the robot accuracy.

Fig. 3. Positioning error for the whole data

5. NEURAL NETWORK ERROR COMPENSATION

5.1 ANN Structure and Parameters

To further improve the positioning and orientation ac-
curacy, an ANN with two hidden layers with respective
hidden neurons N1 and N2 as well as an output layer
with six neurons is considered. As common for regression,
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Fig. 4. Orientation error for the whole data

the two hidden layers use a hyperbolic tangent and the
output layer a linear activation function. According to
Zhao et al. (2019) and our own tests, more layers do not
further improve the accuracy.
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Fig. 5. Geometric error compensation with ANN

Figure 5 shows the structure of the ANN and thus how
it is used to compensate the residual error ∆zFK ∈ R6

to reduce error ∆ztot ∈ R6. For training, i.e. supervised
learning, the joint coordinates q ∈ R6 serve as the input
and the residual error ∆zFK using forward kinematics
(with or without geometric error parameters) serve as the
target. After training, the ANN should ideally be able to
completely compensate the residual error for given joint
coordinates.

As shown in Fig. 5, normalization/mapping is used for the
inputs as well as targets/outputs of the ANN. Regarding
to LeCun et al. (2012), normalization of the inputs poten-
tially improves the convergence speed of an ANN during
training. Additionally, mapping the joint coordinates with
limits (17) to mean 0 and variance 1 assures the equal
importance of all six inputs.

Likewise, normalization of the targets guarantees equal
importance of the six outputs. Otherwise, the ANN might
prefer to optimize the accuracy of an output element with
higher range of target values compared to an element with
smaller values using the mean squared error (MSE) as
performance function for training. Considering the errors
of Fig. 3 and 4, this would mean that the network would
prefer to improve the orientation accuracy because the
range of orientation errors is bigger than the range of
positioning errors. To address this problem, we mapped
the target data to mean 0 and variance 1 as done for the
inputs.

5.2 Training

The networks are trained using batch learning and
Bayesian regularization backpropagation, which is known
to generate a network that generalizes well (see MacKay
(1992) and Foresee and Hagan (1997)). This is achieved
by minimization of squared errors and network weights
instead of just the errors. So Bayesian regularization back-
propagation successfully manages to avoid the overfitting
problem even in the case when many hidden neurons or
many training epochs are used.

To be able to verify the performance of a trained ANN,
the recorded pose data is split into a training set with
11 136 poses (80 %) and a test set with 2783 poses (20 %).
Applying five-fold cross validation on the training set helps
to find the best number of hidden neurons (N1, N2). It
should be noted, that mapping of inputs and outputs was
applied separately to each training set.

Table 5 shows the cross validation results on the training
set for the considered numbers of hidden neurons (16,
32 or 64 neurons per layer) using Bayesian regularization
backpropagation (see MacKay (1992)) and 2048 training
epochs. These results indicate, that the usage of geomet-
ric calibration indeed helps to improve the positioning
and orientation accuracy even in the case of ANN error
compensation. Furthermore, a higher number of hidden
neurons might lead to even better results to the point
where the ANN starts overfitting due to the usage of too
many neurons. However, an ANN with more than (64, 32)
hidden neurons was not tested due to limited time or
rather computational power for training.

Table 5. Cross validation results on training
data of tested ANNs

Hidden RMSE Max ‖ ∆ItIE ‖ Max ‖ ∆ϕIE ‖ peneurons ∆ztot in mm in mrad

(16, 16) 2.436 4.173 19.277

0
(32, 16) 1.226 2.905 12.840
(32, 32) 0.799 2.086 7.928
(64, 32) 0.520 1.362 5.418

(16, 16) 1.779 2.328 17.398

pbase
(32, 16) 1.139 1.550 9.782
(32, 32) 0.721 1.112 7.447
(64, 32) 0.462 0.812 5.358

The best results could be achieved with (64, 32) hidden
neurons. Considering these parameters, we train two new
ANNs (with and without prior geometric calibration) with
new corresponding mappings using the whole training set
to get the finally trained ANNs.

5.3 Test

The test set is used to check the performance of the two
chosen ANNs on novel data. Figures 6 and 7 show the
results, obtained with the proposed method. Compared
to the uncalibrated robot, both ANNs compensate the
positioning and orientation error very well.

Table 6 provides the statistical analysis of positioning
and orientation error. The first column corresponds to
the original results using kinematic model with nominal
parameters. Column two shows the errors using geometric
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Model with nominal parameters (uncalibrated robot)
Model with base parameters (geo. calibrated robot)
Model with nominal parameters and ANN compensation
Model with base parameters and ANN compensation
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Fig. 6. Positioning error for the test data
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Fig. 7. Orientation error for the test data

calibration. The third column is associated with ANN
(64, 32) without prior geometric calibration. The best
results are shown in the fourth column belonging to the
combination of geometric calibration and ANN (64, 32).
For 2783 poses, the absolute positioning/orientation error
is less than 0.605 mm/3.753 mrad and for 90 % of the poses
(0.9-quantile Q0.9) it is less than 0.258 mm/1.604 mrad.

Table 6. Positioning and orientation error for
the test data

Error in pe = 0 pe = pbase pe = 0 pe = pbase

mm or mrad no ANN no ANN ANN ANN

Max ‖ ∆ItIE ‖ 9.636 6.351 1.405 0.605
Mean ‖ ∆ItIE ‖ 3.522 1.844 0.192 0.150
Q0.9 ‖ ∆ItIE ‖ 5.377 3.060 0.336 0.258
Max ‖ ∆ϕIE ‖ 50.617 28.609 5.096 3.753
Mean ‖ ∆ϕIE ‖ 28.063 15.191 1.076 0.938
Q0.9 ‖ ∆ϕIE ‖ 43.874 23.350 1.868 1.604

6. CONCLUSION

We proposed a combined model-based/model-free cal-
ibration method for an industrial robot and showed
how we could use this model together with an ANN
to achieve improved positioning and orientation accu-
racy in the whole workspace. The developed measure-
ment procedure guaranteed the automatic measurement

of 13 919 suitable robot poses without the requirement
of human supervision. Combining geometric calibration
and ANN leaded to a maximal positioning/orientation
error of 0.605 mm/3.753 mrad, which is a reduction to
6.28 %/7.41 % of the error, obtained by the uncalibrated
robot. Without prior geometric calibration, the ANN com-
pensation resulted in similar but slightly higher errors. So
the usage of a calibrated kinematic model indeed improved
the accuracy. However, compared to the accuracy without
any calibration, both ANN achieve a major improvement,
which confirms the usefulness of our approach. Future
work will involve tests of the developed calibration pro-
cedure also on other industrial robots to further prove
the effectiveness. The usage of two separate networks for
positioning and orientation error compensation might be
another research topic.
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