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Abstract: Manifold engineering applications are directly affected by temperature. For rubber
or composite curing processes, temperature distributions over time inside the compounds are
crucial for chemical cross-linking reactions. Most of these reactions occur subsequently to a
heating process during product cool down. Online prediction of cooling phases is performed
during the actual heating process and hence, final cure status can be estimated before the
actual process finishes. Therefore, mold temperatures and heating duration can be adapted in
regard to current ambient conditions, and hence product quality is increased. In order to achieve
longterm thermal predictions for complex product geometries, simulating nonlinear thermal
finite element models is unfeasible, due to high computational effort. Hence, a prediction-model
is derived from finite element analysis using matrix export, linearization, model order reduction
algorithms such as rational Krylov or iterative rational Krylov and correction of operating point
deviation. A special remark is given to temperature dependent boundary conditions, choice of
time discretization and choice of solving algorithm, to address arising conflicting goals between
execution time and simulation accuracy. Eventually, a complete process simulation is performed
during the task-cycle time on a PLC control with a sufficiently high accuracy.
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Control

1. INTRODUCTION

Thermal modeling is an important step in manifold engi-
neering applications, especially if material properties or
process characteristics are directly coupled to tempera-
ture. Common examples are rubber and tire vulcanization
as mentioned by Ghoreishy (2016), composite curing by
Advani and Sozer (2010), heavy plate rolling described by
Speicher et al. (2013, 2014), electrical components from
Giacometto et al. (2016) or motor temperature manage-
ment as stated by Qi et al. (2016). Sufficiently accurate
transient thermal simulation results are essential during of-
fline process planning or optimization. However, execution
times and real-time requirements have to be accounted for,
if online model-based control or monitoring is performed.
For latter cases a conflicting goal arises between model
accuracy and computation performance. Since all of the
mentioned applications require formulation of distributed
parameter systems, often derived from finite element anal-
ysis, handled models tend to entail large system scales and
high execution times. Model simplification or coarse spa-
tial discretization can decrease computation times, how-
ever can entail high deviations to real measurements. A
different approach to address high computational effort
for FEA are data-based methods such as presented by
Giacometto et al. (2016). However, suitable data-sets are
not always available or obtainable.

In this work, thermal modeling is performed for rubber
curing processes. For chemical reactions during rubber
vulcanization as well as composite curing, two process

steps are essential. First, raw materials or compounds
are placed inside a heated mold for a specific duration.
During this heating process, final product shape is given
and chemical cross-linking reactions start. Subsequently,
products are taken out of the mold and cool down at
ambient temperature, which can possibly endure for hours.
Due to sluggish thermal behaviour of utilized materials,
most of cross-linking reactions inside the materials are
happening during cool down phases. This step mainly
depends on ambient temperatures and air flows inside
industry halls, however process operator’s influence is very
limited, since only mold temperature and heating duration
can be controlled properly. It is of great interest to ensure
a well-defined curing process, since final product quality
mainly depends on homogeneous cross-linking throughout
the whole cross-section. Determination of optimal curing
parameters and detailed process planning is a challenging
task as shown by Bosselmann et al. (2018); Aleksendrić
et al. (2016); Labban et al. (2010). However, offline process
planning cannot account for disturbances during actual
processes. Especially ambient temperature changes in in-
dustry halls due to weather or season change, can have
a significant impact on product performance and qual-
ity. Therefore, a model-based and product specific online
prediction of temperature distributions during the cooling
phase with current ambient properties is beneficial. Nev-
ertheless, disturbances or changes can only be corrected
during heating process, by adjusting heating duration or
slightly varying mold temperatures. During heating pro-
cess, frequent prediction of hour long cooling phases need
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(a) rubber slab (b) tire cross-section

Fig. 1. Exemplary temperature distributions of plane rub-
ber specimen (a) and half tire cross-section (b)

to be executed until the optimum heating duration is
reached in regard to the predicted cooling trajectory. How-
ever, required thermal models derived from finite element
analysis and used for process planning, intend to have
high state dimensions, and hence lack of real-time capable
computation. Therefore, a reduced order system descrip-
tion needs to be used for prediction. Section 2 describes
thermal modeling process, model order reduction as well
as evaluation methods. A plane rubber slab and a tire
cross-section are used to exemplify the methodology. Since,
cooling phases are nonlinearly affected by temperature-
dependent convection and thermal radiation, a special re-
mark is given to parameter identification and model order
reduction procedure by preserving descriptive parameters.
In section 3 the obtained reduced order models are even-
tually investigated regarding time step, solving algorithm,
and nonlinear behaviour to solve for conflicting objectives
between model accuracy and computation performance for
real-time capability. Main challenges mentioned in this
work are large system scale, state-dependent boundary
conditions, inhomogeneous initial conditions occurring af-
ter heating process, restricted computational resources due
to real-time requirements, and accuracy limits because of
product requirements.

2. METHODS

Two different rubber composites, depicted in Figure 1, are
used to exemplify a model-based real-time prediction for
large scale thermal models. The first one is a rectangular
shaped rubber specimen consisting of just one rubber
compound with isotropic material properties. Two type-K
thermocouples are placed near the centerline for validation
purposes. Secondly, a tire cross section model with more
than 20 components, consisting of textile and metal layers
as well as different rubber compounds is evaluated. 12
virtual sensors are placed at points of interest through-
out the whole cross-section, resulting in different dynamic
behaviours for all output signals. Complex geometries and
partly anisotropic material parameters in tires make the
use of finite element modeling inevitable. In sample curing
processes both examples are heated up with a subsequent
cooling phase, during which most of the kinetic reactions
inside rubber compounds take place. Therefore, model-
based prediction of time variant temperature distributions
especially during cooling is crucial for an exact determina-
tion of final state of cure at the end of process. In subsec-
tion 2.1 thermal modeling approaches are described. Since,
real-time requirements have to be taken into account, a
computation efficient system formulation is set up. Sub-
sequently, subsection 2.2 describes solving algorithms and
evaluation methods in regard to accuracy and execution
times.

2.1 Modeling Approach

Within system domain Ω temperature distributions vary-
ing over time T = T (z, t)) with z ∈ Ω are calculated in
regard to Fourier’s law and heat equation

cρ
∂

∂t
T = ∇T (λ∇T ) , (1)

with component dependent properties: specific heat c,
density ρ, and thermal conductivity λ.

Assumption 1. The system consists of spatially and tem-
perature independent material properties within discrete
components of one model.

Moreover, temperature dependent boundary conditions
such as thermal radiation and convective loads affect the
temperature distribution and are expressed as heat fluxes
at the surface ∂Ω

φconv(zB, t) = α(T ) (T (zB, t)− Tamb) zB ∈ ∂Ω , (2)

φrad(zB, t) = εσ
(
T (zB, t)

4 − T 4
amb

)
. (3)

Tamb denotes ambient temperature, α the film-coefficient,
ε emission-coefficient, and σ the Stefan-Boltzmann con-
stant, respectively. Equations (2) and (3) show a nonlinear
dependency of temperature and as a result, a nonlinear
function f is required to solve for temperature change over
time

∂

∂t
T = f(T, Tamb). (4)

Therefore, heat fluxes through the surface are defined as
a combined Robin boundary condition

φR(zB, t) = αtot(T ) (T − Tamb) , (5)

with total film-coefficient

αtot(T ) = αconv(T ) + εσ
T 4 − T 4

amb

T − Tamb
. (6)

This way, nonlinear system description (4) can be trans-
formed into a linear parameter-variant (LPV) formulation
(Equation (7)), utilizing Equation (5), where all nonlinear
correlations are shifted into a film-coefficient parameter
αtot. In order to spatially discretize resulting infinite di-
mensional distributed parameter system, a finite element
analysis is used, since complex geometries prevent simple
modeling. First-order elements generate a triangular mesh
with nx node temperatures x(t) ∈ Rnx as states. Time
dependency is formally neglected in the following sections.
The resulting linear parameter-variant system description

Eẋ = A(p)x+B(p)u, x(0) = x0, (7)

T S = C x, (8)

consists of conductivity matrix A ∈ Rnx×nx and input
matrix B ∈ Rnx×nu , both containing state and input
dependent parameters p = p(x,u),p ∈ Rnp derived from
the boundary conditions in (2) and (3) according to Frank
et al. (2018). Furthermore, damping matrix E ∈ Rnx×nx ,
input vector u ∈ Rnu containing ambient temperatures,
and initial temperature distribution x0 are specified. Tem-
perature values at sensor positions T S ∈ Rny are cal-
culated with output matrix C ∈ Rny×nx . Since system
order nx � 1000 is of high dimension with up to mul-
tiple thousand states, model order reduction is crucial
for a real-time capable online prediction. Benner et al.
(2017) reviewed several reduction algorithms for linear and
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parameter-dependent system descriptions. For Equation
(7) linear model order reduction is not applicable, since
system matrices are parameter dependent. Moreover, para-
metric model order reduction (PMOR) approaches can be
infeasible, when the number of parameters is high and
they do not remain constant. Therefore, methodology from
Frank et al. (2018) is applied to generate a computation
efficient system description with reduced order q � nx
and significantly reduce computation effort. Thus, the
system is first linearized at an arbitrary operating point
p0, leading to a linear system description

Eẋ = A|p0x+B|p0u, x(0) = x0

T S = C x.
(9)

Furthermore, inhomogeneous nonzero initial conditions x0

have to be accounted for, when cooling phases subsequent
to heating processes are included in the prediction. Since
initial conditions are unknown during offline modeling
and determined during online processes, classical reduction
algorithms can not be used to obtain an adequate reduced
model. Beattie et al. (2017) propose to superpose initial
condition response from an unforced system with nontriv-
ial initial condition and forced system with zero initial
condition. Subsequently, two different system formulations
have to be reduced, one to model load dynamics (10) and
one for initial condition response (11)

Ev̇ = A|p0 v +B|p0 u, v(0) = 0, (10)

Eẇ = A|p0 w +X0γ , w(0) = 0 , (11)

T S = C (w + v), (12)

with X0 ∈ Rnx×q0 , the columns of which form a basis
for a subspace of possible initial temperature distributions
x0 = X0 z0, actual initial condition input γ = z0δ(t), and
state vectors v,w ∈ Rnx . Temperatures at sensor positions
T S are calculated with superposition of state vectors (12).

Dimensions of both subsystems have to be reduced by
model order reduction to enable a sufficiently fast exe-
cution for real-time applications. Rational Krylov model
reduction also known as moment matching from Grimme
(1997) can be used to approximate transfer function mo-
ments at predefined frequency shifts. Since choice of ap-
propriate shifts can be a challenging task, Gugercin et al.
(2008) introduced the iterative rational krylov algorithm
(IRKA) for H2 optimal transfer function approximation
of linear systems. In this work, IRKA is used to calculate
model order reduction projectors for linear forced and
unforced dynamic, respectively. Original system order nx
is then reduced to q0 � nx for unforced and qu � nx for
forced dynamic.

Equations (10) and (11) are only used to calculate pro-
jection matrices to reduce system scale. However, a true
linear modeling is not acceptable, due to highly nonlinear
boundary conditions. As stated by Frank et al. (2018),
parameter-dependent functions gu and g0 are added in
both dynamics to compensate deviation between chosen
initial operating point p0 and actual parameters p to
account for temperature-dependent boundary conditions.

Assumption 2. State dependent parameter vector p only
affects states on the domain’s surface
xB = vB +wB with xB,vB,wB ∈ RnB ⊆ δΩ and nB < nx.

Therefore, functions gu and g0 are only calculated for
surface states wB and vB, that are affected by boundary

conditions. Both vectors can be constructed from reduced
system states with binary matrix H ∈ RnB×nx

wB = Hw, vB = Hv. (13)

Furthermore, functions gu : RnB × Rnu × Rnp → Rqu

and g0 : RnB × Rnp → Rq0 are only recalculated, if one
surface state changes more than a predefined thresh-
old Tthres. This means they remain constant between
correction-steps i and i + 1 and hence, superposition of
both dynamics is still a valid approach. Note that these
steps are not necessarily equidistant in time. Main advan-
tage of this formulation is a tune-able balancing between
accuracy and computation time. A low threshold leads
to more frequently updated operating point corrections
and hence, a good accuracy but higher computation cost.
When a higher execution trigger threshold is set, devia-
tion towards actual operating point gets larger, leading to
lower accuracy but lower computation time. If an infinite
threshold is set, the evaluation is a truly linear simulation
and deviation is equal to linearization and MOR error.
Eventually, order reduced description for initial condition
response is formulated as

˙̃w = Ã0 w̃ + X̃0γ + g0(wB,i,pi), w̃(0) = 0, (14)

with projection matrices V 0,W 0 ∈ Rnx×q0 calculated by
IRKA, state vector w̃ ∈ Rq0 , system matrix Ã0 ∈ Rq0×q0 ,
Ã0 = WT

0AV 0, matrix X̃0 ∈ Rq0×n0 , X̃0 = WT
0X0, and

corrector function

g0 = WT
0AH

T|(pi−p0)
wB,i . (15)

The formulation for load dynamic is

˙̃v = Ãu ṽ + B̃ u + gu(vB,i,ui,pi), ṽ(0) = 0, (16)

with V u,W u ∈ Rnx×qu , state vector ṽ ∈ Rqu , system ma-
trix Ãu = WT

uAV u, Ãu ∈ Rqu×qu , input matrix

B̃ = WT
uB, B̃ ∈ Rqu×nu , and corrector function

gu = WT
uAH

T|(pi−p0)
vB,i +WT

uB|(pi−p0)
ui . (17)

Temperature values at sensor positions are calculated from
reduced states

T̃ S = C̃u ṽ + C̃0 w̃, (18)

with output matrix C̃u = CuV u, C̃u ∈ Rny×qu and out-
put matrix C̃0 = C0V 0, C̃0 ∈ Rny×q0 .

The differential equations (14) and (16) preserve physi-
cal interpretation of parameters p, despite model order
reduction. Therefore, parameter values can be adjusted
without time-consuming recalculation of projection ma-
trices. This allows for accurate and computation efficient
simulation of thermal systems, affected by temperature
dependent boundary conditions. This approach is used to
first perform parameter identification from measurements
and subsequently use verified models for prediction.

2.2 Evaluation Methods

Guaranteed execution times are crucial for real-time ap-
plications. Since full order ordinary differential equations,
derived from FEA, entail very high execution times, model
order reduction has been applied. In order to achieve a
sufficiently accurate and fast simulation, several options
can be set. The chosen reduced dimensions (qu, q0) for
each dynamic is dependent on system complexity. This can
results in a conflict in objectives, because a higher order
most likely leads to higher conformity with original full
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order system but simultaneously entails a higher execution
time. For the rubber specimen original system scale is
nrubber = 5271 and reduced orders are set to qu,rubber = 18
and q0,rubber = 19, whereas for the tire model, ntire = 7167
is reduced to qu,tire = 18 and q0,tire = 19. Reduced di-
mensions are empirically determined so that over all state
deviation throughout the whole cross-section (all states
nx) over all time steps k

∆xRMS =

√√√√ 1

nx

nx∑
j=1

1

k

k∑
i=1

(xi,j − V x̃i,j)2 (19)

is below 0.5 K. This error criterion is used to further evalu-
ate accuracy of execution algorithms. Besides model order,
time steps and choice of solver impact computation effort.
Therefore, explicit algorithms such as Euler, Heun, classic
RungeKutta, and RKDP method of Dormand and Prince
(1980) as well as implicit Euler and implicit trapezoid
method are compared in regard to numeric stability, ac-
curacy and sample time. Moreover, function calls of gu, g0
from Equations (15) and (17) have the highest impact on
computation costs, since dimension of boundary condition
affected surface states nB is higher than the reduced or-
ders. All simulations are performed on an Optiplex 9020,
Dual-Core Intel Core i5-4690 3.5 GHz, 32 GB 1600 MHz
DDR3 memory, Windows 10, Dell Inc., Round Rock, TX,
USA.

3. RESULTS

The two mentioned models are used to conduct experi-
ments regarding accuracy and computation time in regard
to model order reduction, time discretization and solver
type. In Section 3.1 a reduced thermal model of a tire
cross-section is compared to a full order FEA model. Sec-
tion 3.2 describes parameterization of a rectangular rubber
slab model. Real measurement data from an exemplary
curing cycle is used to verify the modeling approach.
Subsequently, the model is used for real-time prediction.

3.1 Real-time execution of tire model

The half tire cross-section model from Figure 1b is used to
evaluate execution parameters and solving algorithm for
real-time prediction of large scale thermal models. A full
order thermal FEA is performed in ANSYS Mechanical
with sample time hANSYS = 0.1 s and is used as a ground
truth. The tire model consists of multiple components from
different materials and complex geometries. Therefore, it
is a suitable benchmark for proposed prediction method.
Figure 2 depicts a sample curing process for the tire.
Subsequent to a heating phase (theat = 10 minutes), cool
down begins and is simulated for another 35 minutes. Dur-
ing heating process, no convective or radiative boundary
conditions occur, since the tire is enclosed in a mold.
Therefore, a simple linear model can be reduced with
classical linear model order reduction algorithm rational
Krylov. Hence, absolute deviation at sensor position as
well as deviation over all tire states is very low and is
not further investigated in this work. After ten minutes,
nonlinear conditions occur, requiring use of previously pro-
posed method. Deviation at sensor positions is below 1 K
during whole cool down. Furthermore, absolute deviation

over time for all states is depicted in Figure 2. At each time
step state deviation is modeled as a normal distribution
and mean, min/max and tolerance within double standard
deviation (2σ) is shown. The reduced order model was
solved with implicit Euler method, sample time h = 0.1s,
and boundary conditions are updated with a set thresh-
old of Tthres = 10 K. It can be stated, that this modeling
approach and its configuration is suitable for sufficiently
accurate cure status determination. To achieve real-time
requirements, accuracy and computation time in regard
to threshold Tthres have to be investigated. As previously
mentioned, all following results are only calculated for
the cool down phase. Figure 3 depicts the influence of
chosen trigger threshold on computation time tcalc and
state deviation ∆xRMS. If the threshold is set to a min-
imum, film coefficients are updated for every time steps
leading to a computation time of tcalc =3 min with an
accuracy of ∆xRMS = 0.46 K. For a maximum threshold,
no corrections are made and the simulation is truly linear.
Computation time for this case is tcalc = 0.3 s with an
accuracy of ∆xRMS = 1.6 K. A suitable balancing between
accuracy and computation time is a threshold between 1
and 10 K. Further results are shown in Table 1. FEA is
used as ground truth and entails the highest computation
time of about 28 minutes. With rising threshold Tthres,
number of execution of the corrective term nfcalls decreases
and hence, computation time decreases until linear case
is matched. However, state deviation between full and
reduced order model increases.

Table 1. Tire Model Results

Tthres in K ∆xRMS in K nfcalls tcalc in s

FEA Ground Truth ∼28 min

0 0.46 8000 195

0.1 0.463 1198 29

0.5 0.468 288 7.2

1 0.475 148 3.9

2 0.49 76 2.2

5 0.54 31 1.2

10 0.68 16 0.8

20 1.04 8 0.6

linear model 1.7 0 0.4

Furthermore, choice of solving algorithm and sample
time can effect simulation outcome. Threshold is set to
Tthres = 1 K for all further evaluations regarding solving
algorithms. Computation times tcalc and state deviation
∆xRMS for explicit algorithms such as Euler, Heun, Runge
and classic Runge-Kutta with varying sample time h are
depicted in Figure 4. For all methods sample time h has
no great influence on accuracy, but all solvers show in-
stable behaviour above h ≥ 1 s and are not suitable for
this approach. Although implicit solver have a higher com-
putational effort solving differential equations, algorithm
convergence is not affected by choice of sample time. As
it is shown in Figure 5 higher sample times can be cho-
sen, to further reduce computation time. Overall, implicit
trapezoid method shows the best performance in regard to
accuracy and time.

3.2 Parameter Identification from Experiment

In a first experiment a rubber slab is heated with a
subsequent cooling process to mimic a complete curing
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Fig. 2. Comparison between full order tire cross-section
model (FOM) from FEA and order reduced expression
(ROM)
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procedure. Two sensors are embedded in order to monitor
the temperature in the middle of the cross-section (see also
Figure 1a). Sensor positions are measured using computed
tomography images, since small deviations in positions can
cause high errors, due to the low thermal conductivity of
rubber compounds. During the heating phase, the rubber
is placed between two molds as introduced by Bossel-
mann et al. (2017). In the subsequent cooling phase, the
specimen is exposed to natural convection in a ventilated
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Fig. 6. Sensor-temperature curves of real-time prediction
with verified rubber slab model compared to real
measurements during a sample curing process

laboratory. Multiple heating cycles with different duration
and mold temperatures are recorded. The measured sensor
temperatures are used for identification of thermal bound-
ary conditions, during the cooling at ambient tempera-
ture. Therefore, parameters p including film coefficients
are identified by minimizing deviation between model and
measurement with the approach of Frank et al. (2019).

3.3 Real-time prediction of rubber specimen cooling phase

In this section previously identified boundary condition
parameters are used for real-time prediction of a rubber
slab sample curing process. Furthermore, execution pa-
rameters Tthres = 1 K, sample time h = 1 s and implicit
trapezoid method as solving algorithm are set. Simulation
execution time is below 1 s and thus, suitable for task
cycle times of 1 s and higher. Figure 6 depicts measured
sensor temperatures for a curing process at 170 ◦C mold
temperature and simulation results from verified real-time
capable rubber slab model. Overall deviation does not
exceed 2 K. Residual errors can be affiliated to uncontrol-
lable air flows in the laboratory, uncertain material prop-
erties and reduction errors. However, it can be stated that
proposed modeling approach is suitable to approximate
process behaviour online in real-time.
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4. CONCLUSION

In this manuscript a modeling approach for real-time ca-
pable thermal long-term prediction is presented. A spe-
cial remark is given to large system scale, that can be
entailed by finite element analysis of complex geometries
or materials. Main advantage is the use of model reduction
methods in order to enable fine spatial discretization in
FEA. Moreover, no model simplifications in dimension
or linearization are required to deal with state-dependent
boundary conditions. The model equations can be directly
derived from FEA. New parameter options are added
to solve for conflicting goals of computation time and
accuracy. Eventually, a compromise is found to success-
fully perform real-time prediction with a verified thermal
model. Predicted temperature distributions over time can
be used to calculate cure status at the end of the whole
curing process. Frequently executed during heating, it can
be utilized to calculate optimum heat duration in regard
to varying ambient conditions during cooling. In future
work, a state observer will be implemented to adapt real-
time models from available sensor measurements. These
models and observers can eventually be used for model-
based temperature or process control algorithms, which
are currently unfeasible approaches due to high system
scales and nonlinear influences.
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