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Abstract: Virtual flow meters, mathematical models predicting production flow rates in
petroleum assets, are useful aids in production monitoring and optimization. Mechanistic
models based on first-principles are most common, however, data-driven models exploiting
patterns in measurements are gaining popularity. This research investigates a hybrid modeling
approach, utilizing techniques from both the aforementioned areas of expertise, to model a well
production choke. The choke is represented with a simplified set of first-principle equations
and a neural network to estimate the valve flow coefficient. Historical production data from
the petroleum platform Edvard Grieg is used for model validation. Additionally, a mechanistic
and a data-driven model are constructed for comparison of performance. A practical framework
for development of models with varying degree of hybridity and stochastic optimization of its
parameters is established. Results of the hybrid model performance are promising albeit with
considerable room for improvements.
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1. INTRODUCTION

For a petroleum asset to succeed economically, the opera-
tors have to make crucial decisions regarding optimization
of the asset. Knowledge regarding the multiphase flow
rates in the asset is therefore of high importance. The flow
rates may be obtained with deduction well testing, test
separators and multiphase flow meters (MPFM), however,
these methods are costly and MPFMs call for well inter-
vention upon failure (Marshall and Thomas, 2015). An al-
ternative is virtual flow meters (VFM) that take advantage
of measurements to describe the input-output relationship
of a system with a mathematical model (Toskey, 2012).

There are several types of VFM models. Dependent on the
amount of available process data and prior knowledge of
the system, the types may be placed on a scale ranging
from mechanistic models (M-models) derived from first-
principles, to data-driven models (DD-models), which are
generic mathematical models fitted to input-output data
(Stosch et al., 2013), see Fig. 1. Often, the two extremes are
called white-box and black-box models, with reference to
the extent of prior knowledge about the system, for exam-
ple physical interpretation of parameters and relationship
between variables. The models in between are hybrid mod-
els (H-models) or gray-box models, which utilize modeling
techniques from both fields and have a mixture of physical
and non-physical parameters.

In this research, an H-model of a well production choke
is developed using historical production data from the
petroleum platform Edvard Grieg (Lundin Norway, 2019).
In addition, an M-model and a DD-model are developed
for comparison of performance. A practical framework

facilitating development of models with varying degree of
hybridity and stochastic optimization of model parameters
is constructed and conveniently enables future research
into the field of hybrid modeling. Background into VFM
modeling and the contributions of this research is given in
Section 2, the three model types of the production choke is
presented in Section 3, the practical framework is outlined
in Section 4, the Edvard Grieg case study is presented in
Section 5, before simulation results and a conclusion is
given in Sections 6 and 7.

2. BACKGROUND

2.1 Virtual flow meter modeling approaches

The most common way to model VFM in today’s oil and
gas industry are with M-models, where some well known
commercial VFM are Olga, K-Spice and FlowManager
(Bikmukhametov and Jäschke, 2020). A great advantage
with M-models is their way of representing prior knowl-
edge through the use of first-principles, which leads to
interpretable parameters and usually good extrapolation
abilities. However, in order for M-models to be computa-
tionally feasible, model simplifications are usually a ne-
cessity and plant-model mismatch is unavoidable (Solle
et al., 2016). Additionally, in complex processes, unknown
physical relations are ofttimes present and difficult to
capture. VFM with DD-models have shown promising
performance suitable for real-time monitoring, without the
need of prior knowledge about the system (AL-Qutami
et al., 2018). Further, unknown phenomena may be cap-
tured if reflected in the process measurements. However,
DD-models are data hungry (Fig. 1), they struggle with
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Fig. 1. Range of VFM models from mechanistic to data-
driven, white-box to black-box.

Fig. 2. Illustration of hybrid model variants. Serial H-
models (type 1) and parallel H-models (type 2).

extrapolation in unseen operational settings, parameters
generally lack physical interpretation and incorporating
process constraints may be challenging, although exis-
tent dependent on the DD-method (Pitarch et al., 2019).
Several industrial and academic M- and DD-models are
reported in Mokhtari and Wlatrich (2016); Balaji et al.
(2018); AL-Qutami et al. (2018); Bikmukhametov and
Jäschke (2020) and references therein.

An in-between solution designed to utilize the best of both
worlds are H-models. First, notice that the expression ”H-
models” is widely used in literature for other concepts than
combinations of M- and DD-models. Further, one should
differ between a hybrid model development procedure and
a hybrid model in application. To clarify, most M-models
use real data for parameter estimation. Thus, these models
are hybrid in their development procedure, however, after
development, parameters are fixed, and the model in
application is an M-model. Likewise, a DD-model trained
on generated data from an M-model would be hybrid in
development, although not in application. Therefore, in
this article, we define an H-model as follows:

Definition A hybrid model combines equations from
first-principles with generic mathematical structures, both
in model development and application.

Following the definition, an H-model is fundamentally
categorized in two ways, serial or parallel, see Fig. 2.
Examples of serial models are online (that is, at each
new state) parameter estimation with a DD-model (1a),
a DD-model to capture unknown physical phenomena or
modeling errors (1b) and physical equations utilized to
construct specialized features as input to the DD-model,
called feature engineering (1b). A parallel H-model (type
2) would be achieved if a composition of M- and DD-
submodels are connected or used in an ensemble model.
Naturally, combinations of the two fundamental ways
will also be an H-model. Expectantly, compared to an
M-model, the H-model should have an increased ability
to capture unknown phenomena, yet have better inter-
pretability than a DD-model through the inclusion of prior
knowledge and physical parameters. Generally, the DD-

part in the H-model will be smaller (in terms of number of
parameters) than in a DD-model and should thus require
fewer data samples to obtain a satisfactory approximation
of the process (Psichogios and Ungar, 1992), see Fig. 1.

2.2 Hybrid models in literature

Some of the earliest reported H-models are within the field
of chemistry (Psichogios and Ungar, 1992; Kramer et al.,
1992). However, H-models for VFM are rare although
some examples exist in literature. For instance, Xu et al.
(2011) used feature engineering in a neural network for
wet gas metering. Although feature engineering has shown
to boost DD-models, choosing appropriate features is
challenging (Sutton and Barto, 2018). Al-Rawahi et al.
(2012) estimated the mixture density of multiphase flow
using a neural network. However, the neural network
required the underlying primary measurements from a
MPFM, which may not be as readily available as other
measurements. Additionally, MPFM are known to require
frequent calibration and may yield high measurement error
in-between calibrations (Falcone et al., 2001). Although
not a VFM, Baraldi et al. (2014) used an ensemble H-
model to detect degradation of production choke valves.

2.3 Contributions

The contributions of this research are two-fold:

• A practical and convenient framework to facilitate de-
velopment of models with varying degree of hybridity
and stochastic optimization of the model parameters.

• A hybrid VFM model for production chokes, devel-
oped and validated utilizing real historical production
data with readily available measurements such as
pressures, temperatures and choke openings.

It must be specified that the main ambition of this re-
search has been to establish a convenient framework for
development and utilization of hybrid models. In addition,
this research attempts to highlight that H-models may
offer advantages over M- and DD-models. Therefore, only
one type H-model (type 1a) with parameter estimation
using a neural network in an existing M-model has been
developed. However, a notable feature with the framework
is that, regardless of the hybrid model structure, the model
may be trained requiring only measurements of the output
variable.

3. CHOKE MODELS

A production choke may be illustrated as in Fig. 3, where
the volumetric oil flow rate, Qo, will be estimated using
nearby measurements; pressures (p), temperatures (T ) and
choke opening (z). Three model types have been devel-
oped, M-, H- and DD-model. In short notation, these are
represented with ŷξ = fξ(xξ;θξ) where ξ ∈ {m,h, dd},
ŷξ = Qe

o is the estimated oil flow rate, fξ are the set
of model equations, xξ are the input measurements and
θξ are learnable model parameters. In the model develop-
ment, also called training procedure, an optimization algo-
rithm finds the θξ that minimizes the deviation between
estimated (Qe

o) and existing measurements (Qm
o ) of the

volumetric oil flow rate, see Section 4. The following Sec-
tions (3.1, 3.2, 3.3) briefly explain the three model types
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Fig. 3. Illustration of the well production choke

and Table 1 gives an overview of inputs and parameters to
the three models and highlights the difference between the
M- and H-model, in this case the form of the Cv-curve.

3.1 Mechanistic model

The M-model is from Kittelsen et al. (2014), chosen for its
simplicity, and described with the equations (1)-(7). More
widespread choke models exist (e.g. Sachdeva, Hydro, Al-
Safran, see Haug (2012) and references therein) and should
be experimented with in future work.

Qo =
woṁ

ρo,ST

[
Sm3

h

]
(1)

ṁ = NCv(z)
√
Y 2ρm(p1 − p2)

[
kg

h

]
(2)

Y 2 = (1− 1

3

xlim
xTP

)2
xlimp1
p1 − p2

[−] (3)

1

ρm
=
wg
ρg

+
wo
ρo

+
1− wg − wo

ρw

[
m3

kg

]
(4)

ρg =
Mwp1
zgRT1

[
kg

m3

]
(5)

xlim = min (xP , xTP ) [−] (6)

xP =
p1 − p2
p1

, xTP =
p1 − p2
p1

|c (7)

Two important assumptions are those of frozen flow and
incompressible liquid; the mass phase fractions, w =
[wg, wo, ww] and liquid densities ρo and ρw are constant
in a given operating point (ST for standard conditions).
For this model, the valve flow coefficient; Cv(z), is de-
termined with linear interpolation between a given set of
test points, which are usually from lab-experiments with
water, yet calibrated to the multiphase flow once in place.
Further nomenclature may be found in Kittelsen et al.
(2014). The learnable model parameters are chosen to be
θm = [ρo, ρw, a], where a allows the Cv(z) to be shifted;
Cv,new(z) = aCv,old(z).

3.2 Data-driven model

The DD-model is a fully-connected, feed forward neural
network (NN) with the Rectified Linear Unit (ReLU) as
activation function on each layer. See e.g. Balaji et al.
(2018) for description of neural networks. The learnable
parameters are the weights and biases on each layer,
θdd = [Wdd, bdd].

3.3 Hybrid model

The H-model (type 1a, Fig. 2) is represented with the
same equations as for the M-model (1)-(7), but with the
Cv obtained from a fully-connected, feed forward, NN
with ReLU as activation function on each layer. The mass
fractions were included as inputs to the NN in an attempt
to have the Cv-curve reflect well-specific properties. Thus,
the learnable parameters are θh = [ρo, ρw,Wh, bh].

Table 1. Overview of parameters and inputs
and overview of the Cv-curve form

M-model H-model DD-model

θ ρo, ρw, a ρo, ρw, Wh, bh Wdd, bdd

x
[p1, p2, T1,
z, wg , wo]

[p1, p2, T1,
z, wg , wo]

[p1, p2,
T1, T2,
z, wg , wo]

Cv(x′)
Linear interpolation
x′
m = [z]

NN
x′
h = [z, wg , wo]

n.a.

Fig. 4. The forward pass illustrated for the three model
types

4. MODELING FRAMEWORK

To easily investigate different model types, a practical
framework utilizing machine learning techniques is con-
structed 1 . The framework enables a smooth transition
between training a fully M-model to a fully DD-model. It
consist of several parts and will be defined in the following.

4.1 Defining the model

This part enables a convenient way to implement mod-
els with varying degree of hybridity. Firstly, the model
parameters must be defined, either as single, learnable
parameters, as for the physical parameters, or as NN’s
with weights and biases. Thus, a model will effortlessly
move on the gray-scale (Fig. 1) dependent on the defined
parameters. Thereafter, the forward pass, the propagation
of input data through the model, will be defined as a com-
putational graph, enabling access to the model derivatives
through automatic differentiation. The forward pass for
the different models is illustrated in Fig. 4. A particularly
appealing property with this framework is that measure-
ments of the Cv are not required as the model is trained
on the output, Qo.

4.2 Defining the optimization problem

Once the model is defined, a general optimization problem
to find the θξ that minimizes deviation between the model
estimates ŷξ = Qe

o,ξ = fξ(xξ;θξ) where ξ ∈ {m,h, dd} and
the measurements y = Qm

o may be set up as

θ̂ξ = arg min
θξ

J(θξ,λξ)

= arg min
θξ

(
1

n

n∑
i=1

(
y(i) − fξ(x(i)

ξ ;θξ)
)2

+
1

n

p∑
j=1

λj,ξ(θj,ξ − µj,ξ)2
) (8)

1 We have utilized PyTorch, but other possibilities exist such as
TensorFlow.
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The first term in eq. (8) is the mean square error (MSE)
and the second is an `2-regularization term with regular-
ization factors λi. For the physical parameters, the goal
of regularization is to penalize deviation of the param-
eters from a prior (expected) value, µi, and maximum
a posteriori (MAP) estimation has been set up to auto-
matically calculate the λi factors, see Section 4.3. For the
NN parameters, common practice is followed and µi is set
to zero. If Qm

o are available from different measurement
sources, additional MSE terms may be added and weighted
according to the uncertainty in the measurement source.
In this research, only measurements from a MPFM has
been utilized.

The framework solves the optimization problem in eq. (8)
using iterative gradient-based optimization. The update
formula may be stated as follows

θk+1
ξ = θkξ − αkM(xk

′

ξ ;θkξ ,λξ) (9)

where αk is the learning rate (or step-size), xk
′

ξ is a subset
of the data samples and M is the set of equations cal-
culating the step direction. Different algorithms may be
selected, such as stochastic gradient descent (SGD), Adam
among others (Bottou et al., 2018). Stochastic gradient-
based optimization algorithms has the advantage of being
well suited for large scale models, either in terms of large
data-sets or many parameters, where other optimization
algorithms utilizing linesearch may be to computationally
expensive (Bengio, 2012). In SGD, M = ∇θJ̃(x;θk,λ),

where ∇J̃ may be calculated with different number of
samples (batch size). Knowing which optimization algo-
rithm yields the best result is challenging as it might
be problem dependent. Therefore, the framework promote
investigation of different optimization algorithms. In this
research, Adam is used for all models.

4.3 Calculation of regularization parameters

The λi regularization factors for the physical parameters
may be automatically calculated through MAP estima-
tion. If one assumes a model of the form

y = f(x; θ) + ε ε ∼ N (0, σ2
ε ) (10)

the MAP estimation may be set up as follows utilizing
Bayes’ rule, where (X, y) is the collection of data points

θ̂MAP = arg max
θ

(log p(y|X, θ) + log p(θ)) (11)

If one additionally assumes independent Gaussian priors
of the parameters θi ∼ N (µi, σ

2
i ), the MAP estimation

will result in, after some rearrangements,

θ̂MAP = arg min
θ

( n∑
i=1

(
y(i) − f(x(i); θ)

)2
+

p∑
i=1

σ2
ε

σ2
i

(θi − µi)2
) (12)

Dividing by n and setting λi = σ2
ε /σ

2
i , the MAP estimation

will be the same as the estimate in eq. (8). The σi may be
determined based on physical bounds and if σε is known, λi
is automatically calculated. In practice, σε must be tuned,
however, the number of coefficients to determine decreases.

5. CASE STUDY - EDVARD GRIEG

Historical production data from Edvard Grieg has been
utilized in the model development procedure and to ana-
lyze performance of the models. In addition to pressures,
temperatures, and choke opening (see Fig. 3), measure-
ments from a MPFM located upstream the choke restric-
tion was used for training the model, keeping in mind that
MPFM measurements may be faulty and require frequent
calibration (Falcone et al., 2001). Future work should
include well-tests which in general have higher accuracy
than MPFM measurements. The production data are from
10 oil wells, yielding a total of 30 models, over a period
of 1248 days. Consequently, the assumption of constant
physical parameters may be a rough approximation and
future work should consider updating the models at certain
intervals in time to account for changes in the true process.

The data was preprocessed in two steps before performing
modeling. First, the raw production data was processed
by Solution Seeker’s data squashing technology (Grim-
stad et al., 2016). The data squashing algorithm parti-
tions the data into intervals of steady-state operation.
The data in each interval is then compressed to mean
values using statistics suitable for time-series data. The
result is a compressed data set of steady-state operating
points, suitable for steady-state modeling. In the second
preprocessing step, samples considered invalid, such as
samples with unrealistically large well head pressures or
negative flow rates, were removed and some samples were
slightly modified, for instance small negative flow rates,
where measurement noise was the likely cause of error.
The second step resulted in a variable number of samples
per well, in the range 612-2175. Further, the mass fractions
were calculated using MPFM flow rates and standard den-
sities. In an industrial setting, the mass fractions are often
calculated from sparse well-test samples, thus to mimic
this setting, a mass fraction update time of 30 days was
employed, using an average of the last 20 samples.

The data set of each well was divided into two, training
(75%) and test (25%), where 15% of the latest training
data was used as a validation set to decide upon the hyper-
parameters in the training procedure. An ambition was for
the three model types to generalize well across all wells of
the asset. Consequently, the same set of hyperparameters
was used for a model type, instead of individual tuning
of each model type for each well. However, one should
expect a lower overall error by individual tuning due to
dissimilar well operating conditions and variable sample
numbers, and this should be considered in future work.
The average root mean square error (RMSE) and average
mean absolute error (MAE) of the 10 wells were monitored
and the best set of hyperparameters was chosen based on
the minimum obtained averages. However, if prominent
overfitting occurred in a well for a set of hyperparame-
ters, that is, if the validation error increased when the
training error decreased towards the end of training, the
next best set of hyperparameters was chosen. Practical
recommendations from Bengio (2012) was followed in the
tuning process.

For all models, the learning rate (α) was thoroughly
experimented with as this often is the most important
hyperparameter to tune (Bengio, 2012). Further, for the
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M-model, the physical parameters had to converge within
the specified bounds, thus, the number of epochs (E),
that is, the number of loops through the training set,
and σε were tuned thereafter. For the H-model, both
physical and NN parameters had to be found. However,
E may be high and the NN architecture (width/depth)
large without leading to overfitting of the NN as long as
regularization of the NN parameters is applied (Bengio,
2012). Hence, E was set sufficiently high and σε adjusted
for convergence of the physical parameters within bounds,
the width/depth was set to 20/2 and combinations of α
and the NN regularization factor, λi,nn, were tested. For
the DD-model, the same recommendations were followed.
The E was set high and combinations of α and λi,nn
investigated. The width/depth was set to 70/2. Lastly, the
batch size (B) is often tuned independently of the other
hyperparameters (Bengio, 2012) and was thus tuned last.
Even though considerable effort was put into fair tuning of
the three models, a Bayesian optimization approach will
be investigated in the future to avoid (non-intentional)
advantage to either model.

An overview of the final hyperparameters are given in
Table 2. Observe that the M-model required a larger σε
than the H-model for the physical parameters to converge
within specified bounds, indicating that the H-model ac-
counts for some of the measurements noise with the DD-
part. Further, the best performance for the H-model was
obtained with a low batch number, however, only small
differences in average error lead to this choice.

Table 2. Overview of the final model hyperpa-
rameters

M-model H-model DD-model

E 5000 2000 2000
B 150 32 150
α 0.01 0.01 0.01
σε 25 10 -
λi,nn - 0.01 0.001
width/depth - 20/2 70/2

6. SIMULATION RESULTS

The simulation results are shown in Fig. 5, where the
RMSE and MAE of the test set for the 10 wells are
illustrated, and Fig. 6 which is a cumulative deviation plot
(CDP) (Corneliussen et al., 2005) indicating the accuracy
of the developed VFM models, that is, how many of
the test points fall within a certain deviation from the
measurement. There are several interesting observations
to be made from the results. Firstly, notice the extreme
outlier that is present in the DD-model performance in
Fig. 5. The outlier is caused by one of the wells which had
an operational setting very different from the setting in
the training set. As mentioned in Section 2, DD-models
may struggle with extrapolation in unseen operational
settings which may explain the outlier. In that case, the
results indicate that the H-model has preserved some of
the extrapolation power of the M-model which do not
have the extreme outlier. However, despite the H-model
obtaining the lowest errors for some of the wells, the M-
model performs better than the H-model due to less spread
between the quartiles. Now, the only difference between
the two models is the form of the Cv-curve. This indicates

M-model H-model DD-model
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MAE

Fig. 5. Boxplot overview with median for the three model
types across the 10 wells.
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Fig. 6. Cumulative deviation plot of all test samples across
the 10 wells.

that our prior belief of the Cv-curve in the M-model was
good and that no flexibility was added to the H-model
by having the Cv as an NN. Naturally, these results are
preliminary and further investigations are necessary. In
particular, different H-model variants may better leverage
the advantages of both M- and DD-models.

Generally, the results show a higher error than expected.
Other studies have reported almost 90% performance for
20% deviation in the CDP (e.g. AL-Qutami et al. (2018)),
whereas in this paper about 70% performance for 20%
deviation is achieved. There may be several causes for
the large error. Firstly, preprocessing of the data could
be improved by for instance further outlier removals.
In addition, MFPM measurements was used for mass
fraction calculation and in training despite a possibility
of being faulty in between calibrations. Further, the mass
fractions was updated every 30 days to mimic an industrial
setting, however, in training, continuous mass fraction
updates could be utilized. Hence, future work should
include measurement sources with higher accuracy, such
as well-tests, and analyze performance with continuous
mass fraction updates. Secondly, the model types were
generalized across all wells and improved results would
most likely be achieved with individual tuning. Further,
utilization of a more accurate mechanistic choke model
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or optimization of additional physical parameters may
decrease the error in the M- and H-model. Thirdly, the
number of days for which the models are used in prediction
should be taken into account. For some of the wells, the
test set covered more than 200 days, whereupon the true
process could have changed significantly and the models
lack validity. Future work should consider online training
of the models at regular intervals in time. Nonetheless,
the main goal of this research was not to find exceptional
models, but to illustrate that an H-model may offer
advantages over M- and DD-models and to establish a
framework for convenient future research.

7. CONCLUSION

Results in Section 6 indicate that hybrid modeling is
promising and may offer advantages over both mechanistic
and data-driven modeling. However, results are prelim-
inary and there is considerable room for improvements.
Future work should put more effort into preprocessing of
the data set, analysis of the mass fraction calculation influ-
ence on performance and inclusion of well tests in training
and validation. Further, individual tuning of each well
should be investigated and the models should be tested
with different data sets, for instance from other petroleum
assets. Last but not least, future work should explore
different hybrid model variants, for which the presented
framework is convenient and highly suitable.
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