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Abstract: State estimation for a class of nonlinear systems using a network of distributed
observers is dealt with in this paper. We propose a network of observers, each of which has
its own local measurements which may not be sufficient for observability of the system, while
the joint measurements of the sensors in the network guarantees the observability. We derive
sufficient conditions on the proposed observers such that the estimated states of each observer
asymptotically converge to the states of the system using local measurements and the estimates
of a subset of observers in its neighborhood. Accordingly, it is assumed that each observer
has access to the estimates of its neighbors via a communication network. The main problem
of existing distributed state estimation strategies in the literature is their limitation to linear
systems or to nonlinear systems with observable nonlinearities (by considering nonlinearities as
states to be estimated). However, based on the proposed strategy, distributed state estimation
of a more general class of nonlinear systems can be devised. A numerical example is provided
to evaluate the accuracy of the obtained results.

Keywords: Distributed State Estimation, Joint Observability, Lipschitz Nonlinear Systems,
Lyapunov Analysis.

1. INTRODUCTION

In recent years, there has been a remarkable growth of
large-scale complex systems such as smart power grids,
water networks, industrial plants, etc (Lin et al., 2017;
Sanz et al., 2012; Stadelmann et al., 2019). The states
of such systems are usually monitored by sets of local
sensors distributed over the whole system where the sets
of the sensors jointly guarantee the observability of the
whole system (none of the local sensors may guarantee the
observability). If the estimation procedure is conducted
in a centralized way, the problem of high computational
and communication costs and the delay of information
exchange would arise. Therefore, the observation of a
large-scale system is desired to be solved in a distributed
manner. In this condition, the objective is to estimate the
entire states of the system by each local observer whose
available information is the local measurements and the
state estimates of its neighboring observers received via a
communication network.

The main idea of distributed observers existing in the lit-
erature is the extension of the classical linear observers to
distributed networks by considering relative state estima-
tion of the observers in the design. For instance, in (Olfati-
Saber, 2007, 2009; Kamgarpour and Tomlin, 2008), by
extending the classical Kalman filter design to distributed
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sensor networks, distributed estimation schemes were pro-
posed. In (Farina et al., 2010), a distributed estimation
algorithm based on a moving horizon estimation paradigm
was presented. A suboptimal consensus-based distributed
filtering scheme was proposed in (Matei and Baras, 2012).
In (Shen et al., 2010) and (Ugrinovskii, 2013), robust
distributed H∞-consensus filters designs were developed.
In (Kim et al., 2016) and (Han et al., 2019), Luenberger-
type distributed state observers were presented. In (Mi-
tra and Sundaram, 2018), a distributed observer design
based on the idea of observable canonical decomposition
was devised. In (Park and Martins, 2017), by introduc-
ing augmented states for distributed estimation, necessary
and sufficient conditions for distributed estimation were
derived, and in (Wang and Morse, 2018) and (Wang et al.,
2019), a family of distributed observers to estimate a
system states in an arbitrary rate were addressed.

In addition to the above-mentioned studies devoted to lin-
ear systems, few studies have been devoted to distributed
estimation in nonlinear systems (Ding et al., 2012; Hu
et al., 2015; Liang et al., 2016, 2011; Wang et al., 2015,
2016). However, the main assumption of those studies
was that the available measurements for each observer
guaranteed the observability of all the states of the system.
Indeed, the main objective of the introduced approaches in
(Ding et al., 2012; Hu et al., 2015; Liang et al., 2016, 2011;
Wang et al., 2015, 2016) was distributed filtering such that
a desired stochastic performance via a sensor network was
achieved. Moreover, in (He et al., 2018) and (He et al.,
2020), distributed state estimation in jointly observable
nonlinear networks was considered. The main assumption
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of those results was the knowledge of the stochastic prop-
erties of the rates of the changes of nonlinearities such that
the nonlinearities could be estimated as states. However,
that assumption might not have been practical in several
practical scenarios, because nonlinearities are functions of
the states and the states may not be accessible.

In this paper, a distributed state estimation strategy for
a class of nonlinear systems is proposed. We design a
network of distributed nonlinear observers, each of which
has access to local measurements which are not suffi-
cient for observability of the system, while the ensemble
of all the measurements in the network guarantees the
observability. Based on the Lyapunov stability criterion
and linear matrix inequalities (LMIs) arguments, sufficient
conditions on the observers to guarantee local estimation
of the states of the system by each observer are obtained.
In summary, compared with the existing results in the
literature devoted to distributed estimation in nonlinear
systems, the main contributions of the paper are as follows:

- In contrast to the results of (Ding et al., 2012; Hu
et al., 2015; Liang et al., 2016, 2011; Wang et al.,
2015, 2016), we assumed that the local measurements
of each observer may not guarantee the observability
of the system, and the ensemble of the measurements
in the network guarantees the observability (some
observers may even have no local measurements).

- Despite the results of (He et al., 2018) and (He et al.,
2020), the rates of the changes of the nonlinearities
are considered unknown (as the nonlinearities may be
functions of unmeasurable states).

It should be noted that in (Battilotti and Mekhail, 2019),
distributed state estimation of a class of nonlinear systems
with joint observably is considered. However, in that
study, the state matrix and the output matrix of the
whole system are considered in block diagonal forms,
which limited the application of the proposed observation
strategy.

The organization of this paper is as follows. In Section
2, the problem is formulated. The proposed design of the
distributed observer is presented in Section 3. Simulation
results are given in Section 4. Finally, conclusions and
future work are discussed in Section 5.

2. PRELIMINARIES

Notation, concepts and some definitions on graph theory
are presented in this section.

2.1 Notation

Throughout the paper, the following notations are consid-
ered. R is the set of real numbers. R>0 and R≥0 denote
the sets of positive and non-negative real numbers, respec-
tively. In denotes an n×n identity matrix. 0n×m is an n×m
all-zeros matrix, and 1n is an n × 1 all-ones vector. ‖ · ‖
is the standard Euclidean norm. ⊗ denotes the Kronecker
product. For a matrix A ∈ Rn×m, A−r ∈ Rm×n represents
the right inverse of A such that AA−r = In. ' represents
the isomorphic relation between two vector spaces. For a
subspace V ⊆X , V ⊥ denotes the orthogonal complement

of V . If R,S ∈X , we define the subspaces R + S ⊆X
and R ∩S ⊆X according to

R + S :={r + s : r ∈ R and s ∈ S },
R ∩S :={x : x ∈ R and x ∈ S }.

The symbol ⊕ indicates that the subspaces being added
are independent. dim(V ) denotes the dimension of the
space V . λmin(·) denotes the minimum eigenvalue of a
real symmetric matrix and λ2(·) denotes the second small-
est eigenvalue of a real symmetric matrix. For a square
matrix M , let M � 0 or M � 0 if it is symmetric
positive definite or symmetric positive semi-definite, and
diag(M1,M2, . . . ,Mn) is a block diagonal matrix com-
posed of the matrices M1,M2, . . . ,Mn.

2.2 Graph Theory

Communication among the observers is described by an
undirected weighted graph denoted by G = (N, E ,A)
where N = {1, 2, . . . , N} is a finite nonempty set of nodes
of the graph (describing the N sets of observers with
local sensors), E ⊆ N × N represents the edges of the
graph (describing communication among the nodes), and
A = [aij ] ∈ RN×N is the adjacency matrix where aij is
positive if there exists an edge between Node i and Node j,
and it is zero otherwise. Moreover, we define an undirected
graph as connected if there is path of edges between each
two nodes of the graph.

Define the Laplacian matrix associated with the graph
G as L := D − A where the i-th entry of the diagonal

matrix D is given by di =
∑N

j=1 aij . Since aij = aji, L is a
symmetric matrix. Moreover, if the graph G is connected,
the corresponding Laplacian matrix L has a simple zero
eigenvalue with the corresponding eigenvector 1N , and all
the other eigenvalues of L are positive (Ren et al., 2007).

3. PROBLEM STATEMENT

Consider a class of nonlinear systems in the form

ẋ = Ax+ f(x) +Bu,

yi = Cix, i ∈ N,
(1)

where x ∈ Rn represents the state vector, u ∈ Rm

is the control input, A ∈ Rn×n is the state matrix,
B ∈ Rn×m denotes the input matrix, f(x) ∈ Rn is a
nonlinear function of the states, and yi ∈ Rpi is the
measurement output in the i-th node. Accordingly, Ci ∈
Rpi×n is the output matrix associated with the i-th node.
In this condition, the collection of all the outputs can be
represented as

y =
[
y>1 y>2 . . . y>N

]>
with

∑N
i=1 pi = p.

Assumption 1. The communication graph associated
with the observers network is connected.

Assumption 2. The matrix A is constructed such that
the system is jointly observable, i.e., the pair (C,A) is

observable where C =
[
C>1 · · · C>N

]>
, but (Ci, A) is not

necessarily observable for all i ∈ N.
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Assumption 3. We assume that x belongs to a domain
D , such that f(x) is Lipschitz on D as follows (Khalil and
Praly, 2014; Astolfi and Marconi, 2015; Shakarami et al.,
2018):

‖f(x1)− f(x2)‖ ≤ γ‖x1 − x2‖,∀x1, x2 ∈ D ,

where γ ∈ R>0.

Considering nonlinear system (1), the objective is to
exploit the jointly observability property of the system to
design a network of distributed observers such that the
estimated states of each observer converge to the states of
the system as

lim
t→∞

(x̂i(t)− x(t)) = 0n×1, ∀i ∈ N.

The main results are stated in the next section.

4. DISTRIBUTED OBSERVERS DESIGN

In this section, the proposed distributed estimation strat-
egy for the system described in (1) is presented. Based on
(1), the local observer at Node i is given by:

˙̂xi =Ax̂i + Li(Cix̂i − yi) + f(x̂i) +Bu

+ χP−1i

N∑
j=1

aij(x̂j − x̂i), i ∈ N,
(2)

in which Li ∈ Rn×pi and Pi ∈ Rn×n denote the observer
gains designed as

Li =Ti

[
P−1io W>io
0vi×pi

]
Pi =Ti

[
Pio 0(n−vi)×vi

0vi×(n−vi) Ivi

]
T>i

(3)

where vi is the dimension of the unobservable subspace of
the pair (Ci, A), and Pio ∈ R(n−vi)×(n−vi) is a positive
definite matrix, which is designed later together with
Wio ∈ R(n−vi)×pi . Moreover, Ti ∈ Rn×n is a similarity
transformation matrix which can be represented as Ti =
[Tio Tiu] where Tiu ∈ Rn×vi is an orthonormal basis of

the unobservable subspace of (Ci, A), and Tio ∈ Rn×(n−vi)

is an orthonormal basis such that Im Tio is orthogonal to
Im Tiu for all i ∈ N. According to the definition of the
matrix Ti, one gets (Kim et al., 2016)

T>i ATi =

[
Aio 0(n−vi)×vi

Air Aiu

]
,

CiTi = [Cio 0pi×vi ]

(4)

where the pair (Cio, Aio) is observable for all i ∈ N.
The idea of performing a local observer decomposition is
inspired by the work of (Kim et al., 2016). This is crucial
to achieve the convergence of the estimation error, which
is shown later in the analysis.

Lemma 1. Consider the jointly observable system given
in (1) and the transformation matrix Ti. Define the
space of the system states as X ' Rn, and let To :=
[T1o T2o . . . TNo]. Then,

Im To = X .

Proof . According to the construction of the transforma-
tion matrix Ti, we have

(Im Tio)
⊥

=

n⋂
k=1

Ker CiA
k−1. (5)

Since To := [T1o T2o . . . TNo], it follows that (Wonham,
1985)

Im To =

( N∑
i=1

Im Tio

)⊥⊥ =

(
N⋂
i=1

(Im Tio)
⊥

)⊥
. (6)

Now, from (5) and (6), one gets

Im To =

(
N⋂
i=1

(
n⋂

k=1

Ker CiA
k−1

))⊥
. (7)

Since
N⋂
i=1

(
n⋂

k=1

Ker CiA
k−1

)
=

n⋂
k=1

(
N⋂
i=1

Ker CiA
k−1

)
,

from (7), it follows that

Im To =

(
n⋂

k=1

Ker (CAk−1)

)⊥
. (8)

According to Assumption 2, as the pair (C,A) is observ-
able, from (8), we have Im To = 0⊥ = X (Wonham, 1985),
which completes the proof. �

Before presenting the main results, we define the following
matrices:

P̃ = [P1 P2 . . . PN ] ,

Kio = −(A>ioPio + PioAio + C>ioWio +W>ioCio),

K = diag(K1o,K2o, . . . ,KNo),

M = T−ro

N∑
i=1

(
TiuAirT

>
io + TioA

>
irT
>
iu

+ Tiu(Aiu +A>iu)T>iu

) (
T−ro

)>
,

Λi = (A+ LiCi)
>Pi + Pi(A+ LiCi),

Λ = diag (Λ1,Λ2, . . . ,ΛN ) ,

ΛP =
[
Λ1 + γ(P 2

1 + In) . . . ΛN + γ(P 2
N + In)

]
,

Q = −γNIn −
N∑
i=1

(
Λi + γP 2

i

)
,

P̄ = diag
(
P 2
1 + In, P

2
2 + In, . . . , P

2
N + In

)
.

(9)

Theorem 1. Consider the nonlinear system described in
(1) under Assumptions 1-3 and the distributed observer
given in (2) and (3). Then, the estimation errors ei =
x̂i − x, ∀i ∈ N, converge to zero if the matrices Pio and
Wio, i ∈ N, are obtained from the solution of the following
LMI: [

INn
√
γP̃>√

γP̃ To (K −M)T>o − γNIn

]
� 0,

Pio � 0,

(10)

and the gain χ is chosen as follows:

χ >

∥∥Λ + γP̄ + Λ>PQ
−1ΛP

∥∥
2λ2(L)

. (11)

Proof . Considering the nonlinear system with the form
of (1) and based on the devised observer described in (2),
the differential equation describing ei = x̂i − x, i ∈ N, is
given by
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ėi =(A+ LiCi)ei + f(x̂i)− f(x)

+ χP−1i

N∑
j=1

aij(ej − ei), i ∈ N.
(12)

To analyze the evolution of the estimation errors of all the
nodes, we consider the following Lyapunov candidate:

V =

N∑
i=1

e>i Piei.

Since Pio � 0, ∀i ∈ N, V is positive definite. The time
derivation of V along (12) yields

V̇ =

N∑
i=1

e>i
(
(A+ LiCi)

>Pi + Pi(A+ CiLi)
)
ei

+ 2χ

N∑
i=1

N∑
j=1

aij (ej − ei)> ei

+ 2

N∑
i=1

e>i Pi (f(x̂i)− f(x)) .

(13)

According to Assumption 3 and since ei = x̂i−x, one gets

2

N∑
i=1

e>i Pi (f(x̂i)− f(x)) ≤ 2γ

N∑
i=1

‖ei‖‖Piei‖. (14)

Since 2‖ei‖‖Piei‖ ≤ e>i ei + e>i P
2
i ei, from (14), it can be

written that

2

N∑
i=1

e>i Pi (f(x̂i)− f(x)) ≤ γe>P̄ e (15)

where P̄ ∈ RNn×Nn is a block diagonal matrix given in (9)

and e :=
[
e>1 e>2 . . . e>N

]>
. From (13) and (15), it follows

that

V̇ ≤e>Λe− 2χe> (L ⊗ In) e+ γe>P̄ e (16)

where Λ ∈ RNn×Nn is a block diagonal matrix in which
Λi ∈ Rn×n is a symmetric matrix defined in (9). Define
the error space as E ' RNn. According to Assumption 1
and the properties of the Laplacian matrix of a connected
undirected graph, the kernel of L ⊗ In has the form of
1N ⊗ ω where ω ∈ Rn is an arbitrary vector. Now, by
letting Ec ⊆ E (dim (Ec) = n) as the null space of L ⊗ In,
we consider another subspace Er ⊆ E (dim (Er) = Nn−n),
which is the orthogonal complement of Ec of the space
E , i.e., Ec ⊕ Er = E . Suppose the vectors ec and er
are elements of the subspaces Ec and Er respectively, i.e.,
ec ∈ Ec and er ∈ Er. Therefore, from (16), one gets

V̇ ≤e>c (Λ + γP̄ )ec + 2e>r (Λ + γP̄ )ec

+ e>r (Λ + γP̄ )er − 2χe>r (L ⊗ In)er.
(17)

A necessary condition to guarantee the negative definite-
ness of V̇ is to ensure e>c (Λ + γP̄ )ec is negative definite
∀ec ∈ Ec. Since ec has the form of 1N ⊗ ω, according to
the definition of Λ and P̄ in (9), we can derive

e>c (Λ + γP̄ )ec = ω>

(
γNIn +

N∑
i=1

(Λi + γP 2
i )

)
ω. (18)

From (3) and (4), we have

Λi = Ti

[
−Kio A>ir
Air Aiu +A>iu

]
T>i (19)

where Kio ∈ R(n−vi)×(n−vi) is given in (9). Now, since
Ti = [Tio Tiu], (19) can be rewritten as follows:

Λi =− TioKioT
>
io + TiuAirT

>
io + TioA

>
irT
>
iu

+ Tiu(Aiu +A>iu)T>iu.

Then, we have
N∑
i=1

Λi =− ToKT>o +

N∑
i=1

(
TiuAirT

>
io + TioA

>
irT
>
iu

)
+

N∑
i=1

Tiu(Aiu +A>iu)T>iu

(20)

where K ∈ R
(
Nn−

∑N

i=1
vi
)
×
(
Nn−

∑N

i=1
vi
)

is a block diag-
onal matrix given in (9) and To is defined in Lemma 1.
According to Lemma 1, rank To = n, and hence To is a
row independent matrix. Therefore, there exists T−ro such
that ToT

−r
o = In. Therefore, from (20), it can be said that

N∑
i=1

Λi = −To (K −M)T>o

in which M is defined in (9). Therefore,

− γNIn −
N∑
i=1

(
Λi + γP 2

i

)
= To (K −M)T>o − γNIn − γP̃ P̃>

(21)

where P̃ is as defined in (9). According to (10) and the
Schur Complement (see (Boyd et al., 1994) for the Schur
Complement), one can conclude that

To (K −M)T>o − γNIn − γP̃ P̃> � 0. (22)

From (21) and (22), it follows that (18) is negative definite.
Moreover, since Er is the orthogonal complement of Ec, it
can be said that ∀er ∈ Er and ∀ω ∈ Rn,

e>r (1N ⊗ ω) = 0.

Thus, as 1N is the eignevector associated with the zero
eigenvalue of L, one can get that ∀er ∈ Er (Olfati-Saber
and Murray, 2004),

e>r (L ⊗ In)er ≥ λ2(L)e>r er.

Based on the above-mentioned issues, (17) can be satisfied
if

V̇ ≤ −
[
ω> e>r

] [ Q −ΛP

−Λ>P 2χλ2(L)INn −
(
Λ + γP̄

)] [ω
er

]
where Q ∈ Rn×n � 0 is defined in (9). Now, according to
the Schur Complement, to guarantee the negative definite-
ness of V̇ , the following condition should be satisfied:

2χλ2(L)INn − Λ− γP̄ − Λ>PQ
−1ΛP � 0

where the inequality condition (11) guarantees that. Ac-
cordingly, V asymptotically converges to zero, and the
proof is completed. �

Remark 1. It is worth mentioning that, of course, the
results of Theorem 1 apply to linear systems when f(x) =
0n×1. In this condition, since γ = 0, the LMI condition
(10) becomes [

INn 0
0 To (K −M)T>o

]
� 0.

Since (Cio, Aio) is observable ∀i ∈ N, Kio given in (9)
can be any symmetric positive definite matrix with proper
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Fig. 1. Network communication graph.

selection of Pio and Wio. Hence, (10) is always solvable
since we can always let

λmin(K) = min
i∈N

λmin (Kio) > ‖M‖ . (23)

Thus, by designing K based on (23), the distributed
estimation problem is always feasible for a linear system
satisfying Assumption 1 and Assumption 2.

Remark 2. It is worth mentioning that the sufficient
condition on the distributed observer design is the joint
observability of the whole system by all the available
measurements in the network. As a result, the proposed
strategy in this paper still guarantees the convergence of
the all estimation errors in the network even when for some
nodes i ∈ N, Ci = 0. In such cases, Aio, Air, and Tio
do not exist, and Aiu = In with Tiu = In. Accordingly,
Li = 0n×pi and Pi = In.

5. SIMULATION RESULTS

In this section, the effectiveness of the proposed dis-
tributed observer design is shown in a numerical example.
We consider a jointly observable nonlinear system, which
is in the form of (1) when

A =

[
2 0 1
0 0 −1
0 1 0

]
, B =

[
1
1
1

]
,

C1 = [0 0 1] , C2 = [0 1 1] , C3 = [0 0 0] ,

C4 = [1 0 0] , C5 = [0 1 0] , C6 = [0 0 0] .

By defining x = [x(1) x(2) x(3)]
>

, the nonlinear term is
given by

f(x) =

[
2 sinx(1)

0.1x(2) cosx(2)
1.5 sinx(3) cosx(3)

]
.

By considering Assumption 3, the domain D is assumed
such that γ = 2. Moreover, the nodes are assumed to be
connected by the unweighted undirected communication
graph depicted in Fig. 1 whose Laplacian matrix is given
by

L =


1 0 −1 0 0 0
0 1 −1 0 0 0
−1 −1 3 −1 0 0
0 0 −1 3 −1 −1
0 0 0 −1 1 0
0 0 0 −1 0 1


implying that λ2(L) = 0.4384.

The distributed observers are designed as (2), and based
on Theorem 1, the corresponding gains are obtained as
follows:

L1 = [0 7.86 − 15.72]>, P1 = diag(1, 2.52, 2.52),

L2 = [0 − 15.72 0]>, P2 = diag(1, 2.52, 2.52),

L3 = 03×1, P3 = I3,

L4 = [−16.67 0 − 2.97]>, P4 = diag(2.49, 2.52, 2.52),

L5 = [0 0 7.86]>, P5 = diag(1, 2.52, 2.52),

L6 = 03×1, P6 = I3,

and χ = 784. Under these conditions, the observers
estimates along with the real states of the system are
illustrated in Fig. 2. According to Fig. 2, even if (Ci, A), i ∈
{1, 2, 3, 5, 6}, are not observable, all the local observers are
capable of providing asymptotic state estimation following
the proposed nonlinear observer design.

0 0.5 1 1.5 2
Time

-10

-5

0

5

0 0.5 1 1.5 2
Time

-10

0

10

0 0.5 1 1.5 2
Time

-10

0

10

Fig. 2. Observers estimates and the states of the system.

6. CONCLUSIONS AND FUTURE WORK

A distributed observer design for a class of nonlinear sys-
tems with distributed sensors was proposed in this paper.
Each observer just had access to local measurements of
some sensors which might not have been sufficient for
observabilily of the system. It was shown that if the joint
of the measurements of all the sensors guaranteed the
observability and the proposed distributed observers could
exchange their estimates through a connected communica-
tion graph, they were able to estimate all the states of the
system by only using local measurements.

The extension of the idea to more general classes of non-
linear systems and to networks of observers with faulty
sensors are other open problems in this area to be consid-
ered as future work. Moreover, distributed state estimation
when the communication graph being time-varying is also
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an interesting topic, which is worth investigating in the
future.
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