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Abstract: This paper presents a criterion and control scheme based on the assumption of a
bound on the gradient of a field distribution which guarantees to find the global extremum
of the distribution. Mobile robots move through the search space gathering information at
points which are calculated as a minimization problem over part of the search space which is
guaranteed to include the global extremum based on the previously gathered measurements.
Position control in combination with collision avoidance drives each robot to the next position
while communicating its position to the other robots. Upon arrival, the next measurement of the
field distribution is performed and the next position reference is calculated by each robot until
the robots narrowed the search area to a single location. Previously proposed control schemes
can find single points as candidates for the global maximum but struggle to guarantee that this
point is the global extremum. Simulation results with robot models show the performance in
comparison to a naive approach.
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1. INTRODUCTION

The field of applications for robots has experienced a
growing interest in research over the last years. Different
contexts of applications are on the rise including disaster
scenarios as elaborated in Murphy (2004) and Hoon Oh
et al. (2017), logistics with cooperative vehicle like in
Peter R. Wurman et al. (2008) and military applications
as shown in Brian Yamauchi (2004). There are even more
fields of interest like inspection of buildings and agriculture
where robots can be used. For all of these fields robots
perform tasks for humans which are either dangerous,
tedious or repetitive. The usage of robot groups can cut
the time required for the completion and even compensate
the failure of robots without failing to complete the task.

One task of interest for those applications is the search of
a source of a physical quantity, also called source seeking.
Source seeking can be applied in any field which deals
with the distribution of for example gas or radiation over
an area and the goal is to find the extremum of this
distribution in the area. The scope of the traced project
includes the modeling and experimentation on a group
of robots which can maneuver together through the area
while searching for the extremum.

Works in the field tend to use a gradient based method
which tries to estimate the gradient of the distribution
and move along its direction to reach the extremum.
This method can be paired with cooperative formation
control as shown in Rosero and Werner (2014a) and Rosero
and Werner (2014b), among many others, with a fixed
communication topology for communication of position
and scalar field value. The drawback of this method is the

convergence at local extrema and therefore it can not be
applied for distributions with multiple sources of different
amplitude or disturbed distributions. A different control
scheme has to be used for those scenarios.

This leads to the task of global source seeking, meaning
the search for the highest value in presence of multiple
extrema. One possible solution is the usage of kriging, a
method which has its origins in geology and has been em-
ployed for groups of robots by for example Xu et al. (2011)
and Kahn et al. (2015). It includes the calculation of an
estimation of the distribution together with an uncertainty
and exploration of points which are probable to yield high
values according to the estimation. A problematic aspect
with this approach is that there could exist other extrema
with higher amplitude which are not found by this method.

The main contribution of this work is the elaboration of
properties which are required in order to able to find the
global maximum with an acceptable effort and develop a
criterion for the remaining search area which is guaranteed
to include the global maximum together with an according
control scheme which searches this area systematically.
The dynamic behavior of this approach is tested in simu-
lation and compared to a naive approach to give an idea
about the performance.

The rest of this paper is outlined as follows: The problem is
defined in Section 2 and the fundamentals are introduced
in Section 3. Afterwards a global source seeking scheme
revolving around the choice of waypoints in Section 4 and
a corresponding control scheme is presented in Section 5.
This global source seeking scheme is tested and compared
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in simulation in Section 6 before the conclusion in Section
7.

Notation

Iq denotes the q × q identity matrix. 1q denotes a vector
filled with ones in and dimension q. The set of p × q
matrices is denoted by Rp×q. For the i-th row and the
j-th column entry of a matrix A the notation Aij is
used. To describe the parallelism and communication, two
Kronecker extensions are used: These are M(q) = M ⊗ Iq

and M̂ = IN ⊗M .

2. PROBLEM DEFINITION

The spatial distribution ϕ of a physical quantity is to
be considered, which assigns a scalar value ϕ(x) to all
positions x ∈ Rq in a compact space D ⊂ Rq. The distri-
bution is assumed to be time-invariant and continuous. It
is further assumed that there exists a position xmax ∈ D
such that ϕ(xmax) > ϕ(x) ∀x ∈ D\xmax. These assump-
tions are extended to once continuous differentiable for the
gradient criterion and n-times continuous differentiable for
the higher-order criteria.

A group of N identical robots with index i = 1 . . . N which
are able to measure their position yi ∈ Rq and the scalar
field value ϕ(yi) are used to find xmax. The linear Model
P (s) describes the dynamic behavior of a robot which
moves through the q-dimensional space, representing a
ground (q = 2) or airborne (q = 3) robot, respectively.
Measurements of the scalar field values ϕ(yi) are taken by
sensors on the robots and are communicated together with
the corresponding positions to a predefined neighborhood
Ni of the robot.

All current measurements stored at robot i can be repre-
sented as

Si(tk) =

k⋃
l=0

{[ϕ(yj(tl)),yj(tl)]|j ∈ Ni ∩M(tl)}

where tk = k · T with sampling period T andM(tl) is the
set of robots taking a measurement at time tl.

The mission is to assure finding the global maximum of
the field distribution while trying to minimize the required
time and energy consumption and avoid collisions between
the robots.

3. PRELIMINARIES

The presentation of the findings of this work requires
some concepts already presented in the literature. These
concepts are an estimation and maximization scheme
called kriging as well as multi-vehicle systems and collision
avoidance required for unmanned aerial systems (UAS)
which are presented in the following sections.

3.1 Kriging

Kriging is a method used to estimate a field distribution
with a set of sampled points first used in the context of

geology Krige (1951). The distribution is considered to be
modeled by a function

φ : x ∈ D → φ(x) ∈ R.

The estimation φ of the distribution φ can be performed by
different methods. In the recent years a Gaussian process
model has been popularized as shown in Jones (2001). The
Gaussian process regression yields a mean value φ(x) and
standard deviation σ(x) for each position x.

This estimation can be used to explore a spatial distri-
bution of physical values using UAS by moving to new
positions and adding them to the set of sampled points.
This idea has been examined by several previous works,
some of them even search for the global maximum like
Kahn et al. (2015).

Their proposal is the usage of a minimization problem in
order to let each UAS i calculate new sampling points yr,i
using its mean value φi and standard deviation σi as

yr,i(tk) = arg min
x∈D
{Ji(x,y)}

s.t. φi(x) + b · σi(x) > fi,max(tk)

where fi,max(tk) is the position of the maximum value of

φi at time tk, b is a tuning parameter and

Ji(x,y) = |yi − x|2 −
∑
j∈Ni

α|yj − x|2

where α is a tuning parameter to weigh the distance to
the other UAS against the distance from the own current
position. This sampling point selection yields values in a
region where the sum of uncertainty and the estimated
value is higher than the maximum estimated value and
searches for positions in this region which are close to the
current position but also far away from the other UAS.

The set of measurements is updated whenever one of the
UAS reaches yr,i and new sampling points are calculated
together with a new estimation whenever the set of mea-
surements changes.

3.2 Multi-Vehicle Systems

The position control of the group of UAS used in this
work is derived from cooperative formation control. The
cooperative formation control loop shown in Figure 1
as used by Pilz and Werner (2012) and Bartels and
Werner (2014). It consists of 3 main blocks: the first
includes the Laplacian L and is not block-diagonal since
it represents the communication and in contrast, the
formation controller K(s) and agent dynamics P (s) which
show a parallel signal flow among the vehicles and are
therefore block-diagonal.

A series connection of those 3 blocks with the formation
reference signal r as well as a feedback form the control
loop. All signals in this setup are considered as concatena-
tions of the signals of each agent such as [r1 . . . rN ]T.

The Laplacian is derived from the communication topol-
ogy and graph theory. It can be defined element-wise as
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Fig. 1. Global Formation Loop from Pilz and Werner
(2012)
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Fig. 2. Cooperative Formation Loop with Integrated Coll-
sion Avoidance Algorithm

Lij =


1 if i = j and |Ni| 6= 0

1

|Ni|
if i 6= j and (i, j) ∈ E

0 otherwise

(1)

An important property of the consensus protocol is that it
only controls the relative position of the agents such that
for the position y holds:

lim
t→∞

y(t) = r + b · 1 (2)

where b denotes an arbitrary scalar value in R. This
property will later be used for collision avoidance. If L(q)

is replaced by an identity matrix of the same size INq this
property is lost and the control loop represents position
control for the UAS.

3.3 Collision Avoidance

Whenever multiple UAS move through the same space
collisions among them have to be prevented. Two popular
categories of collision avoidance schemes are rule-based like
(Atinc et al., 2013) and prediction-based like Richards and
How (2004). This work will use a rule-based approach in
the form of an artificial force field which is presented in
Gronemeyer and Horn (2019). The corresponding control
loop is shown in Figure 2.

The collision avoidance acts upon the communicated for-
mation error ẽ or in this paper where the positions are
tracked on the position error by adding a component c·|ẽ|2.
The factor |ẽ|2 weights the normalized components ci for
each UAS and ci is defined as

ci(y) =
∑
Nj

ci,j(di,j) ·R(di,j) ·
yj − yi
|yj − yi|2

where ci,j(di,j) gives the magnitude in dependence of the
distance di,j and the matrix R(di,j) the rotation such that
the resulting vector points away from UAS j in relation to
UAS i with a rotational component for small distances in
order to prevent deadlocks.

4. WAYPOINT GENERATION

The search for the global maximum and exploration of
the scalar field distribution requires information to be
gathered. The following paragraphs will show how Si
can be used to find the feasible region for the global
maximum using a priori information about the maximum
rate of change and curvature of the field distribution ϕ.
Afterwards the selection method for the next position
references for each UAS is presented.

4.1 Limited Gradient Criterion

An important aspect is the properties of the scalar field
distribution ϕ. If ϕ is completely unknown besides being
continuous and restricted to D and Si(tk) does not include
all elements of D there would be no method to determine
which point is the true global maximum. This is due to
the fact that there could be a spike in ϕ at one unexplored
location D \ Si(tk) meaning a large rate of change over
space.

One method to deal with this problem is finding an upper
limit for the rate of change in ϕ. This restriction can be
motivated by the fact that physical quantities like gas
or heat tend to distribute over time until they reach a
steady distribution. This would lead to limited directional
derivatives | δϕδxi

| < c ∀i = 1 . . . q and in turn limit the

magnitude of the gradient g to |g| < √q · c.
Using this assumption leads to the following theorem:

Theorem 1. For every set Si(tk) of measurements from a
continuous field distribution ϕ(x) with limited magnitude
|g| < √q · c of its gradient every position x ∈ D for which
holds

fpot,max(tk) = min
[ϕ(yS,i),yS,i]∈Si(tk)

ϕ(yS,i) + c(x− yS,i)
T1q

≥ max
ϕ(yS,i)∈Si(tk)

ϕ(yS,i)

is part of a set Q ⊂ D which contains all candidates for
the global maximum.

Proof. Every Element [ϕ(yS,i),yS,i] of Si(tk) can be used
to derive a zero order Taylor series for x as

ϕ(x) = ϕ(yS,i) +R1(x− yS,i)

where R1 represents the higher order terms. The upper
limit for this expression is derived by substituting the
Lagrange error term |R1(x − yS,i)| ≤ M(x − yS,i) to
find an upper bound for R1 and set M = c · 1q since the
maximum rate of change is assumed to be known. This
leads to

ϕ(x) ≤ ϕ(yS,i) + c(x− yS,i)
T1q

Applying this inequality to every element in Si(tk) yields
a set of inequalities I(x,yS,i). If the minimal value at
any position x of I(x,yS,i) is smaller than the highest
measured value ϕ(yS,i) than no possible version of ϕ is
going to yield a global maximum at this position. All
remaining y for which
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min(I(x,yS,i)) ≥ max
ϕ(yS,i)∈Si(tk)

ϕ(yS,i)

form Q ⊂ D which contains all candidate global maximum
positions.

4.2 Extension to Higher Order

The criterion presented in the last section can be extended
to higher orders of the Taylor series

Tn(x,yS,i) =
∑
α≤n

1

α!
δαϕ(x)(x− yS,i)

α.

This would require measurements or calculations of all

derivatives up to the n-th order ϕ(y)
(n)

and a limit for
the n + 1-th order derivative δn+1ϕ(x). This leads to a
criterion

min
[ϕ(yS,i),yS,i]∈Si(tk)

Tn(x,yS,i) +
∑

α=n+1

1

α!
M(yS,i)(x− yS,i)

α

≥ max
ϕ(y)∈Si(tk)

ϕ(y)

with a proof similar to the proof of theorem 1. This
criterion would give a smaller setQ for the same number of
sampling points but requires more information regarding
measurements and the limit in the higher derivatives which
might not be realistic for a scenario of UAS with limited
computational capacity and limited load.

4.3 Waypoint Selection

The selection of waypoints yr,i is a key aspect of explo-
ration. Selection should regard the information gained but
also distribute the exploration load on all UAS of the group
and consider the dynamics of each UAS as well as their
spacing.

Section 3.1 presents a selection scheme from (Kahn et al.,
2015) which fulfills most requirements, but it is not shown
that it guarantees finding the global maximum. This can
be remedied by using one of the criteria presented in the
previous section instead of φi(x) + b · σi(x) > fi,max(tk).
Additionally the spacing needs to be considered which can
be represented by the term

∆i,j = |yr,j − yr,i|2 for i, j ∈ 1 . . . N

leading to the minimization problem

yr,i(tk) = arg min
x∈D
{Ji,aug(x,y)}

s.t. x ∈ Q ∧ ∆i,j < d2 for i 6= j

which minimizes

Ji,aug(x,y) = |yi−x|2−
∑
j∈Ni

α|yj −x|2− β · fpot,max(tk)

with d2 as a threshold for the collision avoidance as de-
scribed in Gronemeyer and Horn (2019) and β as a tuning

IN ·q K̂(s) P̂ (s)
u y

·| |2

c(y)

e−Tts

WS,i

rp ep

c

−

Fig. 3. Cooperative Formation Loop with Integrated Coll-
sion Avoidance Algorithm and WS,i

Initialize

add all y0,i

to all Si

rp,i = yi ?

add yi
to all Si

rp found?

abort

set rp keep rp

y

n

y

n

Fig. 4. Flow Chart for Waypoint Generation WS,i

parameter for the weighting of positions with potentially
high values against the other two terms. This choice of
boundary conditions for the minimization ensures that the
waypoints are not too close together in order to prevent
deadlocks caused by the cancellation of the position con-
trol and collision avoidance. The term fpot,max(tk) gives
the opportunity to prioritize points with potentially high
values in ϕ(x).

In the case that x ∈ Q ∧ ∆i,j < d2 for i 6= j
is empty the UAS should move sufficiently far away from
Q and stop the exploration since it can’t explore without
possibly disturbing another UAS in its search.

5. CONTROL SCHEME

The general control scheme is presented in Figure 3.
A position control loop is created by the substitution
of IN ·q for Lq. The position control loop is combined
with collision avoidance and a feedback for the position
reference rp over the waypoint generation block WS,i
creating a second feedback loop. WS,i generates event
based position references in dependence of yi and Si
following the flowchart in Figure 4.

In the initialization phase, the starting positions and the
corresponding measurements are added to Si and the first
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Fig. 5. Spatial distribution ϕ(x)

rp is calculated by solving the minimization problem from
section 4.3. Afterwards, the position control continues
until a UAS reaches its position reference. In this case
all Si(tk) as well as rp is updated and every UAS with
updated Si solves the minimization problem.

If the update of rp does not yield a new position reference
for a UAS this specific UAS stops exploring and the others
continue with their new position reference. This happens
when Q is empty or the area spanned by ∆i,j < d2
fully covers Q. It is important to ensure that the UAS
moves sufficiently far away from Q after finishing their
exploration to not interfere with the UAS which are still
exploring.

6. SIMULATION

An examination of the proposed source seeking scheme
is performed in this section. It includes the simulation
setup which is used with a naive method and the proposed
method and the results are compared afterwards to give
an idea of how much improvement can be achieved in com-
parison to a naive method. The simulations are performed
with MATLAB R©/Simulink R©.

6.1 Simulation Setup

The simulation is performed on a squared area of 400m2.
The area is discretized to a grid with spacing of 0.5m.
The field distribution is assumed to be a superposition of

2 multivariate normal distributions at [0 0]
T

and [5 −6]
T

with a diagonal variance matrix with values 10 and 20. The
amplitudes are 3 and 2.5 and the full distribution shown
in Figure 5.

The exploration is performed by N = 3 robots model
youBot by KUKA as an example for UAS. They are mod-
eled as second-order systems Tyou(s) with an integrator
since they are velocity controlled. Their dynamics are
decoupled since the youBots can move omnidirectionally.
This yields a linear System P (s) = Tyou(s) · 1

s . It is
important to note that the velocity is limited and therefore
the system input is limited to ±0.6ms as well. Further
details can be taken from (Gronemeyer and Horn, 2019).
Their starting positions are

-10 -5 0 5 10
-10

-5

0

5

10

Fig. 6. Simulation Results of Robot Trajectories

y0 = [−9 −10 0 −10 9 −10]
T

in order to display a scenario where the robots are deployed
at the edge of an unknown and dangerous area. The
communication of positions for the collision avoidance
and waypoint generation is full, meaning all positions are
available for all robots. The tuning parameters for the
minimization problem are set as α = 1 and β = 4.

The performance of the proposed method is compared
against a naive global source seeking scheme. This naive
approach sets up predefined sampling points as a grid over
the search space. The spacing of the grid points is chosen
for the simulation. The search area is split up such that
each robot explores the same number of gridpoints which
are closest to its starting position. The robots are supposed
to move to the nearest unexplored grid point until all
grid points are explored. It is ensured that the current
rp is spaced in a manner which avoids deadlocks caused
by collision avoidance.

6.2 Results

The simulation results for the setup from the previous
section and use of the proposed algorithm utilizing the
limited gradient criterion are shown in Figure 6. The
starting positions are marked with stars and the final
positions marked with circles. The trajectory of robot 1
is shown as a solid line, for robot 2 as a dashed line and
for robot 3 as dash-dotted.

It can be observed that all of the robots move to the
opposite side of the area at first since the potential
maximum value is very large there initially due to the
limited gradient criterion. Afterwards the robots explore
different regions of the search space. One robot ends up
exploring the region around the origin, another one the
region around the local maximum while the other searches
in the rest of the search space. The first robot finishes its
movement after 378 seconds while the last robot finishes
after about 450 seconds.

The influence of all factors of the minimization problem
can be observed in the trajectories. The influence of
the potential maximum term dominates at the beginning

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

15501



favoring exploration over the other terms. The factor of
the distance between the robots causes them to divide the
search space among them and when they arrive at a region
with a small change in scalar value the factor of distance
to the current position dominates.

When examining the difference in finish time it is evident
that not all robots are used until the end. The unused
ones could perform other tasks or a second phase could be
triggered switching to a control scheme that can utilize all
robots in a small space in order to find the exact position
of the global maximum.

6.3 Comparison

The comparison against the naive approach will be per-
formed by comparison of performance measures shown in
Table 1 where tend is the time where the last robot stops.∑
|ui|2 gives the sum of the squared control signal values

over the complete time and summed over all robots which
gives an indication about the required energy since ui is
the velocity reference. |Si| is the total number of sampling
points which is identical for all i.

Table 1. Performance measures

tend

∑
|ui|2 |Si|

Naive 4004 54 1681

Limited Gradient 452 40 105

The numbers show that the time, as well as number of
sampling points, is about a factor 10 lower if the limited
gradient criterion is used in this simulation. The consumed
energy is not that much lower since the average distance
between the sampling points is greater. This factor can
be influenced by the weighting parameters for Ji and
will lead to a trade-off between required time and energy
used. All in all the approach utilizing the limited gradient
criterion dominates the performance measures of the naive
approach.

7. CONCLUSION AND OUTLOOK

This work presented a global source seeking scheme which
can guarantee that the exploration yields the global max-
imum using UAS exploring a field distribution with a
limited gradient. This was achieved by the establishment
of a criterion that yields a region of candidates for the
global maximum and exploring this area systematically
until the global maximum is found. Simulations show that
this approach achieves better performance than a naive
approach.

Further work will include the implementation on the men-
tioned youBot platform and the handling of uncertainties
from measurements of the position and scalar field value.
Another interesting idea is the development of a second
phase of the exploration which can increase the exploration
speed in the phase where not all of the robots contribute
to the search anymore.
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