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Abstract: In this paper, we present a novel hybrid dynamical model for hysteretic actuators
consisting of spring-loaded Shape Memory Alloy (SMA) wires. The hybrid description is
obtained by reformulating a set of physics-based ODEs resulting from the Müller-Achenbach-
Seelecke (MAS) model of SMA material. Although the MAS model provides an accurate
and consistent description of the system hysteresis, its use for simulation and control is
limited due to the highly nonlinear and stiff nature of the resulting ODEs. By means of the
hybrid reformulation, the numerical stiffness can be effectively eliminated while keeping all the
benefits of the physics-based description. The different operating modes and transitions are first
described from a physical point of view and then used to develop the flow and jump dynamics
of the resulting hybrid model. Numerical simulations show that both hybrid and physics-based
models provide nearly identical results. In addition, it is observed that the former requires
simulation times that are up to two orders of magnitude smaller than the latter.
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1. INTRODUCTION

Thermal Shape Memory Alloys (SMAs) are a class of
smart materials that contract if exposed to a heat source.
This phenomenon is caused by a thermally-induced change
in the crystallographic structure of the material. If the
heat source is removed, the initial shape can be recovered
after the application of an external force (provided, e.g.,
by a spring load). When used as actuators, SMAs are
commonly shaped as wires made of Nickel-Titanium alloys.
This specific shape allows to effectively heat the material
via the Joule heating produced by the application of
an electric current. Their intrinsic characteristics such as
large strain (up to 4-8%), high energy density, lightweight,
and self-sensing capability make them ideal candidates for
the design of new technologically competitive transducers
(Lagoudas (2008)). Typical SMA applications range from
industrial valves (Tiboni et al. (2011)) to bio-inspired
robots (Cianchetti et al. (2014)), to mention a few.

Although SMAs have several advantages over conventional
actuators, they exhibit a strongly nonlinear behavior char-
acterized by a rate-, temperature-, and load-dependent
hysteresis. Several models have been developed to describe
the hysteretic characteristic of this particular material.
Many of them are based on mathematical operators such
as in Toledo et al. (2017) and Shakiba et al. (2019), and
allow to model the system in a given operational con-
? Research by Francesco Ferrante is funded in part by ANR via
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dition. In contrast, physics-based models appears highly
attractive to describe SMA wires under different operating
conditions (e.g., in terms of environmental temperature,
loading force, and input rate), thus ensuring robustness for
model-based controllers (Lagoudas (2008); Seelecke and
Müller (2004)). On the other hand, the high level of detail
of physical models results in an increase in complexity that
makes numerical simulation and control of such systems
highly involved. To address these issues, some authors have
investigated the possibility of describing hysteresis in a
hybrid dynamical setting (e.g., Janaideh et al. (2012)). In
this way, analysis and control of hysteretic systems can be
conducted in a systematic and robust way, based on the
tools available from the hybrid framework (Goebel et al.
(2012)). In particular, if a physics-based hysteresis model
is used as a starting point for the development of a hybrid
reformulation, all the benefits of the former can be com-
bined with the numerical efficiency and robustness of the
latter. While hybrid reformulation of magnetic (Ramirez-
Laboreo et al. (2019)) and electrostatic (Shao et al. (2016))
hysteresis already exist in literature, no formal hybrid
models have been presented for the thermo-mechanical
hysteresis of SMAs, to the best of our knowledge.

In this paper, we propose a novel hybrid dynamical
model for spring-loaded SMA wire actuators. The result is
grounded on a physics-based SMA description proposed by
Müller-Achenbach-Seelecke (MAS) (Seelecke and Müller
(2004)). Such a model well describes the behavior of SMA
hysteresis under different operating conditions, but it is
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highly nonlinear and numerically stiff. A reduced order
hybrid reformulation is then proposed for the MAS model,
formalized in terms of jump and flow dynamics. By means
of numerical simulations, it is shown how the hybrid model
provides the same accuracy of the MAS one while requir-
ing a significantly smaller simulation time. The developed
model represents the starting point for future applications
of hybrid control techniques to SMA systems.

The remainder of this paper is organized as follows. In Sec-
tion 2, a SMA-spring actuator is described and its physical
model is defined. Section 3 presents the development of the
novel hybrid model, while comparative simulation studies
are reported in Section 4. Finally, concluding remarks and
future developments are discussed in Section 5.

1.1 Preliminaries on Hybrid Systems

We consider hybrid systems with state x ∈ Rn of the form{
ẋ = f(x) x ∈ C
x+ ∈ G(x) x ∈ D , (1)

where f : Rn → Rn is the flow map, C ⊂ Rn is the flow
set, D ⊂ Rn is the jump set, and G : Rn → Rn the set-
valued jump map . The above hybrid system shorthand
notation is H = (C, f,D,G). A solution to H is any hybrid
arc defined over a subset of R≥0 × N0 that satisfies the
dynamics of H. This solution is said complete if its domain
is unbounded and maximal if it is not the truncation of
another solution. We say that H satisfies the hybrid basic
conditions if: C and D are closed in Rn; f is continuous
on C, G is nonempty, outer semicontinuous, and locally
bounded on D. Given a set S, we denote SH(S) the set of
all maximal solutions φ to H with φ(0, 0) ∈ S. For more
details on hybrid systems, see Goebel et al. (2012).

2. SMA-SPRING ACTUATOR

In this section, we first summarize the operating principle
of the investigated SMA-spring actuator. Then, a control-
oriented, physics-based model is developed to describe how
the SMA wire strain (output) is affected by the electrical
power applied to the wire (control input), as well as
the environmental temperature (disturbance input). For
further details regarding on the SMA wire model, see
Seelecke and Müller (2004).

2.1 Actuator Description

A schematic representation of the investigated actuator
system is shown in Fig. 1. It consists of a SMA wire
mechanically connected to a linear spring. Both SMA and
spring have one fixed end-point and one movable end-
point. Additionally, the free ends of both elements are
joined together into a common point, which is denoted as
P . We define d as the constant distance between the fixed
end-points of the SMA and the spring. If d is greater than
the sum of the wire and spring initial lengths, a pre-tension
is induced in the SMA. When heated with an electric
current, the SMA contracts and thus point P moves to
the right along the wire axis (Fig. 1(b)). When the input
current is removed, the bias spring pulls back the SMA to
its original configuration (Fig. 1(a)).

Fig. 1. Operating states of the actuator: SMA wire at the
environmental temperature (a) and when heated (b).

Fig. 2. Force diagram of the SMA-spring actuator.

2.2 SMA-spring physics-based model

A physics-based model of the SMA-spring actuator is
developed in this section. We assume that the mass of the
moving element is small, so that its inertial and gravita-
tional effects are negligible compared to the thermo-elastic
dynamics of the SMA. By considering the force diagram
in Fig. 2, is possible to obtain the force balance equation
along the axis of the actuator

FSpring − FSMA = 0, (2)

where FSpring is the linear spring force, and FSMA is the
SMA force. Spring and SMA forces are given by

FSpring = k(y − yi), (3)

FSMA = πr2
0σ, (4)

where k is the spring constant, y is the spring current
length, yi is the undeformed spring length, while r0 is the
cross-sectional radius of the SMA wire, and σ is the stress
that the SMA produces. It is possible to relate y to the
total actuator length d as follows

y = d− l, (5)

where l is the current length of the wire. The SMA length
can be rewritten as

l = l0(1 + ε), (6)

where l0 is the length in undeformed and fully austenitic
phase, and ε is the material strain. By replacing equations
(3)-(6) in (2), we obtain

πr2
0σ + k(l0ε+ l0 + yi − d) = 0 . (7)

As a next step, we need to characterize the stress in (7)
by means of a material model. According to MAS, the
stress-strain relationship of the material can be expressed
as follows

σ = σ(ε, xM , xA) =
ε− εTxM
xM
EM

+
xA
EA

, (8)
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where εT is the transformation strain, EA and EM are
the austenite and martensite Young’s moduli, while xA
and xM are the austenite and martensite phase frac-
tions, respectively. The phase fractions describe the rel-
ative amount of mesoscopic layers with the corresponding
lattice structure. Their values are not independent, but are
related by a consistency equation, i.e.,

xA + xM = 1 . (9)

By combining (7) with (8) and (9), the strain and the
stress of the material can be expressed as a function of the
martensitic phase fraction only, as follows

ε = ε(xM ) =
(EπεT + EfEx)xM + EfEM
kl0ExxM + Eπ + kl0EM

, (10)

σ = σ(xM ) = EAEM
Ef − εT kl0xM

kl0ExxM + Eπ + kl0EM
, (11)

where

Eπ = EAEMπr
2
0, (12)

Ex = EA − EM , (13)

Ef = k(d− l0 − yi) . (14)

Next, we need to describe the dynamic evolution of the
phase fraction. By exploiting concepts from statistical
thermodynamics, the following equation is derived

ẋM = −pMAxM + pAMxA, (15)

where pAM and pMA represents the probabilities that a
mesoscopic layer of austenite transforms into martensite
and vice versa, respectively. The introduction of a similar
differential equation for xA is not necessary, due to the
constraint imposed by (9). The generic transition proba-
bility pαβ from phase α to phase β is computed as follows

pαβ = pαβ(σ, T ) = ωxe
− VL
kBT

∆gαβ(σ,T )
, (16)

where ωx is the vibration frequency associated to the ther-
mal activation, VL is the volume of a mesoscopic layer of
material, kB is the Boltzmann constant, T is the SMA tem-
perature, and ∆gαβ(σ, T ) is the stress- and temperature-
dependent energy barrier of the phase transformation com-
puted in the Gibbs free-energy density landscape. The
energy barriers depend in a complex mathematical way on
the transformation stresses of austenite and martensite,
denoted as σA and σM respectively. The explicit depen-
dency is omitted for conciseness (please refer to Seelecke
and Müller (2004) for details). For the single-crystal MAS
model, σA and σM are linear functions of T , i.e.,

σA = σA(T ) = σA(T0) + σT (T − T0), (17)

σM = σM (T ) = σM (T0) + σT (T − T0), (18)

where T0 is a reference temperature and σT is a scaling
coefficient.

Finally, the temperature evolution of the SMA can be de-
scribed via the following internal energy balance equation

V ρmcV Ṫ = −λAs(T − TE) + J + V ρmHM ẋM . (19)

In (19), V is the volume of the SMA wire, ρm is the SMA
volumetric mass density, cV is the SMA specific heat, λ is
the convective cooling coefficient between SMA wire and
environment, As is the lateral surface area of the wire,
TE is the environmental temperature, J is the input Joule
heating, and HM is the specific latent heat of the phase
transformation.

The complete state model of the SMA-spring actuator can
be obtained by collecting equations (10), (15), and (19) in

ẋM = −pMAxM + pAM (1− xM )

Ṫ = −λAs(T − TE)

V ρmcV
+

J

V ρmcV
+
HM

cV
ẋM

ε =
(EπεT + EfEx)xM + EfEM
kl0ExxM + Eπ + kl0EM

. (20)

Note that model (20) has two continuous state variables,
i.e., the martensitic phase fraction xM and the tempera-
ture T . Quantity J is used as control input, TE represents
an exogenous disturbance affecting the system, and the
SMA strain ε describes the actuator output.

Before continuing, the following assumption is considered.

Assumption 1. External inputs J(t) and TE(t), as well as
initial conditions xM (0) and T (0), are such that xM (0) ∈
[0, 1] and ε(t) ≥ 0, σ(t) ≥ 0, T (t) > 0, ∀t ≥ 0.

Assumption 1 always holds for physically consistent load-
ing conditions and well-designed SMA-spring actuator. In
particular, being shaped as a wire, the SMA cannot sustain
a compressive stress, and thus ε is always non-negative.
Consequently, the total forces applied on the moving end
of the SMA wire (FSpring) must necessarily be greater than
(or at least equal to) zero to keep the wire in tension.

3. HYBRID DYNAMICAL MODEL

In this section, we propose a hybrid reformulation of model
(20) in the framework of Goebel et al. (2012).

3.1 SMA stress approximation

The SMA model in (20) provides a tight description of the
response of single-crystal SMA wire spring actuators sub-
ject to a number of external inputs. Such a model, however,
turns out to be highly involved in terms of computational
complexity. The main reason for this issue is due to the
transition probabilities appearing in the state equation of
xM , i.e., pMA and pAM . These quantities are complex to
compute since they depend on energy barriers appearing in
a non-convex Gibbs free-energy landscape, and have to be
evaluated at each step of the numerical ODE integration.
In addition, they turn out to be almost discontinuous
functions of σ and T , thus making the resulting model
numerically stiff. A potential way to improve the numer-
ical properties of the model, making it more suitable for
fast simulations and real-time control applications, would
consist in eliminating the stiff dynamics by means of a
proper hybrid reformulation of the constitutive equations.
The condition that allows us to model the SMA actuator
in a hybrid fashion is defined by the following assumption,
which is motivated by our earlier results in Rizzello et al.
(2018) and Rizzello et al. (2019).

Assumption 2. During phase transformation (i.e., ẋM 6=
0), the SMA stress can be approximated as follows{

σ(xM ) = σA(T ) if ẋM > 0

σ(xM ) = σM (T ) if ẋM < 0
, (21)

for σ(xM ), σA(T ), and σM (T ) given by (11), (17), and
(18), respectively.
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Fig. 3. Example of temperature-strain hysteresis in single-
crystal SMA actuator (a) and the graph representa-
tion of hybrid automaton with modes and edges (b).

Assumption 2 holds true with good accuracy for suffi-
ciently large values of VL and ωx. This is particularly
true for typical values of such physical parameters. For
additional considerations on Assumption 2, please refer to
the proofs presented in Rizzello et al. (2018) and Rizzello
et al. (2019). The above condition will be instrumental for
the hybrid reformulation presented in the next section.

3.2 SMA hybrid dynamical model

For model (20) it can be observed that, while the Joule
heating-strain (i.e., input-output) hysteresis is highly rate-
dependent, the shape of the temperature-strain (i.e., sec-
ond state-output) hysteresis is not affected by the fre-
quency of input signals. A qualitative sketch of such a
temperature-strain hysteresis is depicted in Fig. 3(a). This
fact allows us to identify five different possible operating
modes, also reported in Fig. 3(a), which have the following
physical interpretation:

(1) full austenitic phase (xM = 0)
(2) full martensitic phase (xM = 1)
(3) inner hysteresis loop (xM = const., xM ∈ (0, 1))
(4) austenite to martensite transformation (ẋM > 0)
(5) martensite to austenite transformation (ẋM < 0)

Regarding the system motion, a hypothetical operating
sequence of the model could be the following. The SMA
wire starts in a condition of full martensitic crystal lattice
(mode 2). When heated by an electric current, the tem-
perature increases to produce a phase change (mode 5). If
the input is deactivated before reaching such temperature
to obtain the full austenitic phase, the system begins to
cool down following an inner hysteresis loop (mode 3), and
then it expands (mode 4) up to the initial strain (mode 2).
Otherwise, if the wire is heated until it is completely trans-
formed, the maximum contraction of the actuator is ob-
tained (mode 1). The transition between those modes can
be described via the hybrid automaton shown in Fig. 3(b),
with the set of modes Q = {1, 2, 3, 4, 5} and the set of edges
E = {(1, 4), (4, 2), (2, 5), (5, 1), (4, 3), (3, 5), (5, 3), (3, 4)}.
The physical conditions associated to the mode transitions
are also reported in Fig. 3(b) (Rizzello et al. (2018)).

By exploiting the above property, we aim at obtaining a
reduced-order model in which only the SMA temperature
T appears as a continuous state, while the phase fraction
xM is expressed as a function of T . Clearly, different
expressions for Ṫ and xM must be obtained for each mode.

In the following, we will use Ṫ (i) and x
(i)
M to denote the

derivative of temperature and the phase fraction of the
generic mode i, respectively. Note that, once the phase
fraction is known, the system output ε can be computed
via equation (10) since it is valid for every mode.

Modes 1,2,3. The first three modes are characterized by a

constant x
(i)
M , i = 1, 2, 3, and thus we have ẋ

(i)
M = 0. This

allows us to simplify the equation (19) as follows

Ṫ (i) = Φ(i) = Λ, i = 1, 2, 3 , (22)

where Φ(i) is an auxiliary function, and

Λ = Λ(T, TE , J) =
J − λAs(T − TE)

V ρmcV
. (23)

Concerning the constant value of x
(i)
M , we have that x

(1)
M =

0, x
(2)
M = 1, while x

(3)
M coincides with the value that such

variable had prior to the jump to mode 3.

Mode 4. In mode 4 the phase fraction increases over time,
i.e., ẋM > 0. In this case, we can replace (11) and (17) in

(21), and solve the resulting equation for x
(4)
M . In this way,

x
(4)
M can be expressed as a function of T as follows

x
(4)
M = x

(4)
M (T ) =

1

kl0

−(Eπ + EMkl0)σA(T ) + EAEf
ExσA(T ) + EAEMεT

.

(24)
By differentiating (24) over time and replacing it in (19),
we obtain

Ṫ (4) = Φ(4) = Λ +
HM

cV

−EAEMcV MΛ

cV l0kΣ2
A + EAEMHMM︸ ︷︷ ︸

ẋ
(4)

M

, (25)

where
M = (ExEf + εT (Eπ + EMkl0))σT , (26)

ΣA = ΣA(T ) = ExσA(T ) + EAEMεT . (27)

Lastly, we define a new function

s
(4)
M = s

(4)
M (T ) = − EAEMcV MΛ

cV l0kΣ2
A + EAEMHMM

, (28)

that physically corresponds to ẋ
(4)
M .

Mode 5. In mode 5, ẋM < 0 always holds. The procedure
used for mode 4 can be applied also here in a straight-
forward way, provided that we replace σA(T ) with σM (T )

in (24)-(27). The resulting equations for x
(5)
M and Ṫ (5) are

reported in the following

x
(5)
M = xM (T ) =

1

kl0

−(Eπ + EMkl0)σM (T ) + EAEf
ExσM (T ) + EAEMεT

,

(29)

Ṫ (5) = Φ(5) = Λ +
HM

cV

−EAEMcV MΛ

cV l0kΣ2
M + EAEMHMM︸ ︷︷ ︸

ẋ
(5)

M

, (30)

where M is as in (26), and

ΣM = ΣM (T ) = ExσM (T ) + EAEMεT . (31)

As for the previous mode, we can define a new function

s
(5)
M = s

(5)
M (T ) = − EAEMcV MΛ

cV l0kΣ2
M + EAEMHMM

, (32)

that physically corresponds to ẋ
(5)
M .

Now we are in a position to reformulate the considered
actuator as a hybrid dynamical system with state x :=

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

9047



(x1, x2, q) = (T, xd, q) ∈ (R≥0 × [0, 1] × {1, 2, 3, 4, 5}) ,
where T is the temperature, xd is the discrete phase
fraction, i.e., the value of the phase fraction xM at the
time of the previous mode change, and q is a numerical
index characterizing the active mode.

Based on these facts, we define the flow set as

C :=

5⋃
i=1

Ci , (33)

where

C1 :=
(
{x1 ∈ R≥0 : x

(4)
M (x1) ≤ 0} × {0} × {1}

)
, (34)

C2 :=
(
{x1 ∈ R≥0 : x

(5)
M (x1) ≥ 1} × {1} × {2}

)
, (35)

C3 :=
(
{x1 ∈ R≥0 : σM (x1) ≤ σ(x2) ≤ σA(x1)}×
[0, 1]× {3}

)
, (36)

C4 :=
(
{x1 ∈ R≥0 : x

(4)
M (x1) ≤ 1, s

(4)
M (x1) ≥ 0}×

[0, 1]× {4}
)
, (37)

C5 :=
(
{x1 ∈ R≥0 : x

(5)
M (x1) ≥ 0, s

(5)
M (x1) ≤ 0}×

[0, 1]× {5}
)
, (38)

and, for all x ∈ C, the flow map as

f(x) :=
(
Φ(q)(x1), 0, 0

)
(39)

where Φ(q)(x1) for all q ∈ {1, 2, 3, 4, 5} are defined in (22),
(25), and (30). States x2 and q are constant during flows
and change only at jumps. To capture the instantaneous
changes undergone by the system state, we define the jump
set as

D :=

8⋃
i=1

Di , (40)

where

D1 :=
(
{x1 ∈ R≥0 : x

(4)
M (x1) ≥ 0} × {0} × {1}

)
, (41)

D2 :=
(
{x1 ∈ R≥0 : x

(5)
M (x1) ≤ 1} × {1} × {2}

)
, (42)

D3 :=
(
{x1 ∈ R≥0 : σM (x1) ≥ σ(x2)} × [0, 1]× {3}

)
,

(43)

D4 :=
(
{x1 ∈ R≥0 : σ(x2) ≥ σA(x1)} × [0, 1]× {3}

)
,
(44)

D5 :=
(
{x1 ∈ R≥0 : x

(4)
M (x1) ≥ 1} × [0, 1]× {4}

)
, (45)

D6 :=
(
{x1 ∈ R≥0 : s

(4)
M (x1) ≤ 0} × [0, 1]× {4}

)
, (46)

D7 :=
(
{x1 ∈ R≥0 : x

(5)
M (x1) ≤ 0} × [0, 1]× {5}

)
, (47)

D8 :=
(
{x1 ∈ R≥0 : s

(5)
M (x1) ≥ 0} × [0, 1]× {5}

)
, (48)

and, for all x ∈ D, we define the set-valued jump map as

G(x) :=
⋃

i∈{k∈{1,2...,8} : x∈Dk}

gi(x) , (49)

where

g1(x) :=
(
x1, 0, 4

)
∀x ∈ D1 (50)

g2(x) :=
(
x1, 1, 5

)
∀x ∈ D2 (51)

g3(x) :=
(
x1, x2, 5

)
∀x ∈ D3 (52)

g4(x) :=
(
x1, x2, 4

)
∀x ∈ D4 (53)

g5(x) :=
(
x1, 1, 2

)
∀x ∈ D5 (54)

g6(x) :=
(
x1, x

(4)
M (x1), 3

)
∀x ∈ D6 (55)

g7(x) :=
(
x1, 0, 1

)
∀x ∈ D7 (56)

g8(x) :=
(
x1, x

(5)
M (x1), 3

)
∀x ∈ D8 (57)

Therefore, the considered actuator can be modeled via the
hybrid system H = (C, f,D,G).

Remark 1. It can be noticed that hybrid systemH satisfies
the so-called hybrid basic conditions; see (Goebel et al.,
2012, Assumption 6.5, page 120). As such, the proposed
model has some interesting robustness properties with
respect to small perturbations. This feature, among other
things, makes it this model highly suitable for numerical
simulations.

4. SIMULATION AND RESULTS

To simulate the hybrid system H in Matlab environment,
we use the Hybrid Equation (HyEQ) Toolbox, described in
Sanfelice et al. (2013). In this case, the hybrid model of the
SMA actuator is implemented using the Lite HyEQ Sim-
ulator, available inside the toolbox. Numerical integration
is carried out via ode45 solver. For comparison purpose,
the physics-based model described by (20) is implemented
in Matlab as a standard ODE model. Due to the high
numerical stiffness of such a model, ode15s is chosen as
a solver. All simulations are conducted by considering an
actuator with d = 0.1 m, a spring with an initial length
yi = 0.0445 m and constant k = 1000 N/m, coupled with
a l0 = 0.05 m SMA wire long. The other SMA physical
parameters are chosen as in Rizzello et al. (2019).

A comparative simulation study between the two models
is reported in Fig. (4). The figure shows the wire response
when subject to a time-varying Joule heating, chosen in
such a way that all modes are explored, and a constant
environmental temperature TE = 293 K. Results of hybrid
and MAS models are shown as solid blue lines and dashed
red lines, respectively. For the hybrid model only, the
jumps are marked with solid dots. Results are presented in
terms of input Joule heating (top-left), resulting temper-
ature (top-right), output strain (bottom-left), and modes
jumps (bottom-right, for hybrid model only).

It can be seen that the results of both models are prac-
tically overlapped (with a peak error lower than the tol-
erance of the numerical solver), thus making the hybrid
reformulation highly accurate. In addition, it can be ob-
served how the hybrid model can be integrated in a sig-
nificantly smaller time compared to the previous model.
Using non-canonical input signals, i.e., random sequences
of variable amplitude steps, the simulation time of the
hybrid model is up to 100 times smaller than the previous
model (0.22 s vs. 23.43 s required to simulate 20 s of the
actuator response).

For concluding this section, Fig. (5) shows the Joule
heating-strain (left-hand side) and temperature-strain
(right-hand side) trajectories, for the same simulation
described above. Due to the high accuracy observed in
Fig. (4), only the results of the hybrid model are shown.
From Fig. (5), the hysteretic behavior of the actuator can
readily be observed. In addition, it can be seen that while
the temperature-strain hysteresis has a piecewise linear
shape, the Joule heating-strain hysteresis is more smooth.
This is due to the SMA thermal dynamics, which results
into a rate-dependent input-output hysteresis. By means of
the developed hybrid model, accurate description of this
rate-dependent hysteresis can be achieved in a physics-
based and numerically efficient fashion.
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Fig. 4. Comparison between the hybrid dynamical model
(solid blue line) and MAS model (dashed red line).

Fig. 5. Characteristic curves of the SMA-spring actuator:
input-output hysteresis (left-hand side) and state-
output hysteresis (right-hand side).

5. CONCLUSIONS

In this paper, a hybrid hysteresis model has been presented
for a single-crystal SMA wire actuator coupled with a bias
spring. The obtained model is based on a hybrid reformu-
lation of the physics-based model for SMA wires developed
by Müller-Achenbach-Seelecke. It has been shown how,
through a proper reasoning on the SMA constitutive equa-
tions, it is possible to reformulate the physics-based model
as a reduced order hybrid dynamical system which com-
bines continuous-time and discrete-time dynamics. Com-
pared to the physics-based model, the hybrid one permits
to achieve the same accuracy with a significantly lower
computational time. At the same time, differently from
alternative hysteresis model commonly used in control
applications (e.g., Preisach), it accounts for the effects of
physical parameters such as loading forces, environmental
temperatures, and wire geometry, thus it can be also used
for fast model-based actuator optimization. In future stud-
ies, a more generic SMA hybrid model will be presented to
account for the more complex behavior of polycrystalline
wires, i.e., SMAs which exhibit a smooth hysteresis with
minor loops. The developed model will then open up the
possibility to apply hybrid control theory on SMA devices.
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