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Abstract: This paper extends the ensemble Kalman filter (EnKF) for inverse problems to
identify trending model coefficients. This is done by repeatedly inflating the ensemble while
maintaining the mean of the particles. As a benchmark serves a classic EnKF and a recursive
least squares (RLS). As an example serves the identification of a force model in milling, which
changes due to the progression of tool wear. For a proper comparison, the true values are
simulated and augmented with white Gaussian noise. The results demonstrate the feasibility
of the approach for dynamic identification while still achieving good accuracy in the static
case. Further, the inflated EnKF shows a remarkably insensitivity on the starting set but a less
smooth convergence compared to the classic EnKF. Copyright 2020 IFAC
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1. INTRODUCTION

In milling, a rotating cutting movement is overlaid with
a translatory feed movement resulting in a cyclically
intermittent cutting process. It is a flexible and highly
dynamic manufacturing process for free-form surfaces.
This leads to a continuously varying thickness of the
removed chip and with it a varying force.

The force is the most important parameter to analyze
and evaluate the cutting process. Ever since there were
machine tools, researchers aimed at describing the force
through models in order to better understand and design
the process. Nowadays, those models are also used for
advanced control of the milling process, be it adaptive
control (Altintas and Aslan, 2017) or even model-based
predictive control (MPC) (Stemmler et al., 2017). The
semi-empirical models must be calibrated for every tool-
workpiece material combination. They represent a certain
tool state and change as the tool wears. Historically, the
identification was conducted off-line but new approaches
have paved the way for an on-line identification in the
manufacturing process.

An on-line identification enables for model-based process
monitoring or even control, data reduction, and to fuse
force signals e.g. force measured in the resting machine
tool coordinates (X,Y,Z) and the redundant information

of the cutting torque at the rotating spindle. A sudden
and drastic variation of the identified parameter indicate
catastrophic failure of the tool.

This work discusses the problem of identifying changing
coefficients. For this a constrained EnKF is repeatedly
inflated and benchmarked against a RLS. The overall ob-
jective is to present a method for continuous identification
of time-variant models.

2. STATE OF THE ART

2.1 Force model

So-called mechanistic models relate the force to the cross-
section of the undeformed chip. The most popular exam-
ples are the exponential force model according to Kienzle
(1952) and the linear approach according to Altintas and
Lee (1996):

Fi,Kienzle = ki b h
1−mi i ∈ t, r, (1)

Fi,Altintas = b (Ki,e +Ki,c h) i ∈ t, r. (2)

The parameters ki and mi, or Ki,e and Ki,c respectively,
represent material-specific coefficients of the force model
– this paper will refer to them simply as coefficients.
The indices i = t, r indicate the tangential and the
radial component of the force vector. The undeformed chip
thickness h and the undeformed chip width b form the
cross-section of the chip.
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Often, the admissibility range of linear models is extended
by assuming the coefficients to be themselves again a
function of the undeformed chip thickness h, e.g. as a
linear (Grossi, 2017), an exponential (Wan et al., 2007,
2009; Campatelli and Scippa, 2012; Zhang et al., 2018), or
a polynomial relation (Wei et al., 2018; Wang et al., 2018).
This converts the linear model with varying coefficients
K = f(h) into a non-linear – often exponential – model
with constant coefficients (Wan et al., 2007; Yao et al.,
2013).

2.2 Model identification

The great majority of the work on how to identify the
coefficients of mechanistic force models has been done
for linear models, namely the force model of Altintas
(Eq. 2). Few works identify a non-linear force model
(Jayaram et al., 2001; Dotcheva et al., 2008; Wang et al.,
2013; Adem et al., 2015; Zhang et al., 2017, 2018) or the
Kienzle-model explicitly (Shin and Waters, 1997; Perez
et al., 2013; Schwenzer et al., 2018).

There exist two ways to identify such mechanistic force
models in milling: the method of average force and the
method of instantaneous undeformed chip thickness. The
first is inspired from turning where the chip geometry does
not vary resulting in a static cutting force. In milling this
is approximated by averaging the dynamic force signal
over a revolution. The method requires several dedicated
experiments and is not on-line capable.
The method of instantaneous undeformed chip thickness is
essentially a curve fit between measurements and a simu-
lated force signal. They have been dominated by global op-
timization, such as evolutionary algorithms (Grossi, 2017;
Chen et al., 2018), or particle swarm algorithms (Zhang
et al., 2017) for both presented models (Eq. 1, Eq. 2).
Nevertheless, local optimization algorithms have a signif-
icant advantage in computation with no loss in accuracy
(Freiburg et al., 2015; Schwenzer et al., 2018).

Adem et al. (2015) compared both models and identifi-
cation methods. They concluded that a non-linear force
model is generally more accurate than a linear model and
that the optimization-based curve fit results in more ac-
curate models than the average forces approach. Gonzalo
et al. (2010) focused on the latter comparing identification
methods. They define a “true” reference by identifying the
coefficients in turning. Though the improvement is small,
they argue that the method of instantaneous undeformed
chip thickness has a better physical credibility due to the
correspondence to the turning coefficients.

First studies on a continuous formulation of the method
of instantaneous undeformed chip thickness propose an
EnKF as a non-linear estimator to identify the Kienzle-
model (Schwenzer et al., 2019b,a). The studies revealed the
extraordinary insensitivity of the EnKF to measurement
noise. They used an unscaled version of the filter as a
trade-off for fast convergence against stability.

3. APPROACH

Progressive tool wear changes the model coefficients grad-
ually. Therefore, we examine the case of trending coeffi-
cients as a special case of changing coefficients. For this,

we suggest three different approaches for a continuous
identification of a time-varying model:

• RLS,
• classic EnKF,
• EnKF with repeated ensemble inflation (EnKF?).

In order to meet generality, we use the non-linear Kien-
zle-model, which is in fact not observable. Neither the
RLS, nor the EnKF require observability of the system
as they do not demand uniqueness of the solution of the
inverse problem.

3.1 Recursive least square

The RLS algorithm is a least square fit taking the estimate
of the previous time instance into account. It works as
similar to an exponential smoothing with a decreased
weighting of the previous information.

Assume an arbitrary measurement system

ŷk = f(x̂k) ≈Mᵀ
k x̂k, (3)

with a measurement ŷk that has non-linear relationship
to the estimated state vector x̂k for time instance k
(Strejc, 1979). For a proper state-space representation,
the relationship is linearized through the measurement-
matrix Mᵀ

k . The model-matrix weights the error between
the measurement and the prediction through the gain Gk

x̂k = x̂k−1 + Gk (zk − f(x̂k)) , (4)

Gk = Pk−1 Mk (ρ+ Mᵀ
k Pk−1 Mk)

−1
, (5)

Pk =
1

ρ
[I −Gk M

ᵀ
k ] Pk−1. (6)

The recursive approximation of the covariance matrix Pk

limits the computational complexity. In the case on hand,
the state vector becomes x̂k = [ki mi]

ᵀ
. The forgetting

factor 0 < ρ ≤ 1 (here ρ = 0.98) weights the steps. The
initial value of the covariance matrix is set to P0 = 101 I,
with the identity matrix I.

Because previous experiments showed that the RLS is very
unstable, box-constraints are imposed here. In the case of
identifying mechanistic force models in milling, the box-
constraints for the state vector x were set to

xlb = [ 500 100 0.1 0.1 ]ᵀ,
xub = [ 3500 2100 1 1 ]ᵀ.

(7)

3.2 Ensemble Kalman filter

Instead of integrating a single state vector forward in time,
the EnKF propagates an ensemble of state vectors and
takes its mean as the best-guess (Evensen, 1994). The
backbone of the EnKF is a Markov chain Monte Carlo
simulation of the evolution in time of individual state
vectors, which approximate the true probability density
of the states (Evensen, 2003). The EnKF is a special case
of a particle filter without re-sampling and with Gaussian
distribution for the measurement likelihood.

Assuming an ensemble matrix

Xk|k−1 = (x1
k|k−1, . . . ,x

J
k|k−1), (8)
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with J individual state vectors xj
k|k−1, j ∈ {1, . . . , J} at

time step k based on the information from time step k−1.
In the case on hand, the state vector is

x = [ Ft Fr kt kr mt mr]ᵀ, (9)

consisting out of the measurable forces Fi and the non-
observable parameters ki, mi. The RLS does not require
the measurements to be a member of the state vector.

The EnKF is a truly non-linear estimator, using the
model function f(x,u) to propagate every member of the
ensemble forward in time based on the current input uk:

X̂k|k−1 = f
(
Xk−1|k−1,uk

)
, (10)

Pk|k−1 =
1

J
(X̂k|k−1 −Xk|k−1) (X̂k|k−1 −Xk|k−1)ᵀ.

(11)

The error covariance matrix is approximated by the em-
pirical covariance matrix of the ensemble P . It represents
the spread to the mean of the ensemble X. Recent studies
(Schwenzer et al., 2019b,a) resign from scaling the covari-
ance P , which favors the convergence speed but comes at
the cost of a higher instability. The unscaled version of the
filter looses the feature of mathematical well-posedness,
that is why it is not further considered.

The predicted state vectors are updated through the
measurements weighted by the Kalman gain Gk:

Gk = Pk|k−1 H
ᵀ
k

[
Hk Pk|k−1 H

ᵀ
k + Rk

]−1
, (12)

xj
k|k = x̂j

k|k−1 + Gk

[
zj
k −Hk x̂

j
k|k−1

]
(13)

where Hk is the linear observation operator and the single
measurement vector yk is augmented with artificial zero-
mean Gaussian noise ε ∼ N (0, Γ):

zj
k = yk + εjk, j ∈ {1, . . . , J} (14)

Zk =
(
z1
k, . . . ,z

j
k

)ᵀ
, and (15)

Rk =
1

J
(εk ε

ᵀ
k) . (16)

The update of the empirical covariance matrix Pk|k is
calculated as before, but now uses the information of the
current time step k

Pk|k =
1

J
(Xk|k −Xk|k) (Xk|k −Xk|k)ᵀ. (17)

Since the covariance matrix is derived at every instant
in time from the non-linear forecast of the ensemble, the
numerically unstable mapping of the classical Kalman
filter trough matrix inversion is not necessary. Note that
the Kalman gain Gk, Eq. 12, and the covariances Pk|k−1,
Eq. 11, and Pk|k, Eq. 17, are the same for all ensemble
members and only need to be calculated once.

In the case of application to inverse problems, the EnKF
can be written in the following formulation

Xk+1|k+1 =Xk|k + Ck|k
(
Dk|k + Γ

)−1 (
Zk+1 − Ŷk

)
,

(18)

Ck|k =
1

J
(Ŷk − Ŷ k) (Ŷk − Ŷ k)ᵀ, (19)

Dk|k =
1

J
(Xk|k −Xk|k) (Ŷk − Ŷ k)ᵀ, (20)

which is often used in the field of mathematics in order to
analyze the general behavior of the filter and to provide

a comprehensive theoretical background. Whereas often
the measurements yk are not augmented: εk = 0 ⇒
Zk = yk. This facilitates the analysis of the stability
and well-posedness of the EnKF. However, perturbing the
measurements creates individual observations for every
member and prevents particles from synchronizing and
collapsing completely to a potentially non-optimal solution
(Kelly et al., 2014).

Although the filter converges within the subspace spanned
by the initial ensemble – i.e. the mean value of the en-
semble converges to a value within this subset – it is not
guaranteed that all ensemble members stay within this
subset at all times. This makes it fragile if the model used
is not defined for all states or exhibits singularities.
Enforcing box-constraints, hoping that the particular
member does not get saturated but will (eventually) move
back into the subspace some time, is reasonable if the
initial ensemble is chosen properly. That is if the solution
lays within the limits, so that the whole ensemble is drawn
towards its mean by the common covariance. Further, if
the ensemble is large enough, it is unlikely that many
members are affected by artificial box-constraints and;
thus, distort the expected behavior of the filter. In fact,
Chada et al. (2019) showed that the EnKF can impose box-
constraints by projecting states that violate a constraint
back onto the boundary (this is the projected Newton
method). This might affect the convergence because it
changes the direction and the step-size of the particle.
Considering the EnKF as a sequential optimization, it
becomes obvious that the optimization gets affected. Nev-
ertheless, it is still ensured that the ensembles collapse to
their mean and that the method converges to a Karush-
Kuhn-Tucker (KKT) point of the optimization problem.
The same constraints were imposed as to the RLS, Eq. 3.1,
for the coefficients; the force components of the state
vector were not constrained.

3.3 EnKF filter with repeated ensemble inflation

The problem of identifying time-variant models could be
approached by restarting the EnKF if the model accuracy
runs out of bound. This would neglect all prior gained
information and reset the filter. In contrast to restarting
the EnKF over and over again, the ensemble inflation

should maintain the current mean X
?

k ≈ Xk but be
brought back to the initial spread, i.e. covariance P0.

On a regular basis, the ensemble X̂k is substituted by an
ensemble X̂?

k with the covariance

P ?
k|k =

1

λ
P0 (21)

In contrast to this, variance inflation scales the covariance
ahead of the analysis, Eq. 12 or Eq. 18 respectively. It
keeps the particles from collapsing too fast, which is of
importance at problems of high dimensions (large number
of states) and a comparatively small ensemble size.
Ensemble inflation replaces the complete ensemble in dis-
crete steps after analysis.

The idea of the mean field theory is that many small ran-
dom subsets of particles on average represent the behavior
of the whole particle cloud (Herty and Visconti, 2019).
Following the mean field theory, we inflate only a small
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Table 1. Tool and process parameters

Tool geometry Process parameter

Diameter D 10mm Feed per
tooth

fz 0.1mm

Number of
teeth

Nz 2 Cutting
velocity

vc 81mmin−1

Helix angle β 45 ◦ Depth of cut ap 2mm
Rake angle γ 20 ◦ Width of cut ae 3mm

subset of the ensemble set X ⊂ {xj}Jj=1, |X | = M � J ,
with regard to its mean. This should smooth the inflation
or the immediate effect of the inflation respectively. The
ensemble size was set to J = 100 and the subset M to
10 %.

3.4 Simulation for validation

For validation, this paper simulates 10 revolutions of a
straight milling operation with a flat end-mill using the
non-linear Kienzle-model (Eq. 1). Since mechanistic force
models are defined for straight cutting edges, the helix
angle of the tool is approximated as a spiral staircase, in
this case with N = 23 disk elements:

Fi = ki
b

N

N−1∑
n=0

[fz sin (ϕ− n∆ϕ)]︸ ︷︷ ︸
h

1−mi φn, (22)

with

∆ϕ = 360
b

N πD tan(90− β)
and (23)

φn =

{
1 ϕ ≥ ϕst ∨ ϕ ≤ ϕex

0 otherwise
. (24)

The variable b denotes the undeformed chip width and
the undeformed chip thickness h is calculated via the feed
per tooth fz and the current rotation angle ϕ, which is
shifted back along the height of the cutter to account
for the helix angle β. D is the diameter of the tool,
Tab. 1. If the tooth (disk) is engaged or not defines the
discontinuous engagement-function φn for each disk n.
For example, with ϕst = 0 ◦ and ϕex = 180 ◦ it is slot
milling. Here, we consider ϕst = 113.6 ◦ and ϕex = 180 ◦,
which represent milling with an ae = 3 mm overlap in our
case. The simulation emulates the machining of stainless
steel (X5CrNi18-10) with a two-fluted solid carbide tool,
Tab. 1. Those are the same conditions as in (Schwenzer
et al., 2019b,a) for reasons of consistency and a better
comparison.

In general, three distinct cases must be considered for
identification:

• static coefficients,
• ascending coefficients, and
• alternating coefficients.

The force measurements were simulated assuming the
coefficients given in Tab. 2, which were taken from one
of the most extensive work on coefficients of the Kienzle-
model (König et al., 1982). Using a sample frequency of
fs = 10 kHz, a revolution translates to approximately 234
steps. Artificial Gaussian noise with signal-to-noise ratio
(S/N) of 15 was added to the simulated force signals in

Table 2. Force coefficients for the Kienzle
force model for X5CrNi18-10

kt mt kr mr

upper bound 2500 0.7 1600 0.8
lower bound 500 0.1 200 0.2
X5CrNi18-10 (König et al.,
1982, s. 95)

1700 0.18 350 0.55

order to mimic severe measurement noise. Fig. 1 illustrates
the different cases and the added noise. Simulating the
force signals allows to use the coordinate system of the
cutting edge, in which the model is defined, and to evaluate
if the identification tends towards the true coefficients.
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Fig. 1. Simulated force signals: added white Gaussian
noise with S/N = 15 for the static case (top); different
cases without Gaussian noise (bottom)

The EnKF embraces randomness as it depends on the
choice of the initial ensemble and of the random pertur-
bations at every step. In order to perform a sensitivity
analysis, the EnKF is restarted with Ninit = 1000 different
initial ensembles for every simulation case. The initial en-
sembles were generated as a uniform random distribution
within the boundaries given in Tab. 2. They were gener-
ated once beforehand and the pseudo-random generator is
initialized to the same value for every simulation case. For
the RLS, the mean of the initial ensemble served as the
starting value.

When the undeformed chip thickness is tool small, cutting
turns into ploughing and models loose their validity –
but not feasibility. Therefore, the identification was set
to transit when the undeformed chip thickness (the sum
along the disk elements) was smaller than a threshold
hTH = 0.01 mm. Therefore, steps′ (written with an with a
prime as exponent) denote those time instants, where the
filter was active.

For the sake of conciseness and without loss of generality,
the discussion is limited to the tangential component of
the force and the coefficients i = t. All calculations were
performed with the software MATLAB R2018b from The
MathWorks on an AMD Ryzen7-2700 (3 GHz) computer
running Windows 10.
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Table 3. Root-mean-square of the error,
Eq. 25, for different inflation steps and frac-

tions

Method step λ static ascending alternating

EnKF? 50 1.5 7.6 8.4 8.5
EnKF? 50 1 7.8 8.6 8.6
EnKF? 50 10 6.4 7.2 8.9
EnKF? 50 2 7.5 8.3 8.5
EnKF? 50 5 6.9 7.7 8.4
EnKF? 100 1.5 6.5 7.2 11.9
EnKF? 100 1 6.6 7.3 11.5
EnKF? 100 10 5.6 6.6 14.1
EnKF? 100 2 6.4 7.1 12.2
EnKF? 100 5 6.0 6.8 13.0
EnKF? 200 1.5 4.6 7.3 20.2
EnKF? 200 1 4.7 7.3 19.6
EnKF? 200 10 4.2 7.3 23.6
EnKF? 200 2 4.6 7.3 20.6
EnKF? 200 5 4.4 7.2 22.2
EnKF ∞ - 3.8 23.2 50.7

4. RESULTS AND DISCUSSION

From a grid-search we learned that large steps and a
small inflation (large λ) are better for slowly changing
model coefficients; while small steps and a large inflation is
required for dynamic and drastic changes, Tab. 3. Though
this finding is intuitive, it is difficult to choose the optimal
parameters. A good compromise were small steps and a
small inflation because the increase in accuracy for quasi-
static problems is much smaller than the loss in accuracy
for a dynamic problem. Therefore, the step-size, in which
the ensemble is inflated, was set to 50 steps′ and the
inflation factor to λ = 10.

Figure. 2 illustrates the evolution of the error for the differ-
ent identification methods in all three cases. The transpar-
ent tubes indicate the variance within the 1000 simulations
with different initial ensembles (∆Ft ± 2σ(∆Ft)). That
are 95.45 % if this Monte Carlo simulation is normally
distributed. The error is defined as the difference in the
force between the identified and the ideal coefficients

∆Ft = Ft,sim − Ft,ideal = k̂t b h
1−m̂t − kt b h1−mt . (25)

One can see that the RLS (yellow lines) hardly depends
on the initial value. In general, the RLS exhibited a high
oscillation in the mean error (thick lines) with no sign
of convergence. Previous studies suggested that it is par-
ticularly prone to measurement noise (Schwenzer et al.,
2019a).
The dynamic cases (“ascending”and “alternating”) re-
vealed that the classic EnKF (blue lines) was not sufficient
but only worked ideal in the case of static model coeffi-
cients. However, inflating the ensemble repeatedly (red)
decreased the accuracy in the static case but was the only
option to achieve accurate results for identifying trending
coefficients. The steps where the ensemble was inflated are
marked by the dotted grid-lines.

Examining the evolution of the identified coefficients,
Fig. 3, suggested an even worse performance of the RLS
than by just considering the model error. Though box-
constraints were imposed, the RLS is unsteady and com-
pletely fails in the case of alternating coefficients. However,
the EnKF seemed to follow the trend in the exponential
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Fig. 2. Evolution of the error in the tangential force ∆Ft

with the Kienzle-model

coefficient mt quite well – perfectly in the case of the linear
ascent. This might have been due to the comparatively
small change, since the exponential model coefficient has
a narrow range and a 20 % linear change did not require to
maintain a large spread of the ensemble. However, it fails
to follow the linearly ascending coefficient kt and revealed
an extraordinary variance in the case of an alternating
coefficient kt (light blue area). It appears that the changes
are too drastic and too fast; in particular the alternating
case of kt suggests a time-delay of the identification. In
fact, it revealed an extraordinary high variation in the case
of alternating coefficients. The repeated inflation of the
ensemble (abbreviated here as EnKF?, red lines) shows a
small variance tube. The filter follows the trending coeffi-
cients and still exhibits good convergence in the static case.
In general, the EnKF? leads to an unsteady convergence,
which becomes especially obvious in comparison to the
classic EnKF in the static case.

Though sudden changes of the coefficients may result from
edge chippings, but this simply reduces to a restarting the
EnKF and; thus is considered by the repeating ensemble
inflation.

5. CONCLUSION

A repeated inflation of (a subset of) the ensemble allows
to identify time-varying coefficients. Instead of restarting
the identification on a regular basis, the inflation main-
tains the ensemble mean as its current best-guess while
enlarging the spread of the ensemble. This ensures that
the ensemble explores the whole search-space at all times.
Inflating the ensemble consistently changes the subspace;
therefore, convergence within the initial ensemble cannot
be guaranteed anymore. To regain control of the identifica-
tion, it is important to impose box-constraints on the filter.
Furthermore, the amount of inflation is set to a fraction
of the variance of the initial ensemble to limit the spread.
The fraction can be smaller the smaller the step-size of the
ensemble inflation. As an idea from the mean-field theory,
only a subset of the ensemble is inflated in order to smooth
the continuous identification.
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Fig. 3. Evolution of the tangential coefficients of the
Kienzle-model

The results show that the classic EnKF is only able to
follow trending coefficient in exceptional cases, i.e. slow
and small changes and with a high sensitivity to the initial
ensemble. A repeated inflation of the ensemble drastically
reduced this sensitivity and presented the only option
to follow all cases of trending coefficients. However, at
the cost of a slightly worse accuracy in the static case
compared to the classic EnKF. The RLS, which served
as a benchmark, revealed an immense proneness to the
artificial white Gaussian noise in the measurements.

Future research will be placed on the integrating the
mean field theory to the EnKF in order to decrease
oscillation and increasing stability through an adaptive
time-step within the filter. In milling, identification of
a time-varying force model must be combined with the
quasi-static identification of a model of the radial deviation
of the tool. Otherwise, the filter might not converge taking
the effect of a non-ideal cutting tool as an oscillation in the
coefficients of the force model. Eventually, the application
to real measurement signals remain due.
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