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Abstract: We study a general class of repeated auctions, such as the ones found in electricity
markets, as multi-agent games between the bidders. In such a repeated setting, bidders can
adapt their strategies online using no-regret algorithms based on the data observed in the
previous auction rounds. Well-studied no-regret algorithms depend on the feedback information
available at every round, and can be mainly distinguished as bandit (or payoff-based), and
full-information. However, the information structure found in auctions lies in between these
two models, since participants can often obtain partial observations of their utilities under
different strategies. To this end, we modify existing bandit algorithms to exploit such additional
information. Specifically, we utilize the feedback information that bidders can obtain when their
bids are not accepted, and build a more accurate estimator of the utility vector. This results in
improved regret guarantees compared to standard bandit algorithms. Moreover, we propose a
heuristic method for auction settings where the proposed algorithm is not directly applicable.
Finally, we demonstrate our findings on case studies based on realistic electricity market models.
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1. INTRODUCTION

Auctions are effective tools for allocating resources and
determining their values among a set of participants. To
this end, many complex auction mechanisms have been
proposed to buy and sell different resources. Prominent
examples include those in spectrum auctions (Bichler and
Goeree, 2017), electricity markets (Cramton, 2017), auc-
tions for fish harvesting rights and other natural capi-
tals (Teytelboym, 2019). Moreover, a periodic recurrence is
intrinsic to several applications. For instance, in electricity
markets, the same participants are generally involved in
similar market transactions day after day.

Repeated auctions can be studied as multi-agent games
among different players, or bidders in the auction,
equipped with adaptive and sequential algorithms. In
such repeated games, the performance of a player is
typically measured in terms of regret, which is the utility
loss incurred when compared to the best fixed action over
a sequence of rounds. Moreover, if all players exhibit no-
regret, that is, a diminishing average regret as the number
of rounds increases, the game is known to reach a so-called
coarse-correlated equilibrium. This equilibrium concept
generalizes Nash equilibrium to the case where all players
are endowed with a probability distribution over the state
of the game, see (Cesa-Bianchi and Lugosi, 2006).

Several no-regret learning algorithms exist, and both the
algorithms and their performance crucially depend on the
feedback information available at every round of the game.
? This research was gratefully funded by the European Union
ERC Starting Grant CONENE, and the Swiss National Science
Foundation grant SNSF 200021 172781.
??These authors contributed equally to this work.

In the full-information setting, where the player observes
its utility under every action (Freund and Schapire, 1997),
such algorithms attain an optimal O(

√
T logK) regret,

with T being the horizon length, and K being the num-
ber of actions. When only bandit feedback is available,
that is, the player only observes its utility for the ac-
tion picked (Auer et al., 2002), the optimal regret is
O(
√
KT logK) with a significantly worse dependence on

the number of actions K. However, the information struc-
ture found in auctions lies in between these two models;
on the one hand, full-information feedback is unrealistic
since it requires perfect knowledge of opponents’ bids and
market constraints, and on the other hand, bandit feed-
back is too restrictive since partial observations of utilities
under different actions are often available owing to the
auction rules and the additional information released. For
instance, in auctions of electrical power marginal prices are
announced after every round. Motivated by these partic-
ularities, our goal is to extend existing bandit algorithms
to account for such additional information.

Our contributions are as follows. We consider no-regret
learning in a general class of repeated auctions. Employing
standard results from the multi-armed bandit literature,
we propose an algorithm that participants could use to
update their bidding strategies based on the observed
auction data. Specifically, our approach exploits the in-
formation available to the bidders when their bids are not
accepted by the auctioneer. We show that the proposed
algorithm enjoys a no-regret guarantee that can strictly
improve upon bandit algorithms. We demonstrate this
fact on a market with a simple supply-demand balance
constraint and a marginal pricing payment mechanism.
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Then, we consider a more general market setting for which
the algorithm is not directly applicable since it requires
parameters that are unknown in this setting, that is, reve-
lation probabilities for additional information. We propose
a heuristic method for this case and demonstrate it out-
performs existing bandit algorithms in our experiments.

Let us contrast our work with the existing works on
learning algorithms with partial information. A partial
monitoring framework was introduced in (Piccolboni and
Schindelhauer, 2001) and was extensively studied (e.g., in
Cesa-Bianchi and Lugosi (2006, §6.4)) for online learning
with feedback matrices. However, this setting is restricted
to learning problems where the utilities are chosen from a
finite set, e.g., {0, 1}. More recently, Mannor and Shamir
(2011) introduced a novel framework in which the learning
agent is equipped with a sequence of feedback graphs over
the action space encoding which additional information is
revealed by every action. In case the feedback graph is
known before picking the action, Lykouris et al. (2017)
obtained small loss regret guarantees that do not depend
on the number of actions. In case the feedback graph is
revealed only after picking the action, the works of (Alon
et al., 2015, 2017) derived regret bounds as a function of
the feedback graphs’ independence numbers (or sizes of
their maximum acyclic subgraphs). In contrast to these
works, in our auction framework such graphs may not
be known to the bidders at any point during the game.
For instance, in the general market problem considered
in Section 3.3 revelation probabilities for the additional
information originate from a hidden feedback graph, and
we have to develop meaningful heuristics to compute
these parameters. Feng et al. (2018) study ad auctions
where the bidders observe their value for a click only
when their ads get clicked. In contrast, in our framework
valuations/true costs are known to the bidders, and the
allocations are deterministic. Finally, partial information
in the context of multi-agent learning have been explored
in (Sessa et al., 2019), assuming players can observe their
opponents’ actions, in addition to the standard bandit
feedback. Differently, in this work we do not assume
observation of opponents’ bids.

Section 2 lays out the preliminaries for the framework
and existing algorithms. Our algorithm is proposed in
Section 3, followed by two applications. Section 4 presents
the case studies based on electricity markets.

2. PRELIMINARIES

2.1 Repeated Auction Framework

We consider a general reverse (or procurement) auction
problem. The set of participants consists of the bidders
` ∈ N = {1, . . . , |N |}. Let there be q ∈ N types of good-
s/supplies. For instance, in an electricity market, these
types could refer to active and reactive power injections
at different nodes, and also control reserves. Goods of the
same type from different bidders are interchangeable to the
auctioneer. Each bidder has a private true cost function
c` : X` → R+, X` ⊆ Rq+. We further assume that 0 ∈ X`
and c`(0) = 0. This holds for many electricity markets that
do not allow shot-down costs. Each bidder ` has a finite
strategy set K` = {1, . . . , |K`|} that consists of its true
cost function and bid functions of the form bk` : Xk` → R+,

Xk` ⊆ Rq+, where k ∈ K`, 0 ∈ Xk` ⊆ Rq+, and bk` (0) = 0.
Without loss of generality, 1 ∈ K` is the true cost function.

Let T ∈ N be the horizon length. We assume that
for all rounds the true costs and the strategy set K`
remain unchanged. Let k`(t) ∈ K` denote the strategy
of bidder ` at time t ≤ T. Given the strategy profile

B(t) = {bk`(t)` }`∈N , a mechanism defines an allocation

rule x∗` (B(t)) ∈ Xk`(t)` , and a payment rule p`(B(t)) ∈ R
for each bidder `. In many auctions, the allocation rule is
determined by an optimization problem of the form,

J(B(t)) = min
x∈X(t)

∑
`∈N

b
k`(t)
` (x`) s.t.

∑
`∈N

x` ∈ S , (1)

where X(t) =
∏
`∈N Xk`(t)` ⊂ Rq|N |+ , and the set S ⊂ Rq+

corresponds to the market constraints. In an electric-
ity market, these constraints may correspond to network
balance constraints found in optimal power flow prob-
lems (Wu et al., 1996), or probabilistic security require-
ments found in control reserves markets (Abbaspourtor-
bati and Zima, 2015). Assume that the market constraints
remain unchanged throughout the horizon.

Let the optimal solution of (1) be denoted by x∗(B(t)).
We assume that in case of multiple optima there is a tie-
breaking rule. The utility of bidder ` is linear in the pay-
ment received; u`(t) = u`(B(t)) = p`(B(t))− c`(x∗` (B(t))).
A bidder whose bid is not accepted, x∗` (B(t)) = 0, is not
paid, u`(t) = 0, and is referred to as loser.

Since the bidders strategize to receive larger payments,
there has been many proposals for different payment
rules, for instance, locational marginal pricing (Schweppe
et al., 1988), Vickrey-Clarke-Groves (VCG) (Ausubel and
Milgrom, 2006), and core-selecting mechanisms (Day and
Milgrom, 2008). Even though these payment rules are
well-discussed in terms of how the bidders should pick
their strategies in a Nash equilibrium, in reality bidders
are profit maximizing entities that compete under privacy
considerations and limited information. Hence, it may
not be realistic to assume that they can compute or
they would be willing to pick their Nash equilibrium
strategy. 1 Instead, a more practical assumption is that the
bidders choose their strategies following simple adaptive
and sequential algorithms based on observed auction data.

2.2 No-Regret Learning and Correlated Equilibrium

The performance of a bidder ` in a repeated auction can
be measured in terms of regret, which is a standard notion
used in the online learning to measure the performance of
a sequential decision making algorithm (see, e.g., (Shalev-

Shwartz, 2012)). Define B−`(t) = {bkj(t)j }j∈N\{`}.
Definition 1. (Regret). The regret of bidder ` at time T is

R`(T ) = maxk∈K`

∑T
t=1 u`({B−`(t), bk` })−

∑T
t=1 u`(t).

After T rounds, hence, R`(T ) quantifies the maximum
profit bidder ` could have made had she known the
sequence of opponents’ bids ahead of time, and had she

1 Under the VCG mechanism, reporting true cost is the dominant
strategy of every bidder. However, bidders can still turn to group
deviations to maximize their profits (Ausubel and Milgrom, 2006).
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Algorithm 1 MWU algorithm for bidder l

Input: Strategy set K` with |K`| = K, parameter η
Initialize mixed strategy w1 = [1/K , . . . ,

1 /K ]
for t = 1, 2, . . . , T do

Compute estimate l̃t of the loss vector lt ∈ [0, 1]K

Update mixed strategy:

wt+1[i] ∝ wt[i] · exp
(
− η l̃t[i]

)
, i = 1, . . . ,K

end for

chosen the best fixed strategy in K`. An algorithm for
bidder ` is no-regret if R`(T )/T → 0 as T →∞.

In a multi-agent setting like the aforementioned auction
problems, the notion of regret has a close connection to
equilibria. In fact, it can be shown that if every participant
bids according to a no-regret algorithm, the empirical
distribution of bids converge to a coarse-correlated equi-
librium (CCE) of the one-shot game.

Definition 2. (CCE). A coarse-correlated equilibrium is a
distribution σ over

∏
`∈N K` such that, for each l ∈ N ,

EB∼σ [u`(B)] ≥ EB∼σ
[
u`({B−`, bk` })

]
, for all k ∈ K`.

As a remark, CCEs are the largest (and the weakest) class
of equilibria, and include pure and mixed Nash Equilibria
(NE). However, computing any NE is PPAD-complete (a
weaker version of NP-completeness, see (Daskalakis et al.,
2009)) and requires full knowledge of the game.

No-regret algorithms for a generic bidder ` can be derived
by mapping the repeated auction to an online learning
problem faced by bidder `: At every round t bidder ` picks
an action k(t) ∈ K`, an adversarial environment selects a
loss vector lt ∈ [0, 1]|K`|, and bidder ` incurs loss lt[k(t)].
Since the bidders are in general aware of the range of their
utilities, we assume they can map their utilities to losses in
the [0, 1] interval. Thus, we let utility u`(t) = u`(B(t)) ∈ R
correspond to loss l`(t) = l`(B(t)) = 1 − s`(u`(B(t))) ∈
[0, 1], where s` : R → [0, 1] is a suitable monotone map.
At every round t, hence, the corresponding loss vector is:

lt =
[
l`({B−`(t), b1`}), . . . , l`({B−`(t), b

|K`|
` })

]
. (2)

Note that the monotonicity of sl implies that our regret
definition maps to a regret based on such loss formulation.

In order to attain no-regret, bidder ` must randomize
her actions and bid according to mixed strategies, that
is, probability distributions over K` (Cesa-Bianchi and
Lugosi, 2006). Thus, one often reasons about regrets in
expectation. Let K = |K`| be the number of actions in
the strategy set of bidder ` (we drop the dependence on
` for ease of notation) and wt ∈ [0, 1]K be the mixed
strategy of bidder ` at round t. A large family of no-
regret algorithms are based on a simple, yet effective,
Multiplicative Weight Update (MWU) rule to update
bidder l’s mixed strategy (Freund and Schapire, 1997).
Such update rule is summarized in Algorithm 1. The
performance of these algorithms depend on the chosen
estimate l̃t of the loss vector lt.

Full-information feedback algorithms such as Hedge (Fre-
und and Schapire, 1997) use the true loss vector lt (of

(2)) as the estimate l̃t. Such algorithms attain an optimal
expected regret ofO(

√
T logK). However, full-information

feedback is unrealistic in repeated auctions, since com-
puting l`({B−`(t), bk` }) for k 6= k`(t) requires the full
knowledge of the bids B−`(t) and the market constraints
to generate solutions of the optimization problem (1).

Bandit algorithms such as Exp3 (Auer et al., 2002) use
only the obtained loss l`(t) to build an estimate as:

l̃t =

[
0, . . . , 0,

l`(t)

wt[k`(t)]
, 0, . . . , 0

]
. (3)

Although one can show that l̃t is an unbiased estimate
of the true loss vector lt, that is, Ek∼wt

[̃
lt[i]
]

= lt[i] for

all i ∈ K`, the variance of l̃t[i] grows with the inverse
of the squared probability wt[i]

2. This leads to an ex-
pected regret of O(

√
KT logK) (matching an algorithm-

independent lower bound (Auer et al., 2002) up to log
factors), which scales significantly worse with the number
of actions K and often leads to poor performance.

3. LEARNING FROM PARTIALLY OBSERVED DATA

While the full-information feedback is unrealistic, the
feedback information available in repeated auctions is
typically richer than the bandit feedback. In fact, when
bidder ` is a loser of the auction, not only she observes
the loss for the chosen bid, which corresponds to l`(0), but
often can also infer about other actions that would have led
to such losing outcome. This is the key idea that we exploit
to improve upon the regret bound of the existing bandit
Exp3 algorithm. We will then make it more concrete in
Sections 3.2 and 3.3 by considering two specific classes of
auctions. As a remark, when bidder ` is a winner of the
auction she can often infer about other winning actions;
however, she cannot infer the exact utilities. We plan on
addressing this fact in our future work.

3.1 Extended Exp3 Algorithm

Consider time t, and assume bidder ` loses the auction,
that is, x∗(B(t)) = 0. In this case, we assume bidder ` gets
to know of a subset Lt ⊆ K` of losing actions (including
k`(t))), i.e., actions which would have led to the same
losing outcome. In the class of auctions considered in
Sections 3.2, for instance, bidder ` finds out about Lt from
the marginal price set by the auctioneer.

For any action k ∈ K`, we let rt[k] denote the probability
that bidder ` discovers the utility of action k. We refer
to rt[k]’s as the revelation probabilities. Note that rt[k]
is always greater than the probability wt[k] of playing
action k, since when action k is played, bidder ` directly
discovers its utility. However, as explained before, bidder `
can find out about losing actions even when playing actions
i 6= k. We will provide an explicit expression of such
probabilities for the auctions considered in Sections 3.2
and 3.3. For now, suppose such revelation probabilities
are known to bidder `. Using this information, bidder `
can construct the following estimator, for any k ∈ K`:

l̃t[k] =



l`(t)

rt[k]
, if x∗` (B(t)) > 0 and k = k`(t),

0, if x∗` (B(t)) > 0 and k 6= k`(t),
l`(0)

rt[k]
, if x∗` (B(t)) = 0 and k ∈ Lt,

0, if x∗` (B(t)) = 0 and k /∈ Lt ,

(4)
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where l`(0) = 1− s`(0) for the sake of brevity, and rt[k] =
wt[k] for the first case in which the bidder is winning. In
words, if action k`(t) is a winning action, the estimator (4)
coincides with the bandit feedback estimator (3). On the

other hand, if k`(t) is a losing action, l̃t computed above
has a larger number of non-zero entries compared to (3).

It is not hard to prove the following fact (see (Karaca
et al., 2019) for the proof), which is the key to obtaining
a sublinear regret bound.

Fact 1. The estimator l̃t computed as in (4) is an unbiased
estimate of the true loss vector lt in (2).

Compared to the bandit estimator in (3), the estimator
considered above has a strictly smaller variance (since
rt[k] ≥ wt[k] for all k) by virtue of the additional infor-
mation used. To quantify such improvement, we define the

quantity αkt := rt[k]
wt[k]

. It measures the additional knowledge

available to bidder ` about the loss lt[k], when compared
to the standard bandit feedback. Note that αkt ≥ 1, and
it increases with the information available to bidder. To
make our results explicit, we define the following aggregate
quantity, called the average feedback information.

Definition 3. (Average feedback information). The aver-
age feedback information available to bidder ` over T auc-

tion rounds is αavg :=
(

1
TK

∑T
t=1

∑K
k=1

1
αk

t

)−1
∈ [1, K].

Bandit feedback corresponds to αavg = 1, since rt[k] =
wt[k] for all k, while αavg = K in case of full-information
feedback, since rt[k] = 1 for all k. In repeated auctions,
(based on the previous discussions) the average feedback
information αavg depends on the auction type and also
the information available to the participants, and can be
computed only after all the auction rounds are completed.

The following theorem bounds the performance of the
proposed algorithm, as a function of αavg.

Theorem 1. Assume bidder ` bids according to
Algorithm 1 with loss vector estimate l̃t computed
as in (4) and η =

√
2αavg log(K)/(KT ), then

E
[
R`(T )

]
≤
√

2 (K/αavg)T logK.

Theorem 1 generalizes the regret bounds of full-
information and bandit algorithms, obtained by setting
αavg = K or αavg = 1 respectively, to the case where
intermediate information is available to bidder `. In a
repeated auction, where αavg is typically greater than
1, the obtained regret bound strictly improves upon
standard bandit guarantees. Our proof is relegated
to (Karaca et al., 2019) and it follows from standard
online learning arguments by making use of Fact 1 and
Definition 3. To optimally select the learning rate η, the
value αavg needs to be known ahead of time. However, we
expect that the bidders could estimate and even update
this value using the information from the previous auction
rounds. In practice, in our experiments we show that a
wide-range of η leads to desirable performance.

In comparison with the works considering feedback graphs
(Alon et al., 2015, 2017; Lykouris et al., 2017), Theorem 1
does not depend on any graph-theoretic quantity; instead,
it depends on the notion of average feedback information
defined above. This makes it applicable to our more

general auction framework in that the way the additional
information originates can be unknown to the bidders
(see Section 3.3). Comparing with their algorithms and
regret bounds, Alon et al. (2017) use an estimator that
coincides with (4) where the revelation probabilities are
computed from the feedback graph, and obtain the regret

bound
√

2
∑T
t=1mt logK, where mt is a precomputed

upper bound on the maximum size of acyclic subgraphs
of the feedback graph at round t. On the other hand,
(Lykouris et al., 2017) requires knowing the feedback
graphs ahead of time and relies on a different algorithm
which is a freezing modification to Hedge. Their regret
bound holds with high probability and it is of the form
o(βL∗), where L∗ is the loss of the best fixed strategy,
and β is an upper bound on the independence number
of the feedback graphs at all rounds. Finally, note that
these works replace the

√
K term of the regret bounds of

bandit algorithms with a graph-theoretic quantity, which
might still be equal to

√
K in the worst-case.

3.2 Auctions with Simple Constraints and Convex Bids

We consider a simpler auction problem where the auction-
eer has to procure a fixed amount Q ∈ R+ of a single type
of good. In addition to the assumptions in Section 2, each
bidder is now equipped with a finite strategy set consisting
of strongly convex and increasing cost/bid functions over
compact intervals. The allocation rule is given by,

x∗(B(t)) = arg min
x∈X(t)

∑
`∈N

b
k`(t)
` (x`) s.t.

∑
`∈N

x` ≥ Q. (5)

As a remark, some of the European reserve and day-
ahead markets belong to this class since they ignore
the network constraints. Let λ∗(B(t)) ∈ R+ denote the
Lagrange multiplier associated with the constraint in (5),
called the marginal price, and it is announced after each
round t to all bidders. The payment rule is then given by
p`(B(t)) = λ∗(B(t))x∗` (B(t)).

Assume in round t bidder ` is a loser with x∗` (B(t)) =
0. From the Karush-Kuhn-Tucker optimality conditions
and strong duality of (5), for any k ∈ K`, we have
d

dx
bk` (x)

∣∣∣
x=0

≥ λ∗(B(t)) ⇐⇒ x∗` ({B−l(t), bk` }) = 0.

Equivalently, the marginal price information enables a
losing bidder to be aware of all the other losing actions
in its strategy set (similar arguments can be made for any
Lagrange multiplier-based payments under strong duality
and strong convexity). Hence, bidder ` gets to known the

set of all losing actions: Lt = {k ∈ K` |
d

dx
bk` (x)

∣∣∣
x=0

≥
λ∗(B(t))}. Notice that the set above is meaningful only
when bidder ` is a loser, since otherwise marginal price
can change whenever bidder ` picks another action.

In the partial information setting described above, a losing
action k is revealed when any other losing action is played,
since each losing action reveals the full set of losing actions
Lt. Hence, the revelation probabilities are given by:

rt[k] =


∑
j∈Lt

wt[j], if x∗` (B(t)) = 0 and k ∈ Lt,

wt[k], otherwise.
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In the first case, the probabilities are calculated by a
sum, since choosing different losing actions constitute
independent events. Then, the estimator l̃t in (4) can be
obtained by plugging the probabilities defined above.

3.3 General Auctions

We now consider the general auction problem introduced
in (1), Assume in round t bidder ` is a loser with
x∗` (B(t)) = 0. Since the allocation rule is given by an
optimization problem, it can be verified that x∗` (B(t)) =
0 =⇒ x∗` ({B−`(t), bk` }) = 0, ∀k ∈ Lt, where

Lt = {k ∈ K` |Xk` ⊆ Xk`(t)` ,

and ∀x ∈ Xk` , bk` (x) ≥ bk`(t)` (x)}.
(6)

If b
k`(t)
` : Xk`(t)` → R+ is a losing bid function, also the bid

functions that lie in the epigraph of b
k`(t)
` are losing. Note

that Xk` ⊆ Xk`(t)` is required since the function can be as-
sumed to take infinitely large values outside of its domain.
The statement above holds regardless of the payment rule,
and thus it is applicable to a wide-range of auctions.

In such a framework, a generic action i is revealed either
when action i is picked, or when a losing action j is picked
such that action i belongs the epigraph of action j. Hence,
to define the revelation probabilities, we define the set of
all losing actions by Lt = {k ∈ K` |x∗` ({B−`(t), bk` }) = 0},
and we let Rk = {j ∈ K` |Xj` ⊇ Xk` , and∀x ∈ Xk` , b

j
`(x) ≤

bk` (x)}, be the set of all actions for which the action k ∈ K`
belongs to the epigraph of the corresponding bid function.
Then, according to our previous arguments, the revelation
probabilities correspond to

rt[k]=


∑

j∈Lt∩Rk

wt[j], if x∗` (B(t))=0 and k∈Lt,

wt[k], otherwise.

(7)

Observe that, in the first case, the sum involves all losing
actions that can reveal information about action k.

Computing these probabilities requires knowing the set of
all losing actions Lt, which is in general unknown to the
bidders. To apply our proposed algorithm in such a general
framework, we propose the following heuristic choice:

r̂t[k] =

wt[k] +
∑

j∈Rk\{Wt∪k}

wt[j],
if x∗

` (B(t))=0,
and k∈Lt,

wt[k], otherwise,

whereWt ⊂ K` is the set of actions that lead to a non-zero
allocation at every instance up to time t. Such set can
be computed by bidder ` based on the previous auction
rounds. Note that the above heuristic approximates the
true rt[k] by assuming that the actions that always lead
to non-zero allocations (Wt) are the ones that would lead
to non-zero allocations in the current auction round. If
Wt is equivalent to the latter set, the heuristic coincides
with (7). When such revelation probabilities are plugged

in (4), the resulting estimator l̃t may not be unbiased and
hence the result of Theorem 1 is not directly applicable.
Nevertheless, in our numerical case studies we will
showcase the performance of the proposed heuristic in
realistic electricity market models.

time

Fig. 1. Average regret (in $ and averaged over 50 runs
and 3 bidders) of different algorithms: Shaded areas
represent ± one standard deviation.

4. NUMERICAL STUDIES

First, we consider an instance of Section 3.2. Then, we
illustrate our approach for the general setting on the Swiss
reserve auction. (Karaca et al., 2019) provides additional
experiments on an IEEE 14-bus test system.

4.1 Auction with Simple Constraints

Consider the set-up of Section 3.2, with Q = 15 MW and
three bidders with quadratic polynomial cost functions
c`(x`) = a` x

2
` + d` x`, with a1 = 0.1, a2 = 0.095, a3 =

0.105, d1 = 8, d2 = 9, d3 = 10, and production limits of
X` = 10 MW for l = 1, 2, 3. Each bidder chooses among
15 actions, obtained by perturbing the linear terms of
their cost functions as d` + δ, where δ is chosen from a
uniform distribution in the interval [−6, 30]. Let T = 600
be the horizon. For Exp3 and Hedge algorithms, we
picked the optimal learning rates η =

√
2 log(K)/(KT )

and η =
√

8 log(K)/T , respectively, see (Bubeck and
Cesa-Bianchi, 2012). For our algorithm, we picked η =√

2α̂ log(K)/(KT ), by picking α̂ from {8.5, 11, 13.5}, since
the true value of αavg is not known a-priori and it is
required to lie in the interval [1,K] = [1, 15]. These values
are chosen to be the same for all bidders. Recall that the
full-information Hedge algorithm is unrealistic and hence
we run it to upper bound the achievable performance.

Figure 1 illustrates the average regret as in Definition 1
over 50 runs and 3 bidders for the cases under which all
bidders implement Hedge, Exp3, and the extended Exp3
algorithms. Observe that the extended Exp3 achieves
a performance significantly better than Exp3, and also
close to Hedge for a wide-range of learning rates η.
Figure 2 shows the average feedback information αavg in
simulations based on different number of actions, again
averaged over 50 runs. We see that αavg is close to
K in all cases, which explains the improvement in the
bound obtained in Theorem 1. Additional information
helps Bidder 2, who has the lowest cost, to discard losing
actions quickly, as shown in (Karaca et al., 2019, Table 1).

4.2 Swiss Reserve Market

The following simulations are based on the bids placed
in the 46th weekly Swiss reserve auction of 2014 (Ab-
baspourtorbati and Zima, 2015). This auction involves
21 plants bidding for secondary reserves, 25 for positive
tertiary reserves and 21 for negative tertiary reserves.
Since the problem is big, we picked six of the largest
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K

Fig. 2. αavg as a function of the number of actions K.

time

Fig. 3. Average regret (in CHF) for Swiss market.

Table 1. Average social cost (in CHF).

Truthful Bidding Exp3 Extended Exp3 Hedge

2,615,800 2,652,300 2,637,400 2,635,500

secondary reserve providers as the learning agents. The
bids are discrete, that is, they are given by sets of re-
serve size and price pairs. Strategy sets are created by
inflating the bid prices with multipliers from the set
{1, 1.05, 1, 15, 1.25, 1.35, 1.45}. The market involves com-
plex constraints arising from nonlinear cumulative distri-
bution functions. These constraints imply that the deficit
of reserves cannot occur with a probability higher than

0.2%. The payment rule is p`(B(t)) = b
k`(t)
` (x∗` (B(t))).

Let T = 600 be the horizon. For Exp3 and Hedge
algorithms, we again picked the optimal learning rates η.
For our algorithm, we picked η =

√
2α̂ log(K)/(KT ) with

α̂ = 6. Figure 3 shows the average regrets over 50 runs
and over 6 bidders for the cases under which all bidders
implement Hedge, Exp3, and the extended Exp3 algo-
rithm. Initially, the regrets are large considering that the
average true cost of a bidder is 39,429 CHF. The extended
Exp3 algorithm attains a better performance than the
Exp3 with both the true revelation probabilities (com-
puted by Rk) and our heuristic choice. In Table 1 we show
the resulting average social cost: the participants’ total
production cost, We will explore mechanism design with
the goal of achieving lower social cost as a future work.

5. CONCLUSION

In this paper, we have considered online learning in a
general class of repeated auctions. For such problems, we
have shown that the information structure lies in between
the well-studied full-information and bandit settings. Ex-
ploiting the additional information acquired by the bid-
ders whose bids are not accepted, we have formulated
an extension to the standard bandit algorithms involving
a more accurate utility estimation. We have shown that
the regret guarantee of this algorithm improves upon the
bandit algorithms. Our results were verified in several case
studies based on realistic electricity market models.
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