
Reinforcement Learning and Trajectory
Planning based on Model Approximation

with Neural Networks applied to Transition
Problems

Max Pritzkoleit ∗ Carsten Knoll ∗ Klaus Röbenack ∗

∗ TU Dresden, Faculty of Electrical and Computer Engineering,
Institute of Control Theory, Dresden, Germany (e-mail:

{max.pritzkoleit,carsten.knoll,klaus.roebenack}@tu-dresden.de).

Abstract: In this paper we use a multilayer neural network to approximate the dynamics of
nonlinear (mechanical) control systems. Furthermore, these neural network models are combined
with offline trajectory planning, to form a model-based reinforcement learning (RL) algorithm,
suitable for transition problems of nonlinear dynamical systems. We evaluate the algorithm
on the swing-up of the cart-pole benchmark system and observe a significant performance
gain in terms of data efficiency compared to a state-of-the-art model-free RL method (Deep
Deterministic Policy Gradient (DDPG)). Additionally, we present first experimental results on
a cart-triple-pole system test bench. For a simple transition problem, the proposed algorithm
shows a good controller performance.

Keywords: Trajectory planning, Reinforcement learning, Learning control, Neural-network
models, Model approximation, Tracking control,

1. INTRODUCTION

In recent years, reinforcement learning gained a lot of
attention in- and outside the scientific community through
advances made possible by incorporationg deep neural
networks for function approximation. These model-free 1

algorithms (i.e. DDPG, DQN) try to approximate the
Hamiltonian (often called “Q-function”) of the underlying
optimal control problem based on data, which is generated
by interacting with the system. The main drawback of
these algorithms is the poor data efficiency, which means
a lot of data has to be gathered for convergence. This
makes it hard to apply them to real world systems due to
wear-out and time consumption.

In contrast, model-based algorithms, which learn a rep-
resentation of the system dynamics, need less data to
achieve a certain task (i.e., equilibrium transition) when
applicable. These algorithms try to automate the classical
process of obtaining a model of the system dynamics by
first principles, identification of physical parameters, and
controller design. In the context of reinforcement learning,
a priori knowledge about the system is assumed to be not
available or very limited. This makes the control problem
unnecessarily hard from a control theoretic point of view,
but reduces model bias and empowers generalization of the
learning algorithm.

In this work we combine neural network dynamics models
with trajectory planning to form a model-based reinforce-
ment learning algorithm. This approach is similar to Yam-

1 Model-free in the sense, that the system dynamics are not explic-
itly represented.

aguchi and Atkeson (2016), where a stochastic trajectory
planning is performed. Other works use Locally Weighted
Projection Regression (LWPR) (Mitrovic et al., 2008) or
Gaussian Process (GP) (Bechtle et al., 2019; Lee et al.,
2017) for model learning.

This paper is structured as follows: In Sec. 2 the basic con-
cepts of model-based reinforcement learning are presented.
In Sec. 3 it is shown, how a neural network can be used
to learn a dynamics model. In Sec. 4 the iterative Linear-
Quadratic Regulator (iLQR) is described, which is used for
trajectory planning. Finally we combine the two concepts
to form a model-based RL algorithm in Sec. 5 and present
results in simulation and on a test bench in Sec. 6.

2. PRELIMINARIES

Reinforcement learning (RL) deals with general decision
making problems similar to optimal control. In reinforce-
ment learning, an agent interacts with a system by ap-
plying a control uk ∈ Uk to it. The system (1) transits
from a state xk ∈ Xk at time step k to a successor state
xk+1 ∈ Xk+1 at time step k + 1 and emits a cost signal
ck ∈ R, which holds information about the fullfilment of
the given task.

In contrast to the classical RL setting, the system dynam-
ics

xk+1 = f(xk,uk) (1)

consists of a deterministic sampled-data system with un-
derlying continuous dynamics and the incremental cost
function

ck : Xk × Uk 7→ R (2)

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

Copyright lies with the authors 1607



is known.

The agent’s goal is to minimize the total cost

J =

N−1∑
k=0

ck(xk,uk) + cN (xN ) (3)

over a given time-horizon N , starting from an inital state
x0 by choosing appropriate controls. If the system transits
to a terminal state xk+1 ∈ X− or k = N , the episode
terminates, and the system is reset to x0. At every time
step the transition tuple (x,u,x′), where x′ = f(x,u), is
added to a data set D = {(x,u,x′)i}Ti=0, where T is the
total experience of the agent.

2.1 Problem statement

This leads to a classical formulation of the optimal control
problem:

min
u0,...,uN−1

J(x0,u0, ...,uN−1) (4a)

s.t. xk+1 = f(xk,uk), ∀k ∈ [0, N − 1], (4b)

uk ∈ Uk,xk ∈ Xk, giv.x0. (4c)

2.2 Transition problems

It is assumed, that x0 is a stable equilibrium of (1) and
the goal is to drive the system into a goal state x? in N
time steps. An equilibrium xe of system (1) is defined as:

xe = f(xe,ue), (5)

where ue ∈ U is an admissable control, such that (5)
is satisfied. To transcribe the transition problem to an
optimal control problem (4), the cost function has to be
designed, such that the cost in the equilibrium vanishes:

ck(xe,ue)
!
= 0, cN (xe)

!
= 0. (6)

A quadratic cost function is thus a suitable choice.

2.3 Model-based RL

In the context of RL, the dynamics f are initially unkown
and problem (4) can’t be solved. Therefore, in model-based
RL the dynamics are approximated by a parameterized
model fθ using D. With the learned dynamics model an
approximate optimal control problem can be solved:

min
u0,...,uN−1

J(x0,u0, ...,uN−1) (7a)

s.t. xk+1 = fθ(xk,uk), ∀k ∈ [0, N − 1] (7b)

uk ∈ Uk,xk ∈ Xk, giv.x0 (7c)

There are numerous ways to solve problem (7). In policy
search the global solution is approxmiated by optimiz-
ing a parametrized control law (policy) π(x;φ), see e.g.
Deisenroth and Rasmussen (2011). Nagabandi et al. (2018)
and Lee et al. (2017); Mitrovic et al. (2008) use a model
predictive control scheme, where (7) is solved over a short
horizon ≤ N at every time step.

The optimized control law is applied to system (1) and
the resulting trajectory τ = {(x,u,x′)i}Ni=0 is added to
D. With the aggregated data set, the model fθ can be
improved and the process repeats until a sufficiently good
control law is found, as summerized in Alg. 1.

Algorithm 1 Model-based RL

Require: initial model fθ, data set D
initialize D by random sampling
while not converged do

1) train fθ using D
2) solve the optimal control problem (7)
3) rollout the resulting control law on system (1)
4) add the resulting trajectory τ to the data set D

end while

3. LEARNING A NEURAL NETWORK DYNAMICS
MODEL

To approximate the dynamics, the neural network pro-
posed by Nagabandi et al. (2018) is used.

The dynamics f are split into two terms:

xk+1 = xk + fd(xk,uk). (8)

To approximate the difference model fd, a feedforward
neural network fd,θ is used:

fd,θ(xk,uk)
!≈ fd(xk,uk). (9)

The network is composed of two hidden layers and uses
ReLU activation functions:

h[1] = ReLU
(
W [0]

(
xT
k ,u

T
k

)T
+ b[0]

)
, (10a)

h[2] = ReLU
(
W [1]h[1] + b[1]

)
, (10b)

fd,θ = W [2]h[2] + b[2]. (10c)

Hereby h[1] and h[2] denote the intermediate results of the
internal network layers.

The networks weight matrices and bias vectors together
form the parameter vector θ:

θ := {W [0], b[0];W [1], b[1];W [2], b[2]}.
To learn an approximate dynamics model, the mean-
sqared error (MSE) of the difference model derived from
(8) and (9) is minimized:

min
θ

1

T

T∑
i=0

∥∥∥(x′(i) − x(i)
)
− fd,θ

(
x(i),u(i)

)∥∥∥2

2
, (11)

where the superscript (i) labels data points in the i-th
tuple of D. Due to a possibly different range of values in
the state dimensions the error residuals are not weighted
equally. As proposed in Nagabandi et al. (2018), we use
data standardization to preprocess the training data.

3.1 Data Standardization

The data standardization is performed by computing the
standard deviation σ and mean µ vectors of ∆xk :=
xk+1 − xk, xk and uk over the whole data set D:

µ∆x := ED[∆x] σ∆x :=
√

VarD[∆x]

µx := ED[x] σx :=
√

VarD[x]

µu := ED[u] σu :=
√

VarD[u]

and applying the following transformation to the data:

∆x̂k := diag(σ−1
∆x)(∆x− µ∆x),

x̂k := diag(σ−1
x )(x− µx),

ûk := diag(σ−1
u )(u− µu).

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

1608



The neural network f̂d,θ is trained in the standardized
coordinates:

min
θ

1

T

T∑
i=0

∥∥∥∆x̂(i) − f̂d,θ
(
x̂(i), û(i)

)∥∥∥2

2
. (13)

A retransformation to the original coordinates leads to the
final model:

fd,θ := diag(σ∆x)f̂d,θ (x̂k, ûk) + µ∆x. (14)

3.2 Data acquisition heuristic

When the agent interacts with the system and collects data
points (x,u,x′), these data points are not sampled equally
distributed in the X×U×X space. At the beginning of the
learning process they are obviously dense near the initial
state (x0, ?, ?). When a trajectory is rolled out, that does
not lie in the distribution of the data set D, these new
data points are sparse and therefore treated as outliers
in the training process. To make sure the neural network
model also captures the information of these data points
the density of the data in D has to be bounded. Therefore,
a simple heuristic is used, that makes sure a data point
is only added to D if it is not already captured by the
model. Namely, if the prediction error of the latest sample
(x,u,x′) is higher than a specified bound ε, the sample is
added to D: ∥∥∥∆x(i) − fd,θ

(
x(i),u(i)

)∥∥∥2

2
> ε. (15)

3.3 Exploiting the Model Structure of Mechanical Systems

When dealing with mechanical systems, some properties of
the system dynamics can be exploited to ease the learning
process.

When adopting a Lagrangian perspective, the state of a
mechanical system x is composed of its generalized coor-

dinates and the corresponding velocities x :=
(
qT q̇T

)T
.

The continuous time state space model is then given by:

ẋ =

(
q̇

g(q̇, q,u)

)
, (16)

where q̈ = g are the relations stemming from the La-
grangian equations of motion (which are considered as a
first principle). For a sufficiently small sample-time ∆t an
approximation of the discrete time dynamics is given by:

xk+1 = xk + ∆t

(
q̇k

g(q̇k, qk,uk)

)
. (17)

The upper hyper-row of the system dynamics consists
of known definitional equations which can be exactly
represented (i. e. hardcoded) easily by a neural network.
Thus only the mapping g, which models the acceleration
dynamics has to be learned.

If the system has angles as generalized coordinates, the
system dynamics are typically not dependent on the ab-
solute value of the angle, but depend on its sine and/or
cosine components. Thus, instead of the state component
xi the two pseudo-state-components (sinxi, cosxi) can be
considered. If this is done for all angle-coordinates, one
obtains the pseudo-state-vector o. In the learning process,
o is used instead of x as the input of the neural network,
but its output remains ∆x.

4. TRAJECTORY PLANNING

For solving the approximate optimal control problem (7)
with (14) as fθ, trajectory planning techniques can be
used. Instead of only solving for the open loop controls
u∗0, ...,u

∗
N−1, the optimization performed in this work

leads to a time-varying feedback-controller with feedfor-
ward:

uk = Kk(xk − x∗k) + u∗k,∀k ∈ [0, N − 1], (18)

that stabilizes the system around the optimized state
trajectory x∗0, ...,x

∗
N−1.

4.1 Iterative Linear-Quadratic Regulator (iLQR)

The iLQR is a second-order gradient method based on
Differential Dynamic Programming (DDP) (Mayne, 1966),
that solves problem (4) in an iterative fashion. In this
work, the control-limited variant of iLQR from Tassa et al.
(2014) is used. In this section, a brief overview of the
algorithm is presented, for details see Li and Todorov
(2004); Tassa et al. (2014). Neglecting a regularization
heuristic and the performed line-search, the basic algoritm
can be boiled down to three steps as shown in Alg. 2.

Algorithm 2 iLQR (simplified)

Require: f , ck, cN
choose initial controls U [0] := {u[0]

0 , ...,u
[0]
N−1}

X [0] := {x[0]
0 , ...,x

[0]
N } rollout by applying U [0] to f

for j = [0, ..., jmax] do
1) approximate (4) around τ [j] := {X [j],U [j]}
2) solve the resulting time-varying LQR problem
3) τ [j+1] : rollout the resulting control law on (1)
if J(τ [j])− J(τ [j+1]) < εJ then
break
end if

end for
return τ ∗ = {X∗,U∗} := τ [j+1]

1) Local approximation of the optimal control problem
Given the current trajectory {X̄, Ū} =: τ [j] a taylor
expansion of the system dynamics and cost is performed
around it. In contrast to DDP, iLQR only uses a first order
expansion of the dynamics:

x̃k+1 ≈ Akx̃k +Bkũk, (19)

with

x̃k = xk − x̄k, ũk = uk − ūk,∀k. (20)

The cost approximation is of second order:

c̃k ≈
(
x̃T
k ũ

T
k

) [(cx,k
cu,k

)
+

1

2

(
Cxx,k Cux,k
Cxu,k Cuu,k

)(
x̃k

ũk

)]
,

(21a)

c̃N ≈ x̃T
Ncx,N +

1

2
x̃T
NCxx,N x̃N . (21b)

This leads to the optimization objective:

J̃ =

N−1∑
k=0

c̃k(x̃k, ũk) + c̃N (x̃N ). (22)

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

1609



2) Solving the local approximation of the optimal control
problem From the linear-quadratic cost function (22)
and the linear time-varying dynamics (19) an optimal
control problem can formulated:

min
ũ0,...,ũN−1

J̃(x̃0, ũ0, ..., ũN−1), (23a)

s.t. x̃k+1 = Akx̃k +Bkũ,∀k ∈ [0, N − 1],(23b)

uk ∈ Uk,xk ∈ Xk, giv.x0. (23c)

Problem (23) can be solved by dynamic programming
(Bertsekas, 2005):

ṼN (x̃N ) = c̃N (x̃N ), (24a)

Ṽk(x̃k) = min
ũk

[
c̃k(x̃k, ũk) + Ṽk+1(x̃k+1)

]
︸ ︷︷ ︸

=:Q̃k(x̃k,ũk)

. (24b)

The optimal controller can be derived in analogy to the
discrete-time LQR backwards in time starting from k =
N − 1 with

Vxx,N = Cxx,N vx,N = cx,N . (25)

The Hamiltonian Q̃k is linear-quadratic:

Q̃k =
(
x̃T
k ũ

T
k

) [(qx,k
qu,k

)
+

1

2

(
Qxx,k Qux,k
Qxu,k Quu,k

)(
x̃k

ũk

)]
,

(26)

with

Qxx,k = Cxx,k +AT
kVxx,k+1Ak, (27a)

Qxu,k = QT
xu,k = Cxu,k +AT

kVxx,k+1Bk, (27b)

Quu,k = Cuu,k +BT
k Vxx,k+1Bk, (27c)

qx,k = cx,k +AT
k vx,k+1, (27d)

qu,k = cu,k +BT
k vx,k+1. (27e)

Solving for the optimal control law leads to the following
feedback law with feedforward:

ũ∗k = Kkx̃k + kk,∀k ∈ [0, N − 1]. (28)

The feedback matrix and feedforward are given by:

Kk = −Q−1
uu,kQux,k, kk = −Q−1

uu,kqu,k. (29)

Substituting the optimal control law (28) into the Hamil-
tonian (26) results in the cost-to-go:

Ṽk(x̃k) = x̃T
k vx,k +

1

2
x̃T
kVxx,kx̃k + const., (30)

with

Vxx,k = Qxx,k +KT
k (Qux,k +Quu,kKk) +Qxu,kKk,

(31a)

vx,k = qx,k +KT
k (qu,k +Quu,kkk) +Qxu,kkk. (31b)

3) Rollout of the optimal control law The optimal control
law (28) for problem (23) can be solved for uk resulting in
(18):

uk = Kk(xk − x̄k︸︷︷︸
=:x∗

k

) + kk + ūk︸ ︷︷ ︸
=:u∗

k

,∀k. (32)

Applying (18) to (1) leads to a new trajectory starting
from x0 := x̄0 ∀k ∈ [0, N − 1]:

uk = Kk(xk − x̄k) + kk + ūk, (33a)

xk+1 = f(xk,uk). (33b)

The new trajectory τ [j+1] := {X,U} is used for the next
iteration.

4.2 Computing the final control law

Dealing with tranisition problems, it is assumed that xk =
xe and uk = ue for k > N . To stabilize the system in xe,
a standard method is to design a LQ controller

uk = KLQR(xk − xe) + ue, k > N. (34)

Under the given assumptions KN = KLQR can be
achieved, i.e. the time-varying policy (18) transits smoothly
to the constant LQR policy. To accomplish this, the
DARE 2 of the LQR problem for Ae = ∂xfθ(xe,ue) and
Be = ∂ufθ(xe,ue) is solved, with R := Cuu,N ,Q :=
Cxx,N ,N := Cxu,N . The resulting matrix P , which is the
solution of the DARE, is used to initialize the backward
pass in step 2):

Vxx,N := P , vx,N := 0. (35)

However, while the trajectory optimization yields x?
N ≈ xe

it does not guarantee x?
N ≡ xe. To stabilize the system in

the desired state xe, for k > N , the following control law
is applied instead of (18):

uk = KN (xk − xe) + ue. (36)

5. COMBINING MODEL APPROXIMATION AND
TRAJECTORY OPTIMZATION

The proposed neural network model in Sec. 3 for approx-
imating the dynamics (1) and the trajectory planning
approach in Sec. 4 can be combined to form the model-
based reinforcement learning algorithm Alg. 3, which is a
special case of Alg. 1.

Algorithm 3 Model-based RL with offline trajectory
planning

Require: model fd,θ, data set D
initialize D by random sampling
while not converged do

1) train fd,θ using (13) on the data set D
2) solve the optimal control problem (7) with iLQR
3) apply the resulting policy (18) on system (1)
4) add the resulting trajectory τ to the data set D

end while

6. RESULTS

6.1 Simulation Results 3

As a first simulation experiment, Alg. 3 is applied to the
cart-pole system (Fig. 1).

The state is composed of the position q0 and velocity q̇0 of
the cart, as well as the angle q1 and angular velocity q̇1 of
the pole:

x := (q0 q1 q̇0 q̇1) . (37)

The system is controlled by the force F0, that acts on
the cart. The continuous dynamics in an input-output
linearized form, where the control input u = (u1) is the
acceleration of the cart q̈0, are given by:

2 Discrete Algebraic Riccati Equation
3 Code available at: https://github.com/TUD-RST/pygent

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

1610



Fig. 1. Cart-pole system

ẋ1 = x3, ẋ2 = x4, ẋ3 = u1, (38a)

ẋ4 = a1m1(g sin(x2) + u1 cos(x2))− d1

J1 + a2
1m1

x4,

(38b)

where a1 is the position of the center of gravity of the pole,
m1 is the mass of the pole, J1 is the angular momentum of
the pole, d1 is a damping coefficient, and g is gravity. The
control objective is to swing-up and balance the pole in

the upward unstable equlibrium x? = (0 0 0 0)
T

starting

from x0 = (0 π 0 0)
T

.

Controller performance The learning curve of Alg. 3
applied to the cart-pole system is shown in Fig. 2. For
the first five episodes, the agent samples controls from
a uniform distribution to initialize the data set D. At
the 14-th episode (about 2500 time steps), the swing-up
and stabilization of the pole in the upward position is
accomplished for the first time. After 19 episodes (about
3600 time steps), the learning based controller asymptot-
ically matches the performance of a controller, that has
access to the true system dynamics. Compared to DDPG
(Lillicrap et al., 2016), a popular model-free RL method,
our approach is about 70 times more data-efficient on
the swing-up task and has a better final performance, cf.
(Pritzkoleit, 2019).

Prediction performance of the approximated model To
examine the prediction quality of the neural network
model, we consider the error along the (optimal) trajec-

tory 4 , i. e., e(k) := f̂d,θ(x∗k,u
∗
k) − fd(x∗k,u

∗
k) at different

training stages (episodes). Because the first two compo-
nents of f are definitional equations (cf. (17) and (38a)),
only the last two components – which correspond to the
acceleration of the cart and the pendulum angle – have to
be considered. From Fig. 3 we see good convergence with
increasing episode number. Furthermore, we notice that,
even after about 49 episodes the approximated model still
differs perceptibly but that does not impair the algorithm
from successfully performing the swing-up task.

6.2 Experimental results

To further investigate the performance of Alg. 3, it is
applied on a real cart-triple-pole test bench system. The
goal of the experiment is to side-step the downward
hanging poles from q0 = 0 to q0 = 0.8, while the
poles must rest at the end of the transition. To initialize
the data set D we first planned a twice differentiable
4 The optimal trajectory was calculated with the true dynamics
using iLQR.

0.0

0.5

1.0

M
ea

n
co

st

0 2000 4000 6000 8000 10000

Time steps (samples)

0

2

4

T
ot

al
co

st
J
/J

o
p
t.

optimal

Fig. 2. Learning Process: After around 3600 time steps
(72 s interaction time), the learning based algorithm
converges to the performance of the controller with
access to the true dynamics (red dashed). The total
cost is normalized. The initialization episodes (blue)
have a high mean cost, but a varying total cost, due
to early termination of these episodes.

−0.01

0.00

0.01

e 3

j = 13

j = 25

j = 37

j = 49

0.0 1.0 2.0 3.0 4.0 5.0

Time (s)

−0.2

0.0

0.2

e 4

j = 13

j = 25

j = 37

j = 49

Fig. 3. Approximation error: The values of the neural

network model f̂d,θ converge to the real model fd with
increasing episode number j.

trajectory for q0, which tranisitions smoothly between
several randomly chosen positions. Based on the planned
trajectory, a feedforward control for the input u1 = q̈0

is derived. After three 5 iterations of Alg. 3 the transition
can be accomplished (see Fig. 4 and the respective video
at https://github.com/TUD-RST/pygent).

5 After only one iteration, the algorithm drives the system to 0.8,
but the poles are not perfectly at rest.

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

1611



0.0

0.8
1.0

P
os

it
io

n
(m

)

0.9π

π

1.1π

A
n

gl
es

(r
ad

)

q1

q2

q3

0.0 2.5 5.0 7.5 10.0

Time (s)

0

5

A
cc

.
(m

/s
2
)

Fig. 4. Cart-triple-pole system transition from q0 = 0.0 to
q0 = 0.8 with downward hanging poles.

Fig. 5. Cart-triple-pole system.

Fig. 6. Cart-triple-pole test bench at our institute.

7. CONCLUSION AND OUTLOOK

In this work we demonstrated, that the combination of
neural network dynamics models and offline trajectory
planning is suitable for solving certain transition prob-
lems on the single and cart-triple-pole systems without
prior knowledge of the dynamics through a reinforcement
learning scheme. Thereby, the data efficiency of the swing-
up task of the cart-pole system is significantly higher,
compared to model-free methods and matches that of
other model-based algorithms (Chua et al., 2018, Fig.
3). One advantage of our approach solving the swing-up
task of the cart-pole system over PILCO (Deisenroth and
Rasmussen, 2011) and Deep PILCO (Gal et al., 2016) is
the lower computational effort. The authors in Gal et al.
(2016) report 31.05 (PILCO)/8.78 (Deep PILCO) minutes
of average training time per episode, where the presented
approach only requires 4.13 minutes 6 per episode and
scales linear with the data. In constrast to using a GP
dynamics model, the applicability of the neural network
model is thus not as limited by the size of the data set D.

An open research question is, if Alg. 3 is also suited for
learning the swing-up of the cart-triple-pole system. Here,
the remaining model error, as pointed out in Sec. 6.1 could
be more problematic, due to the strong nonlinearity of
the system and its chaotic behaviour. The small sample-
time further increases the problem of error propagation
in multi-step trajectory planning. To tackle this problem,
one approach could be to use a multi-step prediction error
instead of (11).

One general drawback with the presented deterministic
modeling approach is that the model does not know what
it does not know. To overcome this problem, the prediction
uncertainty could be incorporated by using so called deep
ensemble models (Lakshminarayanan et al., 2017) which
were used in the RL setting in Chua et al. (2018).

In this work we used iLQR as a planning algorithm, which
sometimes got stuck in local minima in the early stages
of trajectory planning, when using the neural network
model of dynamical systems that were not included in this
paper. Therefore, other trajectory planning algorithms like
collocation could be compared to iLQR in future works.

From a control theoretic point of view it may seem
unnecessary effortful to learn the full dynamics, when a
reasonable good model can be found by first-principles and
system identification. The cart-triple-pole system however
is rather difficult to control and an approach that combines
model learning with a physical modeling based prior could
be beneficial. Kaheman et al. (2019) and Lee et al. (2017),
where only the modeling error is learned, are promising
approaches.

ACKNOWLEDGEMENTS

We thank the Center for Information Services and High
Performance Computing (ZIH) at TU Dresden for gener-
ous allocations of compute resources. We also thank the
anonymous reviewers for their valuable comments.

6 Hardware: 1.3 GHz Dual-Core Intel Core i5 (2013).

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

1612



REFERENCES

Bechtle, S., Rai, A., Lin, Y., Righetti, L., and Meier, F.
(2019). Curious iLQR: Resolving uncertainty in model-
based RL. arXiv:1904.06786.

Bertsekas, D.P. (2005). Dynamic Programming and Opti-
mal Control, volume 1. Athena Sientific, Bellmont, MA,
3rd edition.

Chua, K., Calandra, R., McAllister, R., and Levine, S.
(2018). Deep reinforcement learning in a handful of
trials using probabilistic dynamics models. In Advances
in Neural Information Processing Systems, 4754–4765.

Deisenroth, M. and Rasmussen, C.E. (2011). PILCO:
A model-based and data-efficient approach to policy
search. In Proceedings of the 28th International Con-
ference on machine learning (ICML-11), 465–472.

Gal, Y., McAllister, R., and Rasmussen, C.E. (2016).
Improving pilco with bayesian neural network dynamics
models.

Kaheman, K., Kaiser, E., Strom, B., Kutz, J.N., and
Brunton, S.L. (2019). Learning discrepancy models from
experimental data. arXiv:1909.08574.

Lakshminarayanan, B., Pritzel, A., and Blundell, C.
(2017). Simple and scalable predictive uncertainty es-
timation using deep ensembles. In Advances in Neural
Information Processing Systems, 6402–6413.

Lee, G., Srinivasa, S.S., and Mason, M.T. (2017). GP-
iLQG: Data-driven robust optimal control for uncertain
nonlinear dynamical systems. arXiv:1705.05344.

Li, W. and Todorov, E. (2004). Iterative linear quadratic
regulator design for nonlinear biological movement sys-
tems. In Proceedings of the 1st International Con-
fenrence on Informatics in Control, Automation and
Robotics, 222–229.

Lillicrap, T.P., Hunt, J.J., Pritzel, A., Heess, N., Erez,
T., Tassa, Y., Silver, D., and Wierstra, D. (2016).
Continuous control with deep reinforcement learning.
arXiv: 1509.02971.

Mayne, D. (1966). A second-order gradient method for
determining optimal trajectories of non-linear discrete-
time systems. International Journal of Control, 3(1),
85–95.

Mitrovic, D., Klanke, S., and Vijayakumar, S. (2008). Op-
timal control with adaptive internal dynamics models.
In Proceedings of the 5th International Confenrence on
Informatics in Control, Automation and Robotics.

Nagabandi, A., Kahn, G., Fearing, R.S., and Levine, S.
(2018). Neural network dynamics for model-based deep
reinforcement learning with model-free fine-tuning. In
2018 IEEE International Conference on Robotics and
Automation (ICRA), 7559–7566.

Pritzkoleit, M. (2019). Bestärkendes Lernen zur
Steuerung und Regelung nichtlinearer dynamischer Sys-
teme. Diploma thesis, TU Dresden, Germany. URL
https://github.com/TUD-RST/pygent.

Tassa, Y., Mansard, N., and Todorov, E. (2014). Control-
limited differential dynamic programming. In 2014
IEEE International Conference on Robotics and Au-
tomation (ICRA), 1168–1175. IEEE.

Yamaguchi, A. and Atkeson, C.G. (2016). Neural networks
and differential dynamic programming for reinforcement
learning problems. In 2016 IEEE International Confer-
ence on Robotics and Automation (ICRA), 5434–5441.

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

1613


