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Abstract: Model Predictive Control (MPC) is established as the most powerful and most successful 

method for multivariable control in the process industries. Most industrial applications of MPC rely on 

linear dynamic process models that are identified from active experiments on the plant. If a rigorous 

mechanistic model of the respective process unit already exists, it would be attractive to use this model 

directly inside an MPC algorithm. The PSE software “gPROMS Nonlinear Model Predictive Controller” 

(gNLMPC) provides precisely this functionality, and this paper describes its application to a 

polymerization reactor. Properties, features and advantages of linear and nonlinear MPC are compared 

systematically. 
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1. INTRODUCTION 

Across all industries, growing challenges require new 

solutions to optimize productivity and efficiency. Bringing 

automation, digitalization, and cutting-edge technologies 

together in a seamless way enables the comprehensive 

transformation of data into valuable knowledge – the next step 

of digital transformation.  A key tool in this transformation is 

the innovative combination of plant data and modelling, to 

gain new insights and create a next generation of digital twins 

for plants, processes, and products.  

Model Predictive Control (MPC) is established as the most 

powerful and most successful method for multivariable 

control in process industries: Qin/Badgewell (2003), 

Dittmar/Pfeiffer (2004) and (2006). Typical application areas 

are process units like distillation columns, steam crackers, 

fluidized bed dryers or multi-zone ovens, c.f. Pfeiffer, Grieb 

et al. (2014). However, most industrial applications of MPC 

still rely on linear dynamic process models that are identified 

from active experiments (like step testing) in the plant. While 

this approach is suitable for many continuous production 

processes where a linearized model describes the nonlinear 

plant dynamics with sufficient accuracy around a fixed 

operating point, it becomes tedious or unfeasible for batch 

processes or semi-continuous processes with multiple 

products and frequent grade changes, like e.g. polymerization 

reactors.  

In contrast, if a rigorous mechanistic process model of the 

respective process unit already exists, having been developed 

for some other purpose such as an operator training system, 

then it would be attractive to use this nonlinear process model 

directly inside an MPC algorithm. Such a model not only 

describes process behaviour around a fixed operating point for 

a single product, it can also describe plant startup and 

shutdown, process behaviour for different products and even 

grade transitions from one product to another during running 

operation. Rigorous models are derived from balance 

equations for mass, energy and impulse, together with 

algebraic equations for phase equilibria, chemical equilibria, 

reaction kinetics, transport processes etc. 

However, the improved predictive power delivered by a more 

flexible model comes with an increased computational 

burden; for example, some mathematical properties like the 

convexity of the MPC inherent optimization problem for 

linear process models and quadratic performance index are no 

longer applicable for the nonlinear case.  This can make the 

solution of the optimization problem in real time much more 

challenging. 

The company PSE (Process Systems Enterprise, London) is 

active in the area of process modelling and process simulation. 

Their software suite gPROMS does not only contain libraries 

for equation-oriented modelling of chemical processes, but 

also powerful mathematical algorithms to solve optimization 

problems. The acquisition of PSE by Siemens opens the path 

to integrate PSE software solutions into distributed control 

systems like SIMATIC PCS 7 and exploit gPROMS models 

during routine production operation. 

Therefore, all software prerequisites are now available to 

venture into the emerging area of nonlinear MPC: Allgöwer, 
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Badgwell et al. (1999), Allgöwer, Findeisen, Ebenbauer 

(2008). This paper describes the application of gNLMPC to an 

example of a continuous polymerization reactor. In the first 

sections of the paper, basics of MPC and gPROMS are briefly 

reviewed. Finally, the properties, features and advantages of 

linear and nonlinear MPC are compared systematically. 

2. BASICS OF MPC 

All MPC algorithms exploit the IMC principle (Internal 

Model Control, c.f. Garcia/Morari (1998)): a dynamic process 

model is not only used for offline controller design but 

constitutes an integral part of the online control algorithm, 

where it is used to predict future process behaviour along a 

specified finite prediction horizon. Typically, there are two 

variants of prediction used inside MPC algorithms: (1) The 

prediction of free response shows what the process will do if 

all manipulated variables (MVs) are kept constant. (2) The 

prediction of future with control shows what the process will 

do if the manipulated variables are moved in a specified way 

along a limited time in the future called control horizon.  

The second central idea of MPC is to formulate the feedback 

control problem as an optimization problem: minimize the 

squared sum of “control deviations” and other “costs” of 

control like MV moves over a finite time horizon. The specific 

formulation of the objective function for optimization offers 

many degrees of freedom for controller design. Control 

deviations are differences between predicted process outputs 

and future setpoints. Different controlled variables (CVs) can 

be assigned weights in the performance index to reflect their 

relative importance to process operation. Future setpoints can 

be assumed to be constant, or can be designed as trajectories 

or tunnels, with desired time constants. Move penalties for 

manipulated variables in the objective function restrict 

controller moves to be more or less aggressive. The general 

trade-off between control performance and robustness of 

stability against model uncertainty is relevant in context of 

MPC as well. 

The third central idea of MPC is the so called moving horizon 

principle and is similar to “rolling wave planning” in 

economics: although the optimization results contain a 

planning of future MV moves along the complete control 

horizon, only the MV values for the next sample step are 

actually implemented on the plant. In the next sample step, 

new measured values for the CVs will arrive, the predictions 

will be updated and new MV values will be calculated by 

optimization.  This way, the prediction and control horizon are 

moved stepwise along the time domain. 

The general signal flow of all MPC algorithms is sketched in 

Figure 1: the process model is running in parallel to the real 

process and is supplied with the same input signals u(k), but it 

is part of the control algorithm. The difference between one-

step ahead model prediction �̂�(𝑘|𝑘 − 1) and measured process 

output y(k) is used as an estimate �̂�(𝑘) of unmeasured 

disturbances. Measured disturbance variables are included in 

the prediction model as process input variables to improve 

accuracy of prediction and achieve an effect similar to 

feedforward disturbance compensation in conventional 

control loops. 

 

Figure 1: General signal flow for all MPC algorithms, 

manipulated variables u, controlled variables y. The 

controlled variables are predicted for the whole prediction 

horizon np , while future MV moves are only planned for 

discrete sample points inside control horizon nc. Time 

series of future values are marked with an arrow to the 

right, time series of past values with an arrow to the left. 

Inside the brackets, the index of first and last vector 

element is noted. 

The prediction of free response 𝑦�̂�
⃗⃗  ⃗ (𝑘 + 1: 𝑘 + 𝑛𝑝) is 

calculated from the stored values of past process inputs and 

process outputs. The iterative optimization is visible as a 

closed circle in signal flow: each evaluation of the 

performance index for a specified set of future MV moves 

�⃗�  (𝑘 + 1: 𝑘 + 𝑛𝑐) involves a prediction of future with control 

�̂�  (𝑘 + 1: 𝑘 + 𝑛𝑝) for the whole control horizon. A lot of 

iteration steps of the optimization are required in each sample 

time of the MPC. Therefore, the computing time required for 

model evaluation is an important issue for MPC applications. 

Fortunately, most multivariable control problems of practical 

importance in process industries deal with slow process 

dynamics like quality or temperature control. Fast dynamic 

problems like simple flow control are typically solved by 

standard PID controllers inside a DCS and are included in the 

overall control concept as slave controllers of a master MPC. 

For nonlinear process models, the superposition principle is 

not valid. Therefore, the prediction of future with control can 

no longer use the prediction of free response as an 

intermediate result. The additive disturbance d at process 

output is only one example of many possible ways a 

disturbance can have an influence on the process. 
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The optimization problem is subject to constraints, namely 

hard constraints on absolute values and gradients of MVs. 

Constraints on CVs can be considered as well, but they are 

rather “soft constraints” like a deadband in a conventional 

control loop. 

If the process model used in the MPC algorithm is a state space 

model, an observer for estimation of unmeasurable state 

variables is required additionally. This can only be avoided by 

using a pure input/output model, which is currently the state 

of the art in many commercial MPC software packages that 

rely e.g. on linear FIR (finite impulse response) or FSR (finite 

step response) models, e.g. Pfeiffer, Wieser et al. (2008). 

3. BASICS OF gPROMS AND gDAP 

The PSE gPROMS platform is a state-of-the-art software 

tool for modelling, flowsheeting and simulation. 

 

Figure 2: gPROMS process modelling platform 

The gPROMS platform's powerful process modelling 

language allows expert modellers to create custom process 

models of virtually any level of complexity and validate these 

against experimental or plant data using built-in advanced 

parameter estimation techniques. Flowsheets can be built from 

ready-made PSE libraries, and/or user-defined custom 

models. These flowsheets can be deployed for either steady-

state or dynamic simulations and used within PSE’s 

optimisation capabilities.  The combination of these 

functionalities within a single platform generates decision 

support based on high-accuracy predictive information in 

product and process innovation, design and operation. 

The gPROMS Digital Application Platform gDAP is a 

general software platform for building, testing, deploying 

and troubleshooting robust, resilient and efficient digital 

applications that are based on gPROMS models. The 

platform provides general services like execution scheduling, 

interfaces to external data sources, data validation and 

storage of results. gDAP can connect as an OPC UA client to 

most commercial DCS platforms that provide an OPC UA 

server, typically as part of the central operator station server. 

The nonlinear MPC consists of three gDAP modules: 

 Initialization: steady-state data reconciliation to 

cold-start the calculation 

 Dynamic State Estimation 

 Optimization and Prediction: solution of the optimal 

control problem and prediction of future trajectories 

 

 

Figure 3: Components and data flow in the gPROMS 

Digital Application Platform 

4. CONCEPT OF gNLMPC 

The nonlinear MPC algorithm also follows the general MPC 

signal flow in Figure 1. The main difference is that the 

process model used for predictions is nonlinear. In the case 

of gNLMPC, the process is modelled in gPROMS as a DAE 

system of the form:  

𝑓(𝑥, 𝑥,̇ 𝑢, 𝑑, 𝜃) = 0.  
It contains a vector of state variables 𝑥   and a vector of model 

parameters 𝜃. The process model can (and must!) be used to 

estimate unmeasurable states. Additionally, if an online 

estimation of time-variant parameters like fouling or coking 

is available, the up-to-date values can be used in the model. 

Although the model is a continuous time DAE, the controller 

outputs u are considered only for discrete sample times. The 

formulation of the objective function to be minimized by 

calculation of decision variables �⃗�  (𝑘 + 1: 𝑘 + 𝑛𝑐) is similar 

to the linear case.  Note that in contrast to many linear MPC 

algorithms, gNLMPC does not work on incremental MV 

steps, but uses the absolute values of manipulated variables 

u. The objective function (Bartusiak, R.D. (2007)) used in 

the optimisation problem is shown below. Control deviations 

are formulated with respect to a CV envelope with upper and 

lower bounds (first line of formula), and MV move penalties 

are applied for controller tuning (last line of formula). In 

contrast to many linear MPC algorithms, absolute values of 

controlled variables and manipulated variables can also be 

included in the objective function: 
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The variables z can be measurable process outputs y or model 

states x. The parameters Cj
xxx are weights for the individual 

contributions to the objective function and can be specified by 

the user. The binary λ-parameters are used to activate or 

deactivate individual MV and CV channels temporarily. 

Due to the nonlinearity of the process model, the objective 

function is no more a convex function of the decision 

variables.  However, this dynamic, non-convex optimisation 

problem can be handled by the SQP optimization solvers 

available as standard in the gPROMS platform. 

5. APPLICATION EXAMPLE POLYMERISATION 

REACTOR  

As an application example for nonlinear MPC, a 

polymerisation reactor is considered. Polymerisation reactors 

are the home turf of nonlinear MPC because they are difficult, 

highly interacting multivariable control problems where the 

controller has to cope with a lot of different product grades, 

different operating points and nonlinear reaction kinetics: 

Bartusiak, R.D. (2007). 

 

Figure 4: P&I Diagram of polymerisation reactor as 

shown on the operator station of a DCS (SIMATIC  PCS 

7) 

The polymerisation reactor considered in this paper (c.f. 

Figure 4) is operated with continuous, PID controlled feed of 

gaseous monomer and feed of catalyst as a solid in suspension. 

Inside the reactor, long-chain polymer molecules are growing 

by connection of short-chain monomers, starting at catalyst 

particles. 

Level inside the three-phase continuously stirred tank reactor 

is controlled via the outlet valve. Temperature inside the 

reactor is controlled by a cascade structure: the master 

controller calculates setpoints for a slave controller for jacket 

temperature, which manipulates heating steam and cooling 

water valves via a split range function. Product quality related 

to properties like melt flow index and density of the polymer 

cannot be measured directly, but is calculated by a soft-sensor 

which relies on a mechanistic process model as well. The 

concentration of an undesired side-product is also considered. 

The dynamic behaviour of the polymerisation reactor is 

captured by a system of differential and algebraic equations: 

 Mass balances for monomer, catalyst, product and 

side-product. 

 Energy balances for reactor content and reactor 

jacket. 

 Algebraic equations for total mass holdup, molar 

fractions, jacket cooling duty, reaction kinetics (of 

main reaction and side reaction) and product quality 

indicator. 

The flow control loops are assumed to settle inside one cycle 

time of the MPC, such that their dynamics can be neglected. 

The main requirements for process control are: 

 achieve desired product outflow F_Prod (in a 

specified zone of flow values) 

 at specified product quality PQI 

 with minimum concentration Xd of side product 

(below specified threshold);  

 keep reactor temperature T_Reactor in allowed 

range. 

The following variables can be manipulated:  

 Feed flow of educts (setpoint for slave controller 

FIC_Educt) 

 Feed flow of catalyst (setpoint for FIC_Cat) 

 Jacket temperature (setpoint for slave controller 

TIC_Jacket) 

Within gNLMPC it is relatively simple to modify the control 

scheme, for example the combinations of manipulated or 

controlled variables. 

It is possible to use any dynamic gPROMS model within 

gNLMPC, including one that has been previously developed 

for an operator training system.  The cycle time in the case 

study described here is less than 1 minute. The existing base 

layer PID controllers, e.g. feed flow or jacket temperature 

controllers, that are intended to receive setpoints from the 

MPC, have to be included in the model. There is no need to 
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disturb production by step tests in the real plant. Anyway, it 

would be impossible to perform step tests for each of the 

different product grades and any operating point that is 

relevant for such a multi-product plant. 

 

Figure 5: Automatic grade change in polymerisation 

reactor as a setpoint step for gNLMPC. The vertical line 

in each trend is the current time and future predictions are 

displayed to the right of this line. 

 

Figure 6: Overview of all MPC CVs and MVs 

automatically generated in operator station faceplate of 

APC supervisor function block of SIMATIC PCS 7 

Due to the higher accuracy of predictions, NLMPC can 

outperform any linear MPC.  The effects of external 

disturbances on product quality are minimized. Grade changes 

are treated as setpoint steps and automatically handled by the 

controller. Compared to the current way of plant operation, 

where automatic control is interrupted for grade transitions 

and operators have to perform this difficult task manually, the 

grade transitions are now run fully automatically, reproducible 

and time-optimal, reducing the off-spec production in between 

two grades. 

The simulation example polymerisation reactor is available as 

a running software demonstrator for discussion with interested 

customers. In parallel, the first industrial application of 

gNLMPC is currently under development in collaboration 

with a pilot customer in the US. 

6. LINEAR VERSUS NONLINEAR MPC 

Important features and advantages of linear and nonlinear 

MPC are compared in the following tables. 

Table 1: Comparison of linear and nonlinear MPC 

 Linear MPC Nonlinear MPC 

Process model Linear black-box 

I/O-model, e.g. 

FSR 

Nonlinear 

mechanistic 

white-box model 

Modelling Identification 

from 

measurement 

data 

Fundamental 

conservation 

laws, 

thermodynamics, 

plant data for 

parameter tuning  

Requires… active plant 

experiments, e.g. 

step testing 

domain specific 

modelling know-

how  

Models… work on 

deviations only 

work on absolute 

values and 

require state 

observer and 

initialization 

procedures 

Performance 

index 

Quadratic cost 

function 

Arbitrary form of 

cost function 

Optimization 

problem 

Convex, only 

one global 

minimum 

More complex, 

can have local 

minima 

Algorithm QP-Solver General nonlinear 

solver e.g. SQP 

Operating range limited by 

validity range of 

linearized model 

and robustness of 

controller 

depends on 

predictive power 

of model but can 

be much larger 

than for linear 

models  

Different 

products… 

requires separate 

step tests 

can be handled by 

model parameter 

variation 

Grade changes… are driven in 

manual mode 

are considered as 

setpoints steps to 

be optimized 
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Table 2: Implementation aspects of linear and nonlinear 

MPC 

 Linear MPC Nonlinear MPC 

Computation 

time 

Limited, can be 

further reduced 

by 

simplifications 

Higher, depends 

on model 

complexity, is 

difficult to 

predict a priori 

Implementation DCS-embedded 

(“lean MPC”) or 

on separate PC 

(“full-blown 

MPC”) 

Increased 

computational 

load generally 

requires a 

dedicated  PC  

User-Interface Standard 

faceplates 

(embedded) or 

standard APC 

interface blocks 

(full-blown) 

Project-specific 

implementation 

or standard APC 

interface blocks 

Configuration Standard 

configuration 

software that 

belongs to the 

respective MPC 

package 

Early stage of 

adoption means 

project-specific 

implementation 

(up to now) 

Maintenance… can be performed 

by automation 

engineers 

requires 

modelling 

experts 

Typical examples of linear MPC are DMC+ by AspenTech, 

ProfitController (alias RMPCT) by Honeywell and INCA by 

Ipcos, besides the DCS-embedded MPC function blocks 

included in DeltaV by Emerson and SIMATIC PCS 7 by 

Siemens. Currently there are only a few commercial software 

packages available for nonlinear MPC, e.g. Pavilion8 MPC by 

Rockwell Automation. The arguments in the tables explain 

why the majority of MPC applications in process industry still 

rely on linear models, while in special application areas 

running batch, semi-batch or semi-continuous processes like 

polymerisation or crystallisation, nonlinear MPC is on the 

rise. 

The cost for development of first-principle models can be 

considerable, but over the last decades, significant progress 

has been made improving software tools for implementation, 

tuning and maintenance of such models: Pantelides (2013). 

Heuristics or data-driven submodels can be included if 

needed. The application of first principle models is especially 

attractive if they can be exploited for different use-cases 

across plant lifecycle, starting from process development via 

front-end and detailed engineering up to virtual 

commissioning and operator training. This way the investment 

into modelling is leveraged across plant lifecycle. The detailed 

model equations may be either openly accessible, or 

proprietary to the provider of the simulation software as part 

of modelling library components, or proprietary to the 

company who is modelling a special process they are 

operating themselves. The robustness of a nonlinear MPC 

against model mismatch depends on the aggressiveness of 

controller tuning, similar to any other control algorithm. For 

higher model uncertainty, a more conservative controller 

tuning is recommended. However, in cases of nonlinear 

processes that are not operated in a narrow domain around a 

fixed operating point, nonlinear MPC will profit from high-

fidelity first-principle process models. 
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