
Development of a HiL Load Simulator for
Experimental Investigation of Translational

Oscillating Systems

Abd Elkarim Masoud ∗, Robert Courant ∗, Jürgen Maas ∗

∗Mechatronic Systems Laboratory, Technical University of Berlin,
Berlin, Germany, e-mail: abdelkarim.masoud@emk.tu-berlin.de

Abstract: In this paper, the principle of a hardware in the loop (HiL) load simulator is
applied on an amplitude-controlled translational oscillatory actuator (TOA). For this purpose,
an electromechanical actuator is designed and build, that can emulate different oscillating load
characteristics. To describe the system, consisting of a translational oscillatory actuator and the
HiL actuator, a nonlinear model is derived. Next, a general averaged model is set up comprising
several time-varying Fourier coefficient. The controller is based on a linearized averaged model
and considers a multi variable structure to control both amplitude and phase of the applied
force. Finally, the concept is validated using simulations and experiments. The results show,
that the designed controller with the realised hardware can robustly emulate a desired load on
an amplitude-controlled TOA under investigation. Because of its high sensitivity to temperature,
a force measurement using strain gauges was not applicable. Instead, the output equation of the
nonlinear state space model was used to estimate the load force.

Keywords: nonlinear averaged model, force and amplitude control, nonlinear oscillatory
systems, multivariable control, decoupling control, describing function theory, translational
oscillatory actuator (TOA).

1. INTRODUCTION

Translational electromechanical transducers are used in a
wide range of application because of their high power den-
sity, simple structure, low mechanical loss and good con-
trollability. These actuators generate translational move-
ments directly without mechanical deflection and are in-
creasingly used in industry and are present in various
domains, such as automotive industry, electrical machines,
robotic applications and household devices, see Haiwei
et al. (2008) and Leonhard (2003). A special form of
translational electric drives are translational oscillatory
actuators. They are used for example in engines to reduce
the caused vibration and noise Choi et al. (2017), in active
vibration control of drum type washing machine Suzuki
et al. (2017), vibration suppression in the process of plat-
ing, coating or rolling of steel sheets to avoid problems of
deformation, peeling and non-uniform products and many
other applications, see Sudwilai et al. (2011) . Another im-
portant application of translational oscillatory actuators
is the medical and cosmetic skin treatment which use an
oscillating needle to punctuate the human skin repetitively
without risking complications in deeper tissue layers, see
Sperry (1991).

For such applications a controlled electrodynamic vibra-
tion actuator was designed, see Mönnich (2018), which
enables an energy-efficient resonance operation via me-
chanical springs. Furthermore, an amplitude and vibra-
tion controlled translational drive was investigated in Ma-
soud (2019), where instead of mechanical springs magnetic
springs have been used to reduce the mechanical losses.

In order to test these and other novel translational actu-
ators and their control under load conditions, a suitable
test setup is required. A test of controllers can be done
according to Borgeest (2014) via the hardware-in-the-loop
method. This method is typically used in automotive sys-
tems and will be applied to the amplitude-controlled trans-
lational oscillatory actuator (TOA) presented in Masoud
(2019). In this paper a hardware-in-the-loop (HiL) transla-
tional actuator is developed, which applies a defined load
on the tested amplitude-controlled TOA. Thus, a force-
controlled translational actuator is designed, which can
reproducibly exert adjustable load characteristics on an
amplitude-controlled actuator. A force control is required
in order to compensate the external disturbances and the
deviating parameters of the HiL actuator. The use of a
versatile test bench not only allows fast modification of
different load configurations, since it offers also the possi-
bility of automated long term tests.

For a model-based control design, a nonlinear dynamic
model for the HiL-actuator is presented taking into
account the amplitude-controlled translational actuator.
Since we are working with oscillating systems, the non-
linear dynamic system is transformed into an averaged
model using the approach presented in Sanders (1991).
Thus, the fast changing quantities of the system are rep-
resented by their slowly time-varying Fourier coefficients.
Furthermore, the nonlinear elements in the model are
approximated using the describing function theory. Based
on this model, a multivariable controller is designed tak-
ing into account the different objectives to control the
coupling force between the HiL-actuator and the tested
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translational actuator. Feedback information is generated
by a position sensor of the slider, a force sensor to measure
the coupling force and two current sensors. Besides the
design of the developed HiL-actuator, especially modelling
aspects and the design of the control will be presented in
detail. Measurements gained by a real time system will
be used to validate the proposed approach for the force
controlled HiL-actuator.

The paper is structured as follows. The design and math-
ematical model (nonlinear state space model) for the HiL-
actuator system is derived in chapter 2. The state-space
averaged model of the nonlinear system is presented in
chapter 3 and a multivariable controller is designed in
chapter 4 to control the coupling force between the HiL-
Actuator and the amplitude-controlled TOA. The exper-
imental results shown in chapter 5 validate the proposed
method, and chapter 6 summarizes the findings.

2. HARDWARE IN THE LOOP TRANSLATIONAL
ACTUATOR (HIL-ACTUATOR)

2.1 Design of the HiL-Actuator

The design of the HiL-actuator system is shown in Fig. 1.
The active component is a voice-coil-actuators (VCA)
which generates the actuation force FH. The VCA is rigidly
coupled to an adjustable magnetic spring. It consists of
axially magnetized permanent magnets and concentrically
wounded coils inside the stator. Thus, the stiffness charac-
teristic of the magnetic spring can be electrically changed.
The springs provide a restoring force when the sliders

coils

slider permanent magnet

voice coil

x

coupling with amplitude 

controlled TOA

HF
CF

force sensor

Fig. 1. Design of the HiL-actuator with magnetic spring
elements.

are displaced, such that operation in resonance becomes
possible. This is required in the considered application to
keep the electrical power loss as small as possible and
thus to limit the heating of the device. The increased
efficiency is especially relevant for long-term investigation.
A force sensor is installed between the HiL actuator and
the amplitude-controlled TOA to measure the coupling
force FC and a laser triangulation sensor is used to detect
the position x of the slider.

2.2 Mechanical model

The electromechanical system is modelled as a one
mass oscillator consisting of the HiL-actuator and the
amplitude-controlled TOA. Both actuators are suspended
by magnetic springs, whose stiffnesses are approximated as
third-order polynomials Fs,H(x), Fs,A(x) with the general
expression

Fs = Fs0 + Fs1x+ Fs2x
2 + Fs3x

3 (1)

and are also subject to Columb friction Ff,H(ẋ), Ff,A(ẋ)

Ff = F̄f sgn(ẋ). (2)

Fig. 2 shows the mechanical model consisting of the HiL-
actuator and the amplitude-controlled TOA.

nonlinear friction Ff,H nonlinear friction Ff,A

nonlinear spring Fs,H

x

HF AFHm Am

Hm Am
CFCF

f,H ( )F x

HF

s,H ( )F x x
D

+

AF

f,A ( )F x

s,A ( )F x

nonlinear spring Fs,A

HiL-actuator TOA

Fig. 2. Mechanical model of the HiL-actuator combined
with the amplitude-controlled TOA.

The current supplied to the amplitude-controlled TOA
generates the force FA and is used to control the amplitude
of the oscillation, see Masoud (2019). The mechanical
model of the overall system which includes the two masses
can be described by the nonlinear differential equation:

(mH +mA) ẍ = −Fs,H(x+ x∆)− Ff,H(ẋ)− Fs,A(x)

− Ff,A(ẋ)− FH + FA.
(3)

The Hil actuator is shifted by x∆ to obtain a constant
coupling force FC without external actuation while the
offset position of the amplitude-controlled TOA remains
at zero and is therefore considered in the equation by
Fs,H(x+ x∆).

The coupling force FC is obtained by separating the system
into tow parts, as shown in the below part of Fig. 2.
The consideration can in principle be made using the
left or right single mass system. Since the HiL-actuator
is considered in this paper and will be used for different
amplitude-controlled TOA, it is useful to set up the
differential equation of the left subsystem

mHẍ = FC − Fs,H(x+ x∆)− Ff,H(ẋ)− FH

⇔ FC = mHẍ+ Fs,H(x+ x∆) + Ff,H(ẋ) + FH.
(4)

Equation (4) describes how the coupling force can be
calculated without using a sensor to measure it. In this
case we just need to measure the position x of the slider,
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which is used for the amplitude-controlled TOA, and the
force FH generated by the VCA. Based on (3) and (4)
a nonlinear state space model can be derived. For this
purpose, the state vector, input, output and disturbance
signals x, u, y, z are defined as

x = [ x ẋ ]
T

= [ x1 x2 ]
T

u = FH, y = FC, z = FA

(5)

describing the nonlinear state space model by:

ẋ = f (x, u, z)

y = g (x, u, z) ,
(6)

with

f (x, u, z) =

[
x2

−Fs,H(x1 + x∆)− Ff,H(x2) . . .
· · · − Fs,A(x1)− Ff,A(x2)− u+ z

]
,

g (x, u, z) = mHẋ2 + Fs,H(x1 + x∆) + Ff,H(x2) + u.

(7)

In order to express the output equation only with state
variables x, u, z the state ẋ2 in g (x, u, z) is expressed with
the second equation in f (x, u, z).

3. STATE-SPACE AVERAGED MODEL OF THE
NONLINEAR SYSTEM

In the following chapter, a dynamically averaged model of
the nonlinear system in (7) is developed in which the fun-
damental quantities of the HiL-actuator can be described
in terms of their dynamic behaviour. It is assumed, that
all state variables present in the system are sinusoidal with
constant frequency whose amplitude and phase change
only slowly in comparison within the oscillation period.
The approach described in Sanders (1991) is applied, by
which a state-space model is transformed into a general-
ized averaged model, so that instead of highly dynamic
state variables only the slowly varying Fourier coefficients
of the fundamental oscillation appear in the model.

First of all, the nonlinear system of differential equations
is transferred to the state-space form (see chapter 2)

ẋ = f (x, u, z)

y = g (x, u, z) .
(8)

With the assumption of periodical state variables, the
quantities of x, u and z can be represented by their Fourier
series with time-varying Fourier coefficients

xi(t) = x0
i (t) +

∞∑
k=1

xc
ik(t) cos (kωet) + xs

ik(t) sin (kωet) ,

u(t) = u0(t) +

∞∑
k=1

uc
k(t) cos (kωet) + us

k(t) sin (kωet) ,

z(t) = z0(t) +

∞∑
k=1

zc
k(t) cos (kωet) + zs

k(t) sin (kωet) .

(9)

The amplitudes of the higher harmonics are damped by
the low-pass behaviour of the resonant system. Thus, only
a few Fourier coefficients are required to approximate
the state variables. Due to the resonance mode of the
translational drive, it is sufficient to include only the DC-
component and the first fundamental oscillation for the
averaged model

x1(t) = x0
1(t) + xc

1(t) cos (ωet) + xs
1(t) sin (ωet) ,

x2(t) = x0
2(t) + xc

2(t) cos (ωet) + xs
2(t) sin (ωet) ,

u(t) = u0(t) + uc(t) cos (ωet) + us(t) sin (ωet) ,

z(t) = zc(t) cos (ωet) + zs(t) sin (ωet) .

(10)

The force of the amplitude-controlled TOA z(t) = FA(t)
has no DC-components z0(t) = F 0

A(t), since the DC-
component of the position x(t) is already determined or
controlled by the DC-component of the force u0(t) = F 0

H(t)
of the VCA.

The coefficients x0
1(t), xc

1(t), xs
1(t), x0

2(t), xc
2(t), xs

2(t),
u0(t), uc(t), us(t), zc(t) and zs(t) of the harmonic approx-
imation are slowly varying quantities of time compared
to the fast changing variables of the original state, input
and disturbance quantities x(t), u(t) and z(t). The time
derivatives of the state variables in (10) are given in case
of a constant excitation frequency ωe by

d

dt
x1(t) =

d

dt
x0

1(t) +

(
d

dt
xc

1(t) + ωex
s
1(t)

)
cos (ωet)

+

(
d

dt
xs

1(t)− ωex
c
1(t)

)
sin (ωet) ,

d

dt
x2(t) =

d

dt
x0

2(t) +

(
d

dt
xc

2(t) + ωex
s
2(t)

)
cos (ωet)

+

(
d

dt
xs

2(t)− ωex
c
2(t)

)
sin (ωet) .

(11)

The new state, input and disturbance vectors xa, ua, za of
the system are obtained using the Fourier coefficients for
harmonic approximation with

xa =
[
x0

1 x
c
1 x

s
1 x

0
2 x

c
2 x

s
2

]T
ua =

[
u0 uc us

]T
za = [ zc zs ]

T
.

(12)

For the right side of the state space model (6), the vector
function f and the output function g must also be ap-
proximated by the first harmonics. For this purpose, the
nonlinear elements of the state space model (friction and
spring) are approximated using the describing function
theory presented in Gelb (1968) and finally substituting
the fundamental oscillation of the state space model. The
describing function of the spring nonlinearity is deter-
mined by substituting the first equation of (10) in (1).
Using the trigonometric identities, the products of the
trigonometric functions can be described by there harmon-
ics. Since only the first fundamental is considered here, the
higher harmonics are neglected and it results in

Fs

(
x0

1, x
c
1, x

s
1

)
≈ F 0

s + F c
s cos(ωet) + F s

s sin(ωet) (13)

with

F 0
s = Fs0 + Fs1x

0
1 + Fs2

(
x0

1

)2
+ Fs3

(
x0

1

)3
+

1

2

(
Fs2 + 3Fs3x

0
1

)
X2

1

F c
s = Fs1 + 2Fs2x

0
1 + 3Fs3

(
x0

1

)2
+

3

4
Fs3X

2
1x

s
1

F s
s = Fs1 + 2Fs2x

0
1 + 3Fs3

(
x0

1

)2
+

3

4
Fs3X

2
1x

c
1,

(14)

where X1 =
√
xc2

1 + xs2
1 is the amplitude of the funda-

mental oscillation of the position x1 = x. Since the spring
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nonlinearity in the HiL-actuator Fs,H has an additional
DC-component x∆ the DC-component x̂1 in (14) is re-
placed by x0

1 + x∆ to compute the describing function of
Fs,H.

Next, the describing function of the Columb friction is
determined by substituting the second equation of (10)
in (2) according to Gelb (1968). The constant velocity x0

2
occurs only during a short settling time and is otherwise
zero, since we would get a permanent drift in the position,
which is blocked by the magnetic springs of the actuator
system. Thus, we get the fundamental oscillation of the
friction without x̂2 as

Ff (xc
2, x

s
2) = F c

f cos(ωet) + F s
f sin(ωet) (15)

with

F c
f =

4F̄f

π

xc
2

X2

F s
f =

4F̄f

π

xs
2

X2

(16)

where X2 =
√
xc2

2 + xs2
2 is the amplitude of the funda-

mental oscillation of the velocity x2 = ẋ.

The right hand side of (6) can now be approximated by
substituting (10), (13) and (15) in f , g and collecting DC-
component, sin- and cos-terms

f1 (xa,ua, za) = x0
2 + xc

2 cos(ωet) + xs
2 sin(ωet)

f2 (xa,ua, za) = f0
2 + f c

2 cos(ωet) + f s
2 sin(ωet)

g (xa,ua, za) = g0 + gc cos(ωet) + gs sin(ωet)
(17)

where f0
2 , f c

2 , f s
2, g0, gc and gs, are long nonlinear functions

depending on xa,ua, za.

Finally, the left and right side in (6) are approximated by
(11) and (17). In this case the DC-components, cos- and
sin-terms on the left and right side are compared with each
other so that we obtain the extended nonlinear averaged
model

d

dt
xa =


x0

2
xc

2 − ωex
s
1

xs
2 + ωex

c
1

f0
2 (xa,ua, za)

f c
2 (xa,ua, za)− ωex

s
2

f s
2 (xa,ua, za) + ωex

c
2

 ,

ya =

 F 0
C
F c

C
F s

C

 =

 g0 (xa,ua, za)
gc (xa,ua, za)
gs (xa,ua, za)


(18)

The Fourier-coefficients in (18) are time-varying in case
of an excitation (modulation). The condition in which the
fast-variables sine- and cosine terms can be shortened and
thus the model can be balanced demands that the modula-
tion frequency ωm (change of the Fourier coefficients) must
be smaller than the half excitation frequency ωe/2, see
Sanders (1991). The simulation with the averaged model
(18) developed here provides the envelopes of the trans-
lational drive vibration signals. The output equation ya

in (18) can be alternatively used to estimate the coupling
force FC similarly to (4).

4. CONTROL DESIGN OF THE HIL-ACTUATOR

Using the averaged model (18) a multi-variable decou-
pling PI-controller is designed, see Maas (2000). Fig. 3
shows the control structure considering a MIMO decou-
pling structure. The slowly varying Fourier coefficients of
the VCA force ua must first be converted to the actual
Force FH by modulation, and the Fourier coefficients of
the fundamental oscillation for the position x0

1, xc
1, xs

1
and the coupling force F 0

C, F c
C, F s

C are obtained from
the measured variables by phase-sensitive demodulation.
The DC-, cos- and sin-components of the coupling force
can be set independently of each other, thus creating a
multivariable control system for each controlled variable.
The multivariable system is internally coupled. This means

mod

modaK
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P,aK n,aT
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é ù
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Fig. 3. Force and amplitude MIMO-control structure.

that each input can have an effect on each output. To avoid
this and still be able to use SISO controller for a multivari-
able system, a decoupling controller is implemented. By
this, the cross-couplings are suppressed and simple SISO-
control loops can be designed for the controlled variable
FC = F 0

C +F c
C cos(ωet)+F s

C sin(ωet) as similar proposed in
Maas (2000). In this paper we will not discuss the ampli-
tude control, see Masoud (2019). For the force controller
design, the nonlinear averaged model described in chapter
3 is first linearised at an equilibrium state xa,e, ua,e, za,e

∆ẋa = A∆xa + B∆ua + Bz∆za

∆ya = C∆xa + D∆ua + Dz∆za
(19)

with

∆xa = xa − xa,e,

∆ua = ua − ua,e,

∆za = za − za,e,

A =
∂fa
∂xa

, B =
∂fa
∂ua

, Bz =
∂fa
∂za

,

C =
∂ga

∂xa
, D =

∂ga

∂ua
, Dz =

∂ga

∂za
.

(20)

For a simplified control design, linear springs are assumed.
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With this simplification and neglecting the disturbance, we
get the transfer function

Ga = Ca (sI−Aa)
−1

Ba + Da

Ya =

[
G11 0 0

0 G22 G23

0 −G23 G22

]
Ua.

(21)

The transfer function matrix (21) has symmetry proper-
ties, which further simplifies the controller design. Due to
the simplified structure of the matrix, the DC component
is already decoupled and therefore an I-controller is suffi-
cient for the subsystem G11. Furthermore the lower 2× 2-
matrix is antisymmetric and can be transformed into a
block diagonal structure of the form

Gd =

[
G22 0

0 G22

]
. (22)

To achieve this, the 2 × 2 transfer function matrix is
multiplied by the stationary decoupling matrix

K =

[
K22 −K32

K32 K22

]
. (23)

The stationary decoupling is more than sufficient, as the
resulting transfer function of the decoupled system is an
identity matrix for frequencies up to a cut-off frequency,
which is higher than the modulation frequency of the
Fourier coefficients. The elements of the matrix (22) are
identical, which is useful for the controller synthesis, since
the same controller can be used for both parts of the
system, so that a PI-controller can be designed by pole-
placement for G22. Through this multivariable decoupling
controller, we are able to set the components of the
coupling force F 0∗

C , F c∗
C , F s∗

C (see Fig. 3).

5. EXPERIMENTAL RESULTS

To test the developed concept, the prototype depicted in
Fig. 4 has been realized. The adjustable magnet spring as
described in section 2.1 is dimensioned to compensate the
effect of the HiL-actuator and emulate a light spring load.
The remaining force difference can be set using the com-
mercial voice coil actuator. The movement is induced by
the amplitude control of the TOA under investigation. To
measure the coupling force, a lightweight and stiff sensor
had to be added. This has been achieved with semiconduc-
tor strain gauges bonded directly to the axis. First tests of
the sensor showed a high sensitivity to temperature, which
superimposed the strain dependency. Because of that, the
coupling force in the following results is estimated accord-
ing to (4). The averaged model of the translational drive
system and the multivariable decoupling control structures
were first designed using Matlab/Simulink and, in a second
step, transferred to the real-time system MicroLabBox
from dSPACE using compiled code. Parametrization of
the controller and initialization of the set-point values as
well as the recording of measurement signals are performed
using the dSPACE tool ControlDesk.

To validate the designed HiL-actuator, certain tests have
been conducted. One of those is depicted in Fig. 5. On the
left, envelope curves of the oscillations are displayed and
on the right, short time periods as marked with rectangles
are shown. The upper plot illustrates the position of the
rotor and the middle plot depicts the coupling force. Both
visualize the measured signals and the respective set point

variable magnet

spring

voice coil

actuator

amplitude-controlled

actuator

position

measurement

force

measurement

HiL actuator tested actuator

Fig. 4. Physical implementation of the system consisting
of the HiL-actuator mechanically coupled with an
amplitude-controlled TOA.

values. In the lower plot the actuation forces of both
actuators are shown.

s
*

C
1
N

F
=
+

s
*

C
1
N

F
=
-

Fig. 5. Measured envelope curves and short period of
oscillation of position, coupling force and actuation
forces for different set point values.

The force control of the HiL-actuator is activated all the
time. The constant component of the set point is always set
to 3.5 N. The harmonic components vary in the experiment
as described below. The amplitude control of the tested
actuator is set to a cosine with 1.5 mm after 1 second and
remains at this value in the following.

After 7 seconds, a sine-component of 1 N is added to the
set point for the coupling force. This results in an increased
actuation force for the cosine movement of the amplitude-
controlled TOA. After 12 seconds, the oscillatory compo-
nent of the coupling force is removed again and only the
constant component remains. The sine-component of −1 N
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after 17 seconds reduces the necessary actuation force of
the tested actuator. The time signal of the actuation force
shows, that both actuators operate in phase while they
worked against each other between 7 and 12 seconds. The
top plots show, that both control variables always reach
there set points in amplitude and phase after a short
settling time. This behaviour proves the load emulation
capability of the HiL-system with the estimated coupling
force. The position in Fig. 5 shows an overshooting for
each change in the set points of the coupling force. This
is caused by an interaction of the amplitude control of the
TOA and the force control of the HiL-actuator, that occurs
as uncompensated disturbances due to each other.

Having shown the emulation using the estimated coupling
force, the compensation of the HiL-actuators influence on
the coupling force can also be analysed in a more direct
way by comparing the decoupled amplitude-controlled
TOA with the same actuator coupled to the compensated
HiL-actuator. The HiL-actuator is compensated when the
set point of the coupling force has no varying components,
as a constant part is necessary to prevent a lift-off of the
coupling. In Fig. 6, the actuation force of the amplitude-
controlled TOA set to 1 mm amplitude is shown coupled
to the compensated HiL-actuator and without the HiL-
actuator. After a short transition phase, both cases are
expected to be identical for a full compensation. After
0.4 s, the decoupled actuator is switched on and the
compensation is added to the already moving coupled
system, resulting in a reaction in both amplitude curves.

Fig. 6. Envelope curve of the actuation force of the
amplitude-controlled TOA without HiL-actuator and
coupled to the HiL-actuator set to a constant coupling
force of 3.5 N.

It is obvious, that the compensation reduces the necessary
actuation forces of the amplitude-controlled actuator. This
is an expected result, as the dissipation of the HiL-
actuator is now compensated by itself instead of the tested
actuator.The remaining difference in the stationary result
is caused by the estimation of the coupling force according
to (4) that depends on the exact knowledge of the system
behaviour. Especially, the friction can change significantly
depending on the positioning.

6. CONCLUSION

In this paper an force decoupling controller was proposed
to control the coupling force between the HiL-actuator
and the amplitude-controlled TOA. For this purpose, a

mechanical model of the translational drive system was
presented. Thus, a nonlinear generalized averaged state
space model was derived for the system, by which the
highly dynamic state variables of the physical model can
be replaced with there slowly time varying Fourier coeffi-
cients of the fundamental oscillation. Based on this model,
the design and evaluation of multivariable decoupling PI-
controllers was presented using the linearised averaged
model and transforming it into the Laplace domain. Tak-
ing into account this model and symmetry properties of
the transfer functions, the complexity of the controller
design could be significantly reduced and thus a standard
PI controller could be applied for the force control. Finally,
experiments were carried out to validate the designed con-
trol. The measurements of the developed MIMO-controller
show good dynamics and control accuracy during transient
response and at the steady state. Thus, the presented
model-based control is sufficient for translational oscilla-
tory drive applications.
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