
Embedded Architecture Composed of
Cognitive Agents and ROS for

Programming Intelligent Robots

Gustavo R. Silva ∗ Leandro B. Becker ∗ Jomi F. Hübner ∗

∗ Department of Automation and Systems, Universidade Federal de
Santa Catarina (UFSC), SC, Brazil.(e-mail:

gustavorezendesilva@hotmail.com, leandro.becker@ufsc.br,
jomi.hubner@ufsc.br).

Abstract: This paper proposes and evaluates an embedded architecture aimed to promote
the utilization of cognitive agents in cooperation with the Robotic Operating System (ROS),
serving as an alternative for programming intelligent robots. It promotes the programming
abstraction level in two directions. The first direction regards using cognitive agents facilities
for programming the robots intelligence, consisting of its perceptions and related actions. The
second direction exploits the facilities of using ROS layers for programming the robot interaction
with its sensors and actuators. The paper reports experiments of using agents to command
simulated UAVs while measuring performance metrics that allowed us to evaluate the benefits
of the proposed architecture.

Keywords: BDI Agents, Robotics, UAVs, ROS, Jason

1. INTRODUCTION

When designing robots, one of the difficulties is to develop
autonomous software that is capable to perceive the envi-
ronment, reasoning about what it knows, and then choos-
ing appropriate actions. To solve this challenge, multi-
agents systems (MAS) techniques seem to be an advan-
tageous approach since it offers theoretical and practical
tools to develop autonomous systems (Bordini et al., 2005,
2007). Among the benefits, agents can properly balance
reactivity and pro-activeness, specially those agents built
on top of the BDI (Belief, Desire, Intention) model.

This work proposes an architecture for programming in-
telligent robots based on the cognitive concepts of BDI.
Experiments were performed to evaluate the feasibility of
the developed architecture: whether it runs in embedded
devices and can be practically used to operate robots.
The paper also discusses the advantages and limitations
of using BDI agents to program robots when compared to
traditional imperative programming.

The reminder parts of this paper are organized as follows.
Section 2 provides a background for what is discussed in
this paper; Section 3 presents the related work that served
as reference to tailor the proposed architecture; Section 4
contains the description of the proposed architecture used
to integrate BDI agents and hardware; Section 5 details
the performed experiments; and Section 6 outlines the
conclusions and future works.

? The authors acknowledge the support from CAPES and Pró-
Alertas.

2. BACKGROUND

Multi-agents systems can be defined as systems that are
composed of one or more intelligent agents. As Wooldridge
(1999) stated, the task of defining intelligent agents is not
an easy one, even because there is no consensus for the
concept of intelligence. Despite this, the author came up
with the definition: “An intelligent agent is one that is
capable of flexible autonomous action in order to meet its
design objectives”, flexible means that it posses reactivity,
pro-activeness, and social ability. Reactivity is the ability
to perceive the environment and promptly react according
to what is perceived; pro-activeness is the capability of
taking the initiative to perform actions in order to achieve
goals, producing a goal-driven behaviour; social ability is
the capacity of interacting with other agents.

An important characteristic of intelligent agents is the
balance between reactivity and pro-activeness Wooldridge
(1999). If an agent is only reactive, it is difficult to envision
how to perform actions to achieve long term goals, the
agent will be simply reacting to the environment which
likely will not lead to the accomplishment of goals. On the
other hand, if an agent is purely pro-active, goal-driven,
it will take actions to accomplish goals but it will rarely
check if the conditions that led it to commit to those goals
still stands, which may result in an agent pursuing a goal
that is no longer possible or relevant.

According to Bratman et al. (1988) an ideal but unrealistic
solution to this problem would be to compute at each
instant of time which is the best possible course of actions.
However, it is not possible since agents have a limited
amount of resources to perform computation. Therefore,
the author proposed an architecture for practical reason-

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

Copyright lies with the authors 10135

ing based in the cognitive notions of belief, desire, and
intention (BDI), which in short is the combination, in the
right amount, of reactivity and pro-activeness. Beliefs are
the representation of the information the agent has about
the world and itself, desires are world states the agent
wants to achieve, and intentions are the desires that the
agent decided and committed to accomplish.

Due to the characteristics of intelligent agents, especially
BDI agents, they seem to be a good approach to develop
complex systems composed of several entities (Bordini
et al., 2005, 2007). With that in mind, the authors de-
veloped an agent-oriented programming (AOP) language
called Jason, which is an extension of AgentSpeak(L)
(Rao, 1996), to allow the development of MAS with real-
world applications in an elegant manner and with a rig-
orous formal basis. Thus, Jason will be used as AOP the
language in this work.

3. RELATED WORKS

The use of BDI agents to control robots is already being
explored in related words (Verbeek, 2003; Morais, 2015;
Pantoja et al., 2016; Menegol et al., 2018). For instance,
Menegol et al. (2018) proposed an architecture for embed-
ding Jason agents and effectively embedded the solution
into a real unmanned aerial vehicle (UAV), proving that
it is feasible to use BDI agents to command real-world
robots. While this proposal keeps the hardware details
transparent for the agent programmer, the integration
works in an ad hoc manner. The high-level (BDI agent)
and the low-level layers (robot hardware) are connected by
specific protocols and ports – no standardization has been
used or defined for using agents to control hardware. As
consequence, if the hardware is exchanged a considerable
part of the architecture must be reprogrammed. Therefore,
it is not trivial to reuse the referred architecture. Also,
it does not provide any interface for (re)utilizing robotic
software developed by the roboticist community, for navi-
gation, localization, and control purposes.

Wesz (2015) proposed JaCaROS, an architecture com-
posed of Jason, CArtAgO (Ricci et al., 2009), and The
Robot Operating System (ROS)(Quigley et al.) to inte-
grate BDI agents with hardware. In summary, CArtAgO
artifacts are used as the main abstraction for sensors and
actuators, which communicate with the hardware software
via ROS topics and services. The authors already pro-
vide some artifacts for handling a few existent sensors
and actuators. However, for each different hardware it
is necessary to implement a specific artifact using Java,
where it is needed to handle how actions are converted
into ROS messages, how the messages coming from ROS
are converted into beliefs, and how the agent is updated
in relation to the artifact. Using a different hardware re-
quires that a significant peace of software is programmed,
demanding that the programmer possess knowledge in
Java and CArtAgO, resulting in a non trivial process.
On the other hand, this solution supports customization
quite well. One interesting point of this method is that
to interact with the hardware the agent must only know
about how to operate the artifact. Another advantage of
this method is that with the use of ROS it is possible to
leverage all the robotic software that already exists within
the framework.

In order to promote the integration of hardware and BDI
agents, Morais (2015) also developed a solution that com-
bines Jason and ROS. The author modified the architec-
ture of the Jason agents to receive perceptions and to
send actions using standardized ROS topics. The agents
communicate with intermediary nodes called decomposers
and synthesizers, the former is responsible for translating
high-level actions into commands for the hardware, and
the latter receives data from the hardware and translate
it to perceptions understandable by the agents. Thus, the
exchange of hardware requires that new decomposers and
synthesizers nodes are programmed. Both can be pro-
grammed in any language supported by ROS since they are
decoupled from the Jason agents. Once again, this process
is not trivial. An advantage of this approach is that the
integration with the hardware is totally transparent for the
agent. Also, since it uses ROS, the existing robotic stack
can be utilized.

Although inspired by all these work, in this paper we
focus particularly on the improvement of the architecture
proposed by Morais (2015). This will be accomplished by
establishing standards for using ROS alongside Jason, and
by designing an intermediary node that is more generic,
mitigating the need of reprogramming when the hardware
is changed.

4. JASON-ROS ARCHITECTURE

As discussed in Section 3, there are already some related
works that use Jason for programming the cognitive part of
robotics applications. However, those works provide ad hoc
solutions regarding the control of the robot’s hardware de-
vices, therefore a significant part of the software related to
this integration must be always created. In case the device
is replaced, again the software must be re-programmed.
Thereby, to circumvent this problem, we propose a set
of standards for using Jason with ROS, including the
creation of a dedicated and configurable ROS node named
HwBridge that allows the integration of Jason and the
robot.

An architecture composed of four ROS nodes is proposed
to integrate Jason and ROS, as shown in Figure 1. The
Agent node, as the name suggests, is the agent itself
and is implemented with the Jason language. The Hw-
Bridge node serves as a bridge between the agent and the
hardware, it translates the messages and publishes them
in the correct topics. The Hardware Controller node is
the one that manages the hardware. The Comm node is
responsible for the communication between agents, this
can be via Ethernet, wifi etc. An implementation of the
proposed integration is available at: https://github.
com/jason-lang/jason_ros.

4.1 Agent Node

To allow the use of ROS by a Jason agent it was necessary
(1) to specify and establish standards for ROS topics
and messages; (2) to customize the agent architecture to
include the functionalities defined in the first step.

Specifications and standards For the definition of stan-
dards, the work of Morais (2015) was used as an starting

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

10136

Roscore

HwBridge Node

Agent Node

Embedded System

Hardware Controller
Node

Simulation

Real Hardware

ROS Node

Communication Node Network
Interface

Manifest
topics & services

A
ge

nt
 to

pi
cs

Agent topics

Fig. 1. System architecture

point. The resulting specification of ROS topics and their
definition can be seen in Table 1.

Table 1. Topics used by the agents

Topic Name Definition

/jason/percepts Subscribes to get new perceptions

/jason/actions Publishes to send actions it wants to perform

/jason/actions status Subscribes to receive the status of an action sent

/jason/send msg Publishes to send message

/jason/receive msg Subscribes to receive message

To handle perceptions, the agent subscribes to the topic
/jason/percepts which uses a custom type of message
called Perception (see listing 1), that is composed of 4
fields: header, name of the perception, perception param-
eters, and a boolean called update which indicates if the
perception should be added or updated in the belief base.

Listing 1. Perception message
1 Header header
2 s t r i n g percept ion name
3 s t r i n g [] parameters
4 bool update

In order to perform an action, the agent publishes into
the /jason/action topic a message of the type Action (see
listing 2), which contains 3 fields: header, the action name,
and action parameters. Then, the agent subscribes to the
topic /jason/actions status to receive information about
an action that was previously sent, the message type used
is ActionsStatus (see listing 3), which also contains 3 fields:
header, the result of the action, and its unique id.

Listing 2. Action message
1 Header header
2 s t r i n g action name
3 s t r i n g [] parameters

Listing 3. Action status message
1 Header header
2 bool r e s u l t
3 u int32 id

Regarding communication, when an agent wants to send
messages to external agents it publishes it into the topic
/jason/send msg using a custom type of message called
Message (see listing 4). This message is composed of 2

fields: header and the data. In order to receive messages the
agent subscribes to the topic /jason/receive msg, which
also makes use of the Message type.

Listing 4. Message message
1 Header header
2 s t r i n g data

Agent architecture customization With the specification
completed and the standards defined, the agent architec-
ture was modified to include the functionalities discussed,
which was done by overloading the methods represented in
Table 2. To accomplish that, since ROS does not provide
support for using Java in its official distribution, a 3rd
party Java ROS implementation, rosjava was used. It must
be emphasized that for the Jason programmer this is all
transparent, in other words, a user of this Jason-ROS
integration does not need to modify any code in Java.

Table 2. Overloaded methods

Method Customization

init Initialize a ROS node

act Send actions via ROS

reasoningCycleStarting Receive feedback of actions via ROS

perceive Receive perceptions via ROS

checkMail Receive msgs via ROS

sendMsg Sends msgs via ROS

broadcast Broadcast msgs via ROS

4.2 HwBridge Node

The HwBridge node is the main advantage in relation to
the architecture proposed by Morais (2015), this node has
a similar purpose that the ones he calls decomposers and
synthesizers. As discussed in Section 3, they are used as
intermediary nodes to translate the information between
the agent and the hardware. The biggest difference here
is that instead of requiring that both of these nodes are
programmed for each specific use case, depending on the
hardware, a general purpose node (HwBridge node) is
available and the only thing that has to be adjusted for
each case is a couple of configuration files.

The communication with the Agent node is done via
the first three topics defined in Table 1, /jason/percepts,
/jason/actions, and /jason/actions status. However, the
information flow is in the opposite direction. The Hw-
Bridge node publishes the perceptions it receives from
the Hardware Controller into the topic /jason/percepts, it
subscribes to the topic /jason/actions to get the actions it
needs to send to the Hardware Controller, and it publishes
into the topic /jason/actions status to inform the agent
about the status of previously submitted actions.

To communicate with the Hardware Controller specific
topics and services are used for each different perception
and action, which are configured via two configuration
files, the perceptions and actions manifest. These files
contain all the information required to translate actions
sent by the agent into understandable commands by the
Hardware Controller, and to create perceptions under-
standable by the agent based on data published by the
Hardware Controller.

The perception manifest contains the information about
which topics the HwBridge node must subscribe to get

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

10137

each perception, and how to translate the data into a
perception understandable by the agent. An example of
perception manifest is shown in listing 5. In this case
the perception comes from the topic /turtle1/pose and it
results in a perception such as pose(3.0, 2.0, 0.3) being
sent to the Agent node, then the agent replaces in its belief
base all the perceptions called pose by this new one, or add
it in case none exists.

Listing 5. Perception manifest
1 [pose]
2 name = / t u r t l e 1 / pose
3 msg type = Pose
4 dependenc ies = t u r t l e s i m . msg
5 args = x , y , theta
6 buf = update

The action manifest describes in which topics/services the
HwBridge node should publish/request to perform each
action, and how the data being sent must be set up.
An example of action manifest can be seen in listing 6.
With this configuration when the agent tries to perform
an action, as for example cmd vel(1.5, 0.0, 0.0), the Hw-
Bridge node would publish to the topic /turtle1/cmd vel
a message of the type Twist with its fields “linear.x=1.5”,
“linear.y=0.0”, and “linear.z=0.0”.

Listing 6. Action manifest
1 [cmd vel]
2 method = t op i c
3 name = / t u r t l e 1 / cmd vel
4 msg type = Twist
5 dependenc ies = geometry msgs . msg
6 params name = l i n e a r . x , l i n e a r . y , l i n e a r . z
7 params type = f l o a t , f l o a t , f l o a t ,

Figure 2 illustrates typical sequence of messages exchanged
by the system nodes. Firstly, when an Agent sends an
action, the HwBridge node translates the message and
forwards it to the Hardware Controller node in the right
topic/service, which then executes what is necessary to
perform the action, and upon its completion or failure it
informs the agent about its status. In another situation,
when the Hardware Controller node publishes data into a
topic associated with a perception, the HwBridge node
interprets the information and, if the data is different
from the last one received, it translates it into a digestible
message and forwards it to the Agent node.

It is important to highlight that the the arrival of new
actions and perceptions are handled with callbacks and
in separate threads, which allows that they are processed
concurrently, despite what is being shown in the diagram.
All message exchanging are asynchronous, except when the
HwBridge node sends an action to Hardware Controller,
in this case it is synchronous.

It was decided to implement the HwBridge node using
Python language because: (i) ROS offers native support
for Python; (ii) since Python is an interpreted language,
it facilitates to deploy the proposed solution into different
embedded systems, as no (cross)compilation is needed.

HwBridge	node Hardware
Controller	nodeAgent	node

sendAction()

sendAction()

translateAction()

actionStatus

sendActionStatus()

performAction

sendPerception()

translatePerception()

sendPerception()

Fig. 2. Typical sequence of messages exchanged by the
system nodes

4.3 Hardware Controller node

The Hardware Controller node is the one that, de facto,
controls the hardware. Since a lot of robots nowadays
already have a ROS package implemented for interacting
with hardware, most of the time, there is no need to
implement this node.

The proposed architecture is advantageous since the pro-
grammer has to only implement the Agent node, set up
the perceptions and actions manifest and reuse an existent
Hardware Controller node. This allows a person that only
posses knowledge about Jason to program real robots,
even for those with extended knowledge about different
programming languages, it reduces the time needed for
setting up a robotic system.

4.4 Comm Node

Given that our proposal works in a distributed way, that is,
there exists several ROS-Master nodes, it was created the
Comm node. It serves as communication interface between
agents, given that standard ROS protocols cannot be used
within this scenario.

It is left to developers to decide which technology should
be used to implement the Comm node, attempting that
the message Data Field (listing 4) must comply with the
Jason message specification. It consists in a string with
the following format: “<id,sender,itlforce,receiver,data>”.
Where id is an unique identifier for the message, sender
is the name of the agent sending the message, itlforce
is the illocutionary force (Searle, 1965), receiver is the
name of the agent receiving the message, and data is the
information being sent.

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

10138

5. EXPERIMENTS

In order to validate and evaluate what is being proposed,
a MAS composed of unmanned aerial vehicles (UAVs) will
serve as a testbed. Firstly, the overall system architecture
will be embedded in a board (e.g., beaglebone, raspberypi)
and used to control a simulation with a single UAV, the
main objective of this experiment is to serve as a test of
concept. Then, a more complex simulation involving mul-
tiple UAVs is performed in order to assess the advantages
of using BDI agents as a programming paradigm instead
of the more traditional approaches. The implementation
of the experiments performed can be seen at: https://
github.com/Rezenders/mas_uav.

5.1 Single UAV Mission

The first step is to enable the proposed architecture to
control a single UAV. For that a proper Hardware Con-
troller node must be used. Fortunately, there is already
implemented a ROS package called mavros that allows
to communicate with flight controllers (FC), avoiding the
need to develop a new Hardware node. This UAV archi-
tecture differs from the one shown in Figure 1 with regard
to the Hardware Controller node, which in this case is
mavros, and the UAV is the actual hardware.

This proposal was tested in a simulated environment
(ArduPilot SITL) with a single UAV. The simulation did
run in a desktop and all the other applications executed in
the embedded device. For this experiment a simple mission
was performed: the UAV had to (1) takeoff; (2) fly to a
predefined waypoint; (3) return to home; and finally (4)
land.

A Beaglebone black was initially used as embedded device.
However, the application did run out of memory every time
it was executed, not being able to complete the mission.
Considering that the proposed architecture uses ROS,
such behavior was not a surprise if compared to results
reported in Menegol et al. (2018). In such experiments
the Jason solution (without ROS) reached a maximum
memory usage of 85% using the same embedded device.

The same tests were performed once again using a Rasp-
berry Pi 3 embedded device, and thereby the UAV success-
fully completed the mission every time the application was
executed. This shows the feasibility of integrating Jason
and ROS within an embedded device.

Afterwards, the Jason agent was replaced by a Python
program in charge of performing the same mission. It
was opted to maintain the same HwBridge node to keep
everything else similar in the experiment, but the Agent
node (Jason or Python). CPU and memory usage info
collected collected during the execution of both agents are
shown in Table 3. It is possible to note that Jason requires
more computational resources than Python, 256% more
CPU and 231% more memory. However, both agents can
properly execute in the Raspberry Pi 3 device.

Another point of comparison between both agents is qual-
itative, and regards the easiness of programming the cor-
responding mission in Jason versus Python. To support
this subjective analyses the size of the programs, their
number of lines, and number of words were measured.

Table 3. Results for Single-UAV mission

Approach
CPU [%] Memory Usage [%]

Mean Std Max Mean Std Max

Python 1.65 0.20 2.61 17.45 0.00 17.45

Jason 4.22 2.25 14.59 40.37 0.06 40.51

For the measurement of the source files size they were
compressed using gzip to reduce the influence of line breaks
and blank spaces. As can be seen in Table 4, the size of
the source file, number of lines, and number of words of
the Jason program is smaller than the one in Python. This
may be considered as an indicator that the Jason approach
is easier to program.

However, it should be noted that the Jason approach
requires the perception and action manifests to be properly
set up. Besides, rosjava needs to be installed and config-
ured. This results in development and execution overhead
in the side of the proposed architecture, which must be
properly balanced in too simple applications.

In order to better assess the complexity gap (difficulty) in
between programming using Jason versus Python, a more
elaborate experiment was developed, as follows.

Table 4. Programs metrics in S-UAV mission

Approach Size (bytes) # of lines # of words

Python 518 49 112

Jason 344 26 64

5.2 Multiple UAV Mission

To better understand and evaluate the usage of Jason in
more complex tasks, it was chosen to design an application
that is already being explored in the real world, a search-
and-rescue (S&R) mission where UAVs are being used to
find victims in floods and then deliver them buoys.

In the context of S&R missions, it is really useful to have
more than one UAV collaborating since when vehicles are
equipped with buoys their flight autonomy time is reduced
due to the increased payload. Hence, a good strategy to
adopt is to have two types of UAVs working together: (i)
the Scouts which are equipped with cameras and (ii) the
Rescuers that are in possession of buoys, using the former
to find victims and inform the latter about their location,
which then deliver the buoys.

Thus, an application was designed to mimic a S&R mission
that uses one Scout and two Rescuers agents working in
cooperation. Firstly, the Scout takes off and flies over an
area looking for victims. When a victim is located the
agent informs the rescuers about the victim’s position.
When the rescuers receive information about a victim’s
location they negotiate to decide which one will deliver the
buoy. The one that ends up in charge of the rescue takes
off, flies to the designated position, drops a buoy, and then
returns to the landing area to recharge and replace the
buoy. For the sake of simplicity, scouts are only in charge
to locate victims and the rescuers to drop buoys.

As well as in the first experiment the agents will be em-
bedded in three distinct Raspberry Pi 3 and the simulation
will be running in a separate desktop computer. Another

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

10139

simplification done in this experiment is that the connec-
tion between the Raspberrys’ is considered to be constant
and without losses. The Raspberrys and the desktop were
connected with each other via Ethernet. The Comm Node
was implemented to send/receive messages to/from other
devices via UDP.

Like in the single UAV experiment, the agents performed
the same mission using both Jason and Python. During the
execution of both methods the CPU and memory usage
were monitored and the data collected can be seen in
Table 5. As expected, Jason uses more CPU and memory
than Python, 2.31 and 2.30 times respectively. Again,
this is not a problem for embedded platforms such as
Raspberry Pi 3.

Table 5. Results for Multi-UAVs mission

Approach Agent
CPU [%] Memory Usage [%]

Mean Std Max Mean Std Max

Python

Scout 1.73 0.17 2.30 19.78 0.00 19.78
Rescuer 1 1.78 0.42 4.02 19.61 0.00 19.64
Rescuer 2 1.76 0.27 3.67 17.99 0.00 18.01

ALL 1.76 0.31 4.02 18.93 0.85 19.78

Jason

Scout 4.68 1.56 8.61 43.81 0.06 43.87
Rescuer 1 3.95 1.57 16.00 44.00 0.06 44.15
Rescuer 2 3.94 1.08 8.86 43.14 0.03 43.18

ALL 4.07 1.42 16.00 43.64 0.40 44.15

Regarding the ease of programming, considering the sub-
jective analysis of the authors, in this experiment it was
undoubtedly easier to program the behaviour logic using
Jason. But still, in order to support this statement, for
each approach the size of the source files, number of lines,
and number of words of all agents were measured and
its sum can be seen in Table 6. It can be noted that
the Jason program is smaller, and contains less lines and
words than the one in Python, which is an indicative of the
Jason approach being easier to program. Another metric
that can be used is that in the Python approach it was
necessary to use multi-threading and locks, which made
the programming more complex.

Table 6. Programs metrics in M-UAVs mission

Approach Sum Size (bytes) Sum # of lines Sum # of words

Python 3668 384 928

Jason 2473 260 569

6. CONCLUSIONS AND FUTURE WORKS

The present work shows that it is possible to use Jason
agents with ROS interface within an embedded platform.
It also addresses the advantages of using such architecture
to program intelligent robots.

Experiments using Hardware-in-the-Loop simulations shows
that the use of BDI agents approach simplifies the devel-
opment when compared to the conventional imperative
programming. Such conclusion is supported by metrics
such as number of lines from the respective programs,
their binary size, number of words, and code complexity
in terms of the need to use multi-threading and locks.
Another interesting point to highlight is that given the
nature of the Comm node, it is possible to create a multi-
robot system with heterogeneous agents, i.e., where some
agents may be programmed using Jason and others using

Python. A disadvantage of the proposed approach is that
it uses more computational resources. However, this is not
prohibitive in embedded platforms like Raspberry Pi 3.

As future work, it should also be possible to use ROS
actions in addition to topics and services. Also, it should
be explored if the perception and actions manifests can
be replaced by rosparams in order to make it even more
compliant with ROS.

We also intend to further explore the Comm Node (Sec-
tion 4.4). It should be analyzed the possibility to imple-
ment it together with the HwBridge Node. Furthermore,
it can be analyzed the possibility of deploying the Comm
Node as a ROS package that already implements commu-
nication using Ethernet or Wifi networks.

REFERENCES

Bordini, R.H., Hübner, J.F., and Vieira, R. (2005). Ja-
son and the Golden Fleece of Agent-Oriented Pro-
gramming. 3–37. Springer, Boston, MA. doi:10.1007/
0-387-26350-0 1.

Bordini, R.H., Hübner, J.F., and Wooldridge, M. (2007).
Programming Multi-Agent Systems in AgentSpeak using
Jason. Wiley Series in Agent Technology. John Wiley &
Sons, Ltd, Chichester, UK. doi:10.1002/9780470061848.

Bratman, M.E., Israel, D.J., and Pollack, M.E. (1988).
Plans and resource-bounded practical reasoning. Com-
putational Intelligence, 4(3), 349–355. doi:10.1111/j.
1467-8640.1988.tb00284.x.

Menegol, M.S., Hübner, J.F., and Becker, L.B. (2018).
Evaluation of Multi-agent Coordination on Embed-
ded Systems. 212–223. Springer, Cham. doi:10.1007/
978-3-319-94580-4 17.

Morais, M.G. (2015). Integration of a multi-agent system
into a robotic framework : a case study of a cooperative
fault diagnosis application. URL http://tede2.pucrs.
br/tede2/handle/tede/6396.

Pantoja, C.E., Stabile, M.F., Lazarin, N.M., and Sichman,
J.S. (2016). ARGO: An Extended Jason Architecture
that Facilitates Embedded Robotic Agents Program-
ming. 136–155. doi:10.1007/978-3-319-50983-9 8.

Quigley, M., Gerkey, B., Conley, K., Faust, J., Foote,
T., Leibs, J., Berger, E., Wheeler, R., and Ng, A.
(????). ROS: an open-source Robot Operating System.
Technical report. URL http://stair.stanford.edu.

Rao, A.S. (1996). AgentSpeak(L): BDI agents speak out in
a logical computable language. 42–55. Springer, Berlin,
Heidelberg. doi:10.1007/BFb0031845.

Ricci, A., Piunti, M., Viroli, M., and Omicini, A. (2009).
Environment Programming in CArtAgO. In Multi-
Agent Programming, 259–288. Springer US. doi:10.
1007/978-0-387-89299-3 8.

Searle, J.R. (1965). What is a Speech Act? Perspectives
in the philosophy of language: a concise anthology, 2000,
253–268. URL https://pdfs.semanticscholar.org/
a6c7/56a24ea621d3882d9b2baa8eb5352105a2cd.pdf.

Verbeek, M. (2003). 3APL as Programming Language for
Cognitive Robots. Technical report.

Wesz, R.B. (2015). Integrating robot control into the
Agentspeak(L) programming language. URL http://
tede2.pucrs.br/tede2/handle/tede/6941.

Wooldridge, M. (1999). Intelligent agents. Multiagent
systems, 35(4), 51.

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

10140

