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Abstract: Despite the growing popularity of the use of renewable (e.g., wind and solar) energy, the 

volatility of the corresponding sources, partially due to the natural variability of weather conditions, 

hinders their further commercialization and necessitates the development of cost-effective and easily 

implementable predictive models such as those that simulate power generation. Despite the recent 

increase in the accuracy of numerical weather prediction models, most of them still face problems such as 

the poor predictability of wind ramp event intensity, location, and timing. However, these challenges can 

be addressed through the use of probabilistic modeling. Herein, we present a probabilistic wind power 

prediction method based on a numerical weather prediction model, using a power curve empirically 

estimated from the relationship between area-averaged wind speed and area-integrated wind power 

generation to project wind power while accounting for the inherent uncertainty associated with the power 

curve. The established probabilistic prediction method exhibits high statistical consistency and reliably 

captures the confidence interval of wind power variability; thus, it is well suited for ramp event 

prediction. 
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1. INTRODUCTION 

Wind power generation is becoming increasingly popular, 

with the total wind generation capacity in Japan currently 

(end of 2018) amounting to approximately 3.7 GW. As wind 

power generation features a certain volatility partly due to the 

natural variability of weather conditions, the management of 

wind power variability is essential to minimizing the cost of 

integrating wind power generators into electric grid systems. 

Wind power prediction is one of the most cost-effective and 

easy to implement tools for this purpose; however, many 

system operators require relatively more accurate prediction 

of events characterized by large changes in wind power 

production over short periods. These events, called wind 

ramp events (Marquis et al., 2011), are mainly caused by 

large weather fluctuations such as the passing of extratropical 

cyclones (Yoshida et al., 2016; Ohba et al., 2016) and 

increase power grid instability, thus requiring the use of other 

power sources for balance. Hence, the accurate prediction of 

ramp event magnitude and timing can significantly help 

system operators to conservatively schedule wind power 

output and eliminate the need to balance unexpected power 

supply changes.  

Although the prediction accuracy of numerical weather 

models has recently increased, predictions of the intensity, 

location, and timing of ramp events are still challenging 

because of the poor performance of current models and the 

inherently low predictability of ramp events, which occur 

under unstable atmospheric conditions. Probabilistic 

prediction can effectively model the behavior of such events 

and commonly relies on ensemble prediction systems.  

Area-averaged wind power generation can be simulated using 

predicted wind speed and a power curve. In general, this 

estimation is derived from the relationship between predicted 

area-averaged wind speed and wind power generation 

observed in the past, and is affected by the corresponding 

uncertainty in conversion.    

This study aims to develop a probabilistic wind power 

prediction method based on dynamical ensemble prediction 

using the Weather Research and Forecasting (WRF) model 

and considering the error in converting wind speed to power. 

2. METHOD 

Figure 1 describes the procedure of wind power prediction 

and shows that it can be categorized into a prediction and 

power curve. Prior to prediction, the power curve is 

empirically estimated on the basis of the relationship between 

the predicted wind speed and the observed wind power 

generation. In the prediction, the obtained curve is applied in 

the conversion of the predicted wind speed to wind power. 

2.1 Dynamical Ensemble Weather Prediction  

The weekly ensemble prediction provided by the Japan 

Meteorological Agency (JMA-WEP), which uses a singular 

vector method in a global model for initial perturbation, has 

been used to establish initial and boundary conditions. 

Although perturbations gradually expand because of the 
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nonlinear effect of atmospheric dynamics, ensemble members 

that the perturbation expands in the Japan region are limited 

because perturbations are distributed globally. Therefore, we 

selected six ensemble members from the 27 members of 

JMA-WEP based on cluster analysis (Nuissier et al., 2012) to 

achieve maximum ensemble spreading in the Japan region for 

24-h-ahead prediction (Nohara et al., 2015). For regional-

scale prediction, the WRF model (Skamarock et al., 2008) is 

employed, with model configurations and physics options 

listed in Table 1. For regional-scale ensemble prediction, six 

ensemble members are integrated using the initial and 

boundary conditions derived by simple dynamical 

downscaling based on the WRF model with a 15-km 

horizontal resolution and 45 vertical levels. The used domain 

covers most of Japan.  

Figure 2 shows an example of dynamical ensemble 

prediction. On January 14, 2013, a developed cyclone passed 

off the southern coast of Japan, bringing heavy snow to some 

areas of the southern Kanto/Koshin region including the 

Tokyo metropolitan area. According to the previous day’s 

forecast, rainfall was expected because of the weak 

development of the cyclone. This snowfall event was 

revisited, and regional ensemble prediction was applied. 

Under the initial conditions, the difference between both 

ensemble members (cyclone location and intensity) was 

small. After the 24-h-ahead, ensemble member 1 (2) 

indicated that the predicted cyclone developed strongly 

(normally). The central pressure of the cyclone for member 1 

(2) decreased to 953 hPa (986 hPa). The growth of the 

ensemble spread between these members over time and space 

because of the nature of flow-dependent predictability. 

Therefore, this example indicates that ensemble prediction 

represents how cyclone intensity and location are affected by 

small initial condition differences. 

2.2 Power Curve 

This study focuses solely on area-integrated wind power 

generation in the Tohoku area, which comprises the north-

eastern portion of Honshu (the largest island of Japan) and 

features numerous wind power plants locates along the 

coastline. As for wind power generation, we use area-

integrated power generation data for one year (Jan. 2016 to 

Dec. 2016) corrected by the Tohoku Electric Power 

Company. The total wind power capacity equals 645.34 MW 

(generated by 33 wind power plants located in this area).  

The power curve is fitted using the historical records of 

integrated wind power generation in the Tohoku area and 

predicted wind speed. For this fitting, we use 4 to 27 h ahead 

prediction data for area-averaged wind speed in that same 

period of the observation of the area-integrated power 

generation. Then, the best prediction is selected from six 

ensemble members to reduce the wind speed prediction error. 

The selection reduces the prediction error by 20% for the 

power curve.  

Table 1.  Model configurations and physics options.  

 
Prediction range 75 hours (12UTC) 

Output interval 30 min 

Prediction domain Japan 

Map projection Lambert conformal 

Horizontal grids 150 x 150 

Grid spacing 15 km 

Vertical layers 45 

Ensemble size 6  

Initial and boundary 
conditions 

- JMA Global Spectral Model 

- One-week Ensemble Prediction 

- Daily sea surface temperature 

Convection 
parameterization 

Kain-Fritsch 

Cloud process Morrison 2-moment 

Planetary boundary 
layer 

Yonsei University 

Land surface model Noah land scheme model 

 

 

Fig. 1. Schematic procedure used for wind power prediction. 

 

Fig. 2. Synoptic weather chart based on regional ensemble 

prediction for (left) the initial condition at 21 JST on 13 Jan.  

2013 and (right) the 24-h-ahead prediction at 21 JST UTC. 

The upper (lower) ensemble member indicates that the 

predicted cyclone was strongly (normally) developed. Red 

(blue) shaded contours indicate relatively high (low) SLP 

compared with the control prediction.  
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Figure 3a shows the scatter diagram for the prediction of 

area-averaged wind speed and wind power generation divided 

by rated power (per unit, hereafter PU), revealing a large 

uncertainty in every computed wind speed, mainly owing to 

the wind speed prediction error. To reduce this uncertainty, 

lower-skill wind predictions (~30%) are removed from the 

scatter diagram (Fig. 3b), thus reducing power uncertainty. 

The diagram in Figure 3b is used for empirical power curve 

estimation. In this study, we hypothesize that the uncertainty 

of power is fitted by a beta distribution. Figure 4 shows a 

quantile plot of the diagram. 

Multiple power curves obtained based on the cumulative 

distribution of power. Each power curve changes in 

proportion to the cube of the wind speed, up to speeds of ~10 

m s−1 and then remains almost constant for wind speeds of 

10–20 m s−1. At speeds above 23 m s−1, a rapid power 

decrease is assumed due to wind turbine cut-off. The 50% 

quantile curve is used as a basic power curve. The power 

curve and predicted wind speed obtained allow for easy 

estimation of wind power generation. 

2.3 Probabilistic Wind Power Prediction 

For wind power prediction, an empirically estimated power 

curve is created using the observed power generation and 

predicted wind speed from 2016. Based on this power curve, 

experiments of wind power prediction are conducted 

throughout 2017. In the first step, area averaged wind speed 

weighted by the rated capacity of wind farms is obtained 

from wind speed prediction. Then the averaged wind speed is 

converted to wind power using the empirical power curve. 

The power curve has a high uncertainty because plots of the 

generation are widely distributed in any of the wind speeds 

shown in Figure 4. To consider the uncertainty, we introduce 

an expanded ensemble method that comprises a random 

selection of any dynamical ensemble member and any 

percentile curve using Monte Carlo simulation. Then the total 

number of the ensemble members increases to 100. As the 

weight of one ensemble member accounts for 1%, probability 

prediction is easy when estimated as the count of the 

ensemble member.   

In addition, a ramp event of area-integrated wind power 

generation is defined as a 30% change in generation within 6 

h after the ramp start. The corresponding prediction 

considered each member of the expanded ensemble, and 

ramp prediction probability is obtained from the number of 

predicted ramp events by dividing the total number of 

ensemble members.  

2.4 Verification metrics 

To evaluate ramp forecasting, all forecasts and observations 

of significant wind ramps are grouped into four categories 

based on the accuracy of actual ramp prediction (Zhang et al. 

2017). Table 2 is a generic contingency table summarizing 

the results of event prediction. True positive (TP) represents 

the number of forecast ramps (forecast YES) actually 

observed in the actual power output (observed YES); false 

positive (FP) is the number of forecast ramps not observed 

for actual wind power output (observed NO); false negative 

(FN) represents the number of observed ramps (observed 

YES) not predicted by the wind forecasting system (forecast 

NO); true negative (TN) is the number of non-occurring 

events for both observed and forecast results; and N is the 

total number of events.  

Categorical statistics provide measures of accuracy and skill 

for forecasts of notable events such as ramps in power, 

detrimental temperatures, or rainfall. Based on the 

contingency table, a suite of metrics is derived for the 

evaluation of ramp forecasting performance as follows. 

Probability of detection (POD) is defined as  

POD = TP / (TP + FN). 

Success Ratio (SR) is defined as,  

SR = TP / ( TP + FP).  

Critical success index (CSI) is used to measure the fraction of 

observed and/or forecast events that are correctly predicted, 

ranging between zero and unity (perfect prediction) and 

a)                                                     b)

(P
U

)

Wind Speed (ms-1) Wind Speed (ms-1)
 

Fig. 3. a) Scatter diagram for prediction of area-averaged 

wind speed and area-integrated wind power generation. b) 

Same as a) but with the lower-skill wind predictions 

removed.  

 

 

Fig. 4. Quantile plot of power curve.  
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considering only observed and forecast ramps while 

excluding true negative events: 

CSI = TP/ ( TP + FN + FP).  

The value of CSI is between 0 and 1, with 1 representing 

perfect prediction. The CSI considers only observed and 

forecasted ramps, excluding true negative events. 

Table 2. Contingency table for ramp event. 

 
Observed 

YES 

Observed 

NO 
Total 

Prediction 

YES 
TP (hits) 

FP (false 

alarm) 
TP+FP 

Prediction 

NO 
FN (misses) TN FN+TN 

Total TP+FN FP+TN 
N=TP+FP+FN

+TN 

 

3. EXPERIMENTAL DESIGN 

To confirm the effects of the uncertainty in the prediction, a 

comparative experiment of three methods is performed. The 

details of the experiment are described as follows. 

3.1 Only Ensemble Prediction (E06P06) 

In this case, only the uncertainty of ensemble prediction is 

considered for wind power prediction. The probabilistic 

prediction relies on six members from the ensemble 

prediction with the basic power curve as the 50% quantile of 

the power curve.  

3.2 Only Conversion Error in Power Curve (E01P100) 

In this case, only the uncertainty of the power curve is 

considered for wind power prediction. The probabilistic 

prediction relies on 100 members estimated by the random 

selection of any percentile curve using Monte Carlo 

simulation and only the control prediction.  

3.3 Two Types of Prediction Uncertainty (E06P100) 

For a probabilistic wind forecast, uncertainties in prediction 

and conversion are considered. The probabilistic prediction 

relies on 100 members estimated by the random selection of 

any dynamical ensemble member and any percentile curve 

using Monte Carlo simulation. 

4. Results 

4.1 Case study  

On January 9, 2017, a developing cyclone passed Honshu 

island, bringing storm wind to some areas of the Tohoku 

region. Figure 5 shows the wind power generation and 

weather maps for this period, and reveals the occurrence of a 

strong ramp up event from 1500 JST to 2400 JST 9 Jan. 2017 

due to the developing cyclone. After that, wind power 

generation gradually decreased, and a weak ramp down event 

due to cyclone departure occurred from 0600 JST to 0900 

JST January 10, 2017. Another ramp up event, started at 1800 

JST January 10, due to the strengthening of typical winter 

pressure patterns such as the high-pressure area to the west 

and the low-pressure area to the east. 

Figure 6a shows wind power generation predicted by six 

members of the ensemble and the 50% quantile of the power 

curve (E06P06). The performance of dynamical ensemble 

prediction started from 0900 JST on January 9, 2017. All 

ensemble members predicted the ramp up event on January 9, 

although the timing of this event was different for each 

ensemble member. This difference indicated the uncertainty 

in prediction caused by the nature of atmospheric dynamics. 

In this case, the uncertainty of event timing was close to 3 h. 

After that, ramp down and up events occurred. Some 

ensemble members captured the ramp down events while 

other could not capture these events.    

Figure 6b shows the results of 100-ensemble-member 

prediction considering only the uncertainty in the power 

curve (E01P100), revealing that the results were distributed 

around the 50% quantile of the power curve in a parallel 

fashion. In this case, all ensemble members could capture the 

first ramp up and down events but could not capture the 

second ramp up event, because the control weather prediction 

could not predict the strengthening of the winter pressure 

pattern on January 10. 

Figure 6c shows the results of 100-ensemble-member 

prediction considering two types of uncertainty (E06P100). 

 
Fig. 5. Area-integrated wind power generation from 9 Jan. 

2017 to 10 Jan. 2017 and the corresponding weather map. 

Power generation rapidly increased (ramp up) in the evening 

of 9 Jan., rapidly decreasing (ramp down) in the morning of 

10 Jan. 
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The ensemble prediction accounted for the uncertainty of 

atmospheric chaos and the error in the conversion of wind 

speed to power. Ensemble members were more widely 

distributed than dynamical ensemble members. Almost all 

ensemble members captured the ramp up event on January 9, 

and some members captured the ramp down event on January 

10 and the second ramp up event on January 10. 

Figure 7 shows the results of probabilistic ramp event 

prediction based on E06P100 and reveals that whereas the 

probability of ramp up prediction exceeded 90% in the 

evening of January 9, that of the ramp down on January 9 and 

of the ramp up on January 10was close to 30%. 

4.2 Verification 

For the verification of wind power predictions, the empirical 

power curve was estimated using predictions for the year 

2016. Predictions for verification were conducted twice a day 

throughout the year of 2017. Figure 8 shows the probability 

of exceeding the 5–95% confidence interval for different 

experiments and prediction times. As all experiments 

underestimated the confidence interval, the probabilities 

exceed the 5% level. In the case of E01P100, the probability 

gradually increases, because ensemble spread is constant and 

independent of prediction time. In the case of E06P06, the 

probability gradually decreases. These results indicate that 

prediction accuracy is increased with increasing prediction 

time because dynamical ensemble prediction represents the 

uncertainty of the prediction caused by atmospheric chaos. 

However, the probability exceeds the 5% level and is larger 

than that of E06P100. In the case of E06P100, probability 

remained almost constant even when the prediction time was 

extended, which is indicative of proper ensemble spread 

representation. These results indicate that uncertainties of 

prediction caused by weather prediction and other factors can 

be evaluated separately.    

The accuracy of ramp event prediction is verified using the 

modeling of ramp alerts, which are issued when the predicted 

a)

b)

 

Fig. 8. probability of exceedance from confidential interval of 

a) 95% and b) 5% for different prediction time. 
 

Fig. 6. Time series for a) E06P06, b) E01P100, and c) 

E06P100 predictions.  

 

Fig. 7. Time series of probability prediction for ramp up and 

ramp down.  
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probability of ramp occurrence exceeds 40%. Figure 9 

compares ramp predictions for different experiments and 

prediction periods, revealing that the frequency of ramp alert 

prediction exceeds that of observed ramp events. Although 

the accuracy of ramp prediction decreases with increasing 

prediction time, CSI exceeds 0.2 for 28–39-h predictions, and 

E06P100 is slightly superior to other methods.  

4. CONCLUSIONS  

An understanding of the impact of uncertainty on integrated 

wind power production and variability is important for 

ensuring energy security and operational grid management. 

In addition to the evaluation of wind power potential, the 

forecasting of the variability of wind power output is a 

significant challenge in wind power management. 

Meteorological forcing for the variability of wind speed and 

ramp events is complex and still unexplained for the most 

part. In this study, probabilistic predictions of wind power 

generation and ramp events were performed through a 

regional ensemble prediction method relying on the WRF and 

the uncertainty of conversion from wind speed to wind power 

in the power curve. The number of ensemble members was 

increased to one hundred using Monte Carlo simulation. As a 

result, probabilistic wind power prediction achieved high 

statistical consistency and reliably captured the confidence 

interval of wind power variability, compared to only 

dynamical ensemble prediction or only the conversion error 

consideration. The probabilistic prediction offers useful 

information for the electric system because it can be used as a 

preliminary assessment of uncertainty of the generation by 

wind power and as a risk hedge of the prediction error.  
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Fig. 9. Comparison of ramp prediction for different 

experiments (colours) and prediction time (shapes).   

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

12331


