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Abstract: Batch process is often subject to a high degree of uncertainty in raw material quality and other 

initial feedstock conditions. One of the key objectives in operating a batch process is achieving consistent 

performance and constraint satisfaction in the presence of these uncertainties. This study presents a 

method for optimal control of a fed-batch process, which can actively and robustly cope with system 

uncertainty. As in dual control, the method aims to achieve an optimal balance between control actions 

(exploitation) and probing actions (exploration), leading to improved process performance by actively 

reducing system uncertainty. An optimal solution of the dual control problem can be found by stochastic 

dynamic programming but it is computationally intractable in most practical cases. In this study, an 

approximate dynamic programming (ADP) method for solving the dual control problem is tailored to a 

batch process which involves non-stationary and nonlinear dynamics. Rewards are formulated to 

maximize a given end objective while satisfying path constraints. Performance of the ADP-based dual 

controller is tested on a fed-batch bioreactor with two uncertain parameters. 

Keywords: Robust adaptive control, Dual control, Stochastic optimal control, Approximate dynamic 
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

1. INTRODUCTION 

Control of dynamic systems in the presence of uncertain 

parameters is of great interest in industrial chemical and 

biological processes. When measurements are available, the 

general approach is to estimate the unknown parameters with 

measurements using some state estimator (e.g., extended 

Kalman filter) and use the parameter estimates in a 

deterministic control framework, known as certainty 

equivalence control. To obtain informative data about the 

uncertain parameters and thus obtain better estimates, 

exploratory inputs to excite the system, i.e., probing inputs, 

may be needed. In standard certainty equivalence based 

control, however, the effect of control inputs on the future 

parameter estimates is not taken into account, such that the 

parameter learning is only accidental and thus passive 

(Wittenmark, 1995). 

To actively learn about the uncertain system, control inputs 

should have a properly designed probing effect. Probing 

inputs may decrease the performance in short-term (when it 

conflicts with the control objective), but the improved 

knowledge about uncertainty can result in better control 

performance in the future. Thus, an optimal balancing 

between learning (by maximization of information content in 

the collected data) and control (by optimization of process 

performance) is needed, and this problem is called the ‘dual 

control problem’. The dual controller actively reduces 

uncertainty to the extent necessary to achieve optimal control 

performance by incorporating probing naturally into control 

inputs (Heirung et al., 2019). 

An optimal solution of the dual control problem can be found 

by stochastic dynamic programming (SDP) (Feldbaum, 1960), 

but it is computationally intractable in most practical cases, 

particularly for systems with continuous state space. To solve 

the dual control problem approximately, various approximate 

solution methods have been suggested, which can be 

classified as implicit and explicit approaches (Filatov, 2000). 

Implicit dual control methods directly approximate the 

original dual control problem to obtain actively adaptive 

suboptimal control policies that retain the dual properties of 

the system. On the other hand, explicit dual control methods 

reformulate the stochastic optimal control problem into a 

simpler one by introducing heuristic-based probing effects. 

Explicit dual control methods are easier to implement than 

implicit dual control methods, but they require proper tuning 

for balancing the trade-off between the control and probing 

actions. 

A growing body of literature on applying ADP or RL to solve 

the dual control problem has demonstrated that the data-

based learning approach can derive a superior control policy, 

which actively learns parameter values to give significant 

performance improvement, compared to the standard 

adaptive control with passive learning (Lee & Lee, 2009; 

Thompson & Cluett, 2005; Morinelly & Ydstie, 2016). The 

investigation of the data-based learning approach, however, 

has been limited to tracking control problems of continuous 

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

Copyright lies with the authors 5275



 

 

     

 

processes. In this study, we present a scheme for robust 

implicit dual control of nonlinear and nonstationary batch 

processes, based on ADP. 

Batch processes play an important role in chemical and 

biological industry, especially in manufacturing specialty 

chemicals, pharmaceuticals, and polymers, given its 

flexibility to meet various product specifications. An 

important objective in batch process operations is to achieve 

quality and quantity specifications of the product while 

satisfying process constraints. However, a high degree of 

uncertainty in raw materials and other initial charge 

conditions make it difficult to achieve such specifications 

consistently. Therefore, in order to compensate for the poor 

prior knowledge and thus satisfy the constraints and final 

specifications within finite batch time, the controller needs to 

actively learn and cope with the uncertainty. 

This study tailors the ADP method to dual control of fed-

batch processes with uncertain parameters. We adopt the idea 

of ADP approach proposed by Lee and Lee (2009), in which 

dynamic programming is solved on a restricted space of 

hyper-state sampled through stochastic closed-loop 

simulations performed with suboptimal control policies. For 

the batch process under uncertainty, formulation of the 

objective function in terms of economic optimization instead 

of set-point tracking can lead to a superior economic 

performance (Lucia et al., 2014). Thus, ‘profit-to-go’ in this 

study is formulated to maximize a given end objective while 

satisfying various path and end constraints, to optimally 

balance learning and control effects such as to maximize the 

overall economic gains. A case study of fed-batch bioreactor 

with two uncertain parameters demonstrates the performance 

of the ADP-based dual optimizing controller. 

 

2. ADP-BASED ROBUST DUAL ADAPTIVE CONTROL 

2.1  Problem Formulation 

Consider the discrete-time stochastic system 

 1 , , , ,k k k k kx f x u e   ,k   (1) 

where kx  is a state vector, ku  is a control input, k  is a 

vector of unknown parameters of the model, and ke  

represents exogenous noises. The state kx  is assumed to be 

fully measured at each k and the model structure f  is 

assumed to be known. The aim of control is to maximize the 

performance index represented as follow: 

   
0 1

1

, , 0

max , ,
f

f
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subject to 

  0, ,j tg x j G      (3) 

L Uu u u    (4) 

where   and T  are stage-wise reward and terminal reward, 

respectively. The expectation E  is taken over the distribution 

of   and e . ig  denotes the path constraints which should be 

satisfied.  The inputs are to be decided based on the measured 

state information, and so the problem is to find the optimal 

control policy 
1

0{ } ft

kk 


 , where k  is a map between state 

and control input at time k . 

In the framework of dynamic programming, the optimal 

‘profit-to-go’ function at time k  can be represented as 

     
1
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t k

J E x u x


   





 
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 
 
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where hyper-state k  is an extended state including the 

information about the uncertain parameters, i.e., the 

parameter estimates and their covariances,  in addition to the 

kx  . *
kJ  , which maps the hyper-state to the profit-to-go 

value under the optimal control, satisfies the following 

Bellman’s optimality equation: 

     * *
1 1max , .

k

k k k k k k k
u

J E x u J      
 

  (6) 

Once *
kJ  is determined, the optimal control policy can be 

derived by solving 

     * *
1 1arg max , .

k

k k k k k k k
u

u E x u J        
 

  (7) 

For each evaluation of a candidate ku , the expectation needs 

to be calculated, which involves the integration of the 

successor hyper-state 1k   for all its possible value. To solve 

the Bellman equation numerically, the value iteration or 

policy iteration is performed after discretization of the hyper-

state space. However, this is computationally intractable in 

most practical cases, especially when the hyper-state space is 

continuous. 

2.2  ADP Algorithm  

The ADP based approach proposed by Lee and Lee (2009) 

circumvents the curse-of-dimensionality of the traditional DP 

approach by solving the DP only for a restricted space of the 

hyper-state, sampled from Monte Carlo simulations of the 

closed-loop system with some suboptimal control policies. 

The same idea is adopted and tailored to the characteristics of 

a nonstationary batch process with path constraints. 

Construction and improvement of the profit-to-go 

approximation proceed as follows. Note that these steps are 

performed off-line and only the converged profit-to-go 

approximator is used on-line. 

1) Perform Monte-Carlo runs of the closed-loop system with 

known suboptimal control policies, e.g., MPC. It is 

recommended to simulate several policies with different 

characteristics in order to cover a broad range of potential 

operating space. 
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2) For each state visited during the simulation runs, calculate 

the profit-to-go 0
k

J  using the simulation data according to 

     
1

0 , .
f

f

t

k k k T t kk
t k

J x u x   





             (8) 

In this study, the satisfaction of path constraint is 

considered as the stage-wise reward: 

   1, .

cv

k k j k

j G

x u g x  



                 (9) 

cvG  is a set of indexes of constraints violated.   is a 

weighting parameter for the penalty for constraint 

violation.   

3) Construct an initial function approximator J  using 

calculated profit-to-go values for the sampled points to 

approximate the profit-to-go with respect to the 

continuous hyper-state. In this work, a local averager, i.e., 

a modified k-nearest neighbor (kNN), suggested in (Lee 

et al., 2006) is used as the approximator. Considering the 

nonstationary, finite-time characteristics of the batch 

process, the value function approximation is performed 

for each time step k as below: 

   ,0 ,

1

N

k k n k k n

n

J w J 


           (10) 
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1
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1

n
n

nN

d
w

d



             (11) 

where ,0k  is a query point at time k , and N  is the 

number of neighboring points in the data set. Each 

neighboring point is weighted inversely proportional to its 

Euclidean distance nd . To avoid excessive extrapolation, 

a quadratic penalty term based on the local density ,k PJ   

is subtracted. 

     ,0 ,0 , ,0 ,k k k k k P kJ J J             (12) 
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where  ,0kf   is a density estimate around ,0k , 

obtained as a sum of kernel functions ( )K   placed at each 

sample. ( )H   is a Heaviside step function, kA  is a 

scaling parameter,   is a threshold value, and B  is a 

bandwidth parameter. Detailed description of the penalty 

term can be found in (Lee et al., 2006). Note that in this 

study the penalty term is set as ,max ,mink kJ J  whenever 

, ,0 ,max ,min( )k P k k kJ J J   , to bound the profit-to-go in 

the iteration steps. 

4) Improve the profit-to-go approximation through value 

iteration 

     
1

11
max , ,

k

i i
k k k k k kk

u
J E x u J   



  
 

        (15) 

where superscript i denotes ith iteration step and 1i
k

J   is 

calculated for all the sampled states k  from simulations. 

To evaluate the expectation, Monte Carlo simulation is 

performed and the average of data ensemble is used. The 

control input space is discretized and the expectation is 

evaluated for each candidate input. The iteration is 

repeated until    1i i
k k

J J 


  becomes negligibly 

small for all k . 

Once the profit-to-go values converge, it can be used on-line 

as a control policy by solving 

     *
11

arg max , ,c

k

N
k k k k k kk

u
u E x u J    

   
 

  (16) 

at each sampling time. This single-stage optimization 

requires much less on-line computation time than the original 

multi-stage optimization problem. 

 

3. CASE STUDY 

3.1 Fed-Batch Bioreactor  

We illustrate the ADP-based dual control of the batch process 

with an example of fed-batch ethanol fermentation. The 

system can be described by 

 1 1, , ,k k k k k kx f x u e            ~ 0, ,k ee N R   (17) 

  ,k k k ky h x v                             ~ 0, ,k vv N R   (18) 

1 ,k k kw                                 ~ 0, ,k ww N R   (19) 

where ke  is exogenous noises and k  is a set of uncertain 

parameters. The system model kf is a discretized form of the 

following nonlinear differential equations (Chen & Hwang, 

1990) using explicit Euler method. 

,
u

X X X
V

     (20) 

  ,in
x

X u
S S S

Y V


       (21) 

,
u

P X P
V

     (22) 

,V u    (23) 
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with 

  
,

1 /

max

P S

S

P K K S


 

 
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  ' '
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1 /
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P S

S

P K K S





 
  (25) 

The model includes mass balances for biomass X , substrate 

S , ethanol P , and liquid volume V . The control input u  is 

the feeding rate of substrate. Table 1 lists the nominal values 

of the model parameters and initial conditions of the states. 

There are various sources of uncertainty in bioprocess 

including variability in feedstock (Kim et al., 2019), product 

yield (Heinzle et al., 2007), growth rate, and so on, but for 

the sake of simplicity, we consider two uncertain parameters 

in this study, the inlet sugar concentration 2~ (150,20 )inS N  

and the maximum specific productivity 2~ (1,0.2 )max N , 

and assume them to be normally distributed. In addition, we 

assume the uncertain parameters remain constant during a 

batch. A perfect measurement of the physical states is 

assumed ( 0)vR   and thus [ , , , ]Tk k k k k ky x X S P V   and 

max, ,[ , ] .T
k k in kS   In reality, some state variables in 

bioprocess cannot be easily measured on-line, and even they 

can be measured, there exist measurement noises. In such a 

case, we might need to perform estimation of states as well as 

parameters, and the dual controller might try to actively learn 

about uncertainties in state as well as parameters. In this 

study, we focus on investigating the active learning feature of 

the proposed dual controller with respect to uncertainties in 

parameters. 

Table 1. Nominal parameters of the fed-batch bioreactor 

(Chen & Hwang, 1990) 

Parameter Nominal Unit 

max   0.408 1h   

PK   16 g L   

SK   0.22 g L  

max   1 1h  

'
PK   71.5 g L  

'
SK   0.44 g L  

XY   0.1 g g   

inS   150 g L  

0X   1 g L  

0S   150 g L  

0P   0 g L  

0V   10 L   

 

In this study, the extended Kalman filter is employed to 

estimate k  from the measurements. We set the initial 

covariance matrix 0  as 2 2{0.2 ,20 }diag , eR  as 4 4I  , and 

wR  as 2 2{0.01 ,0.01 }diag . The hyper-state of the process is 

defined as a 9-dimensional vector consisting of four physical 

states and five information states: 

,
12, , , , ,  ,  , , 1| 1| 1| |

11 2
1

2ˆˆ , 1|

T
V Sin kk kX S Pk k k max k kk k k k k k k

 
 

       
  (26) 

where 1|
ˆ
k k   and 1|

ij
k k  represent the parameter estimates and 

the ijth element of covariance matrix based on the 

measurements up to time k . 

3.2 Control Problem 

The control goal is to maximize the production of ethanol 

PV  at the fixed final time while satisfying an upper bound 

constraint on volume, i.e., 200 maxV V L  . The batch time 

is 50ft h  and the sampling time of the controller is 

5st h . The control input ku  is bounded in [0, 12] . In this 

example, the stage-wise reward and terminal reward are 

defined as below:  

max 1 1 max( )
( , ) ,

0

i i
i i

V V if V V
x u

otherwise




  
 


 (27) 

  ,
f f

T t t
x PV     (28) 

where the penalty factor   is set as 610  in this case study. 

The penalty factor must be chosen to sufficiently large value 

for ensuring the given constraint. 

For the data generation, stochastic closed-loop simulations 

were performed with the suboptimal policies, i.e., a 

shrinking-horizon adaptive economic nonlinear model 

predictive control (eNMPC) with and without dithered inputs. 

NMPC is a well-known advanced batch control strategy and 

an adaptive NMPC is an MPC method in which the uncertain 

parameters of the prediction model are adapted in a certainty 

equivalent manner. The dither signals were introduced to 

generate more broad range of potential operating data, and 

they were uniformly sampled from [ 1, 1] . Four sets of 

dithered inputs from different realizations were used and 200 

runs of simulations with each suboptimal policy were 

conducted. The total number of data points for each time step 

obtained from the simulations was 1000. With the sampled 

data, the value function approximators were constructed 

using 4-nearest neighbor averager, and the value iteration was 

performed to improve the approximation, by solving (14). 

The expectation operator was evaluated explicitly by 

simulating 30 realizations of uncertainties k  and ke , 

randomly sampled from ( , )1|1|N Pk kk k  and (0, )N Re , 

respectively, for each candidate control input. The candidate 

input set was composed of the input values corresponding to 

the four nearest neighbors sampled during simulation step as 

well as discretized values over the input space. The value 

iteration converged after 7 runs using the following 

convergence criterion 
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0.05.

i i
k kk k

rel i
kk

J J
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J

 












   (29) 

The coefficients for penalty term of the averager were set 

as 966.77,   0.9,B   and 0{ } ft

kkA A    [160225, 

160225, 160225, 160225, 160225, 160225, 158744, 140894, 

107543, 60346, 12]. 

 

4. RESULTS AND DISCUSSION 

The performances of shrinking-horizon adaptive eNMPC and 

ADP-based robust dual optimizing control are compared for 

one hundred new uncertainty realizations. The average 

amount of ethanol produced and the number of constraint 

violations for each control policy are reported in Table 2. It 

can be seen that the adaptive eNMPC cannot satisfy the 

constraints for more than half of the uncertainty realizations, 

indicating that adapting uncertain parameters alone is not 

enough to handle the uncertainty, especially in the case of 

control with economic goals which forces the process to 

operate at one of its constraints. On the other hand, the ADP-

based controller, in which the penalty for constraint violation 

is incorporated as a stage-wise reward, shows substantial 

robustness against stochastic system uncertainties.  

The average amount of ethanol produced during a batch is 

compared for the feasible cases where both controllers do not 

violate the constraint (the fourth row in Table 2). The ADP-

based robust dual control shows similar (even slightly better) 

ethanol production compared to the adaptive eNMPC even 

though it is significantly more robust with less constraint 

violation against one hundred uncertainty realizations. In 

general, there exists a trade-off between the robustness and 

performance, however, the active learning feature of the dual 

control allows for better estimation of uncertain parameters, 

leading to improved performance in a less conservative way.  

Table 2. Performance comparison between adaptive NMPC 

and robust dual adaptive control based on ADP 

 
Adaptive 

NMPC 

ADP-based 

control 

Constraint violation (CV) 73/100 2/100 

Aver. EtOH production [g] 17287.85 16372.96 

Aver. EtOH production [g] 

(w/o CV for both cases) 
17394.38 17543.33 

 

Fig. 1 shows the profiles of control input, ethanol 

concentration and volume when max  and inS  are 0.85 h-1 

and 132 g/L, respectively. For this realization, both control 

methods satisfy the volume capacity constraint, but the 

ethanol production obtained with the proposed ADP-based 

robust dual control is larger than one obtained with the 

adaptive eNMPC. It can be seen that the control input 

sequence generated by the robust dual controller includes 

more excitation (see Fig. 1), resulting in more accurate 

estimates of parameters (see Fig. 2). The mean squared error 

of max̂  and ˆ
inS  by ADP-based robust dual control are 0.031 

and 53.4, and those by adaptive eNMPC are 0.044 and 114.3, 

respectively. In addition, the trace of covariance matrix at the 

end of the batch by ADP-based robust dual control is 9% 

smaller than that by adaptive eNMPC. The ADP-based robust 

dual control provides a probing feature to the control inputs 

for active learning, which is well-balanced with the control 

activity. 

In addition, we analyzed the effects of penalty weight   in 

(26) and the number of sampled data points on the 

performance of ADP-based control. The performances are 

compared for the same one hundred uncertainty realizations. 

Table 3 shows its performances with different weight values 

of the penalty. It can be identified that the conservativeness 

of the controller increases as the penalty weight increases. 

Therefore, the penalty weight   needs to be chosen properly 

depending on the desired conservativeness, or robustness, of 

the controller. 

Table 4 shows the performance of ADP-based control 

constructed based on different number of sampled data 

points. As a result, if the number of samples obtained from 

stochastic simulation step is too small, i.e., 250 data points, 

performance of the ADP-based control could be 

unsatisfactory, i.e., showing more constraint violations with 

less production, due to a poor approximation of the value 

function. As a local approximator like the k-nearest neighbor, 

is strongly affected by the number and the quality of training 

samples, sufficient sampling is required for satisfactory 

performance of the ADP-based robust dual control.  

 

Fig. 1. Profiles of ethanol concentration, volume, and control 

input when 1
max 0.85h   and 132inS g L .  
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Fig. 2. Parameter estimates when employing the adaptive 

eNMPC and the ADP-based robust dual adaptive control 

when 1
max 0.85h   and 132inS g L . 

 

In this study, the ADP approach based on value function 

approximation was used, thus the control inputs were 

searched over the discretized set. Recently, reinforcement 

learning algorithms that approximate and optimize directly 

over the policy space, which is called policy gradient 

algorithm, have been suggested and successfully applied to a 

variety of control problems with continuous action space 

(Mnih et al. 2016; Lillicrap et al., 2015). The application of 

policy gradient methods could facilitate deriving a better 

control policy for systems with higher dimension of input 

space. Our future work will investigate an application of the 

policy gradient methods for the robust dual optimizing 

control problem of batch processes. 

Table 3. Performance of ADP-based robust dual adaptive 

control with different penalty weight   (the number of 

sampled data points = 1000) 

Penalty weight   
Constraint 

violation 

Average EtOH  

production [g] 

104 5 16421.93 

106 2 16372.96 

108 1 16296.15 

  

Table 4. Performance of ADP-based robust dual adaptive 

control with different number of sampled data points 

( 610  ) 

The number of 

sampled data points 

Constraint 

violation 

Average EtOH  

production [g] 

250 2 15964.61 

500 1 16079.37 

1000 2 16372.96 

5.  CONCLUSIONS 

This paper demonstrates the potential of an approximate 

dynamic programming (ADP) for robust dual optimizing 

control of batch processes. The ADP approach has been 

applied to solve the dual control problem in a tractable way 

and the rewards are designed to maximize the performance 

index of a batch while satisfying process constraints. The 

performance of ADP-based robust dual adaptive control was 

tested on a fed-batch ethanol fermentation process with two 

uncertain parameters. The results show that the proposed 

robust dual optimizing control can robustly and actively deal 

with stochastic system uncertainty by introducing a proper 

probing feature to its control input.   
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