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Abstract: This paper generalises stability analysis of Nonlinear Model Predictive Control
without terminal constraints to incorporate possible suboptimality of MPC solutions and
develops a framework for minimisation of computational efforts associated with obtaining such
a solution. The framework is applied to primal-dual interior-point solvers by choosing the length
of the prediction horizon together with a degree of suboptimality of the solution in a way that
reduces algorithmic complexity while satisfying certain stability and performance guarantees.
The framework ensures an optimal choice for the prediction horizon in order to minimise
computational complexity if applied to linear or convex quadratic MPC problems, and acts
as a good indicator to this end in the more general case of nonlinear systems. This is illustrated
in a numerical case study, where we apply the proposed framework to a nonholonomic robot.
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1. INTRODUCTION

Model predictive control (MPC) is a closed-loop control
paradigm based on online numerical optimisation, which
can explicitly utilise a system model in optimising the
prescribed performance metric while satisfying inherent
constraints of the system over the prediction horizon.
Sufficiently long prediction horizons are often desired for
either enlarging the feasible region of the optimisation
problem or ensuring stability and better performance.
However, online optimisation of MPC problems with a
long prediction horizon is often restricted due to limited
computation resources available at real-time, see Richter
et al. [2011] for detailed analysis.

To reduce the computational costs associated with MPC
one can accept inexact solutions, which provide suffi-
cient reduction of a Lyapunov function candidate. This
was first discussed for MPC schemes with extra terminal
cost and constraints, see Scokaert et al. [1999] and Diehl
et al. [2005]. Alternatively, Giselsson and Rantzer [2013]
consider MPC schemes without terminal constraints/cost
along with a dual gradient method, and utilise the weak
duality property to ensure stability and specified perfor-
mance for an inexact solution. A similar early termination
approach based on the the weak duality property was
proposed for the primal-dual interior-point method and
applied to an MPC scheme with stabilising terminal con-
straints and cost, see Pavlov et al. [2019]. Here, however,
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one needs no dual problem formulated, since the primal
and dual problems are solved simultaneously. Moreover,
satisfaction of inequality constraints is ensured by the
property of the interior-point algorithm, which constructs
a sequence of solutions approaching the optimal solution
from the interior of the feasible region.

In this paper, we extend the stability analysis of MPC
schemes without terminal constraints and cost, see Grüne
[2012], to include possible suboptimality of a solution
and admit the early termination of the solver based on
the duality-gap criterion. By focusing on the primal-dual
interior-point family of solvers and utilising corresponding
complexity bounds, we formulate an optimisation problem
to minimise the algorithmic complexity with the prediction
horizon length and the degree of suboptimality as decision
variables that will result in closed-loop stability.

The paper is organized as follows. In Section 2, first, the
MPC framework and the idea of primal-dual interior-point
methods to solve the corresponding optimisation problems
in MPC are briefly introduced. Second, the problem of
interest is presented. In Section 3 the main contribution
of this paper is presented. In Section 4 we demonstrate
a successful application of the proposed framework to
a nonholonomic system. Conclusions are summarized in
Section 5.

2. PRELIMINARIES AND PROBLEM
FORMULATION

Throughout the paper we use the following classes of
continuous functions, where we denote R+

0 = [0,∞):
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K := {φ : R+
0 → R+

0 | φ(0) = 0 and strictly increasing},
L := {φ : R+

0 → R+
0 | φ(∞) = 0 and strictly decreasing},

K∞ := {φ : R+
0 → R+

0 | φ ∈ K and lim
r→∞

φ(r) =∞}, and

KL := {φ : R+
0 × R+

0 → R+
0 | φ(·, s) ∈ K, φ(r, ·) ∈ L}.

2.1 Model predictive control

Consider a discrete-time system of the following form:

x+ = f(x, u),

where f : Rn×Rm → Rn is a sufficiently smooth map with
f(0, 0) = 0, which for a current state x ∈ Rn and a control
input u ∈ Rm assigns new state x+ at the next time step.

Assume that the states and inputs of the system are
subject to constraints x ∈ X and u ∈ U , which contain
the origin and can be written algebraically as follows:

c(x, u) ≤ 0,

where c : Rn × Rm → Rl is smooth and c(0, 0) < 0.

Define the stage cost `(x, u) as a cost for being in state x
while taking action u, and define

`?(x) := min
u

`(x, u), s.t. c(x, u) ≤ 0. (1)

We assume that `(x, u) is smooth and can be bounded
from below and above by K∞−functions φ1(·) and φ2(·)
such that for all x ∈ X and u ∈ U :

φ1(‖x‖) ≤ `(x, u) ≤ φ2(‖x‖). (2)

Consider the task of driving the system to the origin
from the current state x. We formulate a finite-horizon
constrained optimal control problem to be solved at each
time step as follows:

VN (x) = min
z,u

N−1∑
i=0

`(zi, ui)

s.t. for i = 0, . . . , N − 1 :

z0 = x, zi+1 = f(zi, ui),

c(zi, ui) ≤ 0,

(3)

where u = [u0; . . . ;uN−1] and z = [z0; . . . ; zN ] are stacks
of the vectors of decision variables, and N ∈ N≥2, where
N≥k is the set of integers greater or equal to k.

For simplicity, we assume that X is control invariant, i.e.,
for each x ∈ X there exists u ∈ U with f(x, u) ∈ X , which
is often done in the context of MPC without terminal
constraints. If this is not satisfied, one can use additional
arguments in order to still ensure recursive feasibility on
sublevel sets of the optimal value function VN , see Boccia
et al. [2014] for details.

We now repeat the main result for asymptotic stability
and closed-loop performance established in Theorem 4.11
of Grüne and Pannek [2017]:

Theorem 1. Consider an MPC problem, defined by (3).
Let the admissible closed-loop control law u(x) be such
that the following condition is satisfied for some α ∈ (0, 1]
for all x ∈ X :

VN (f(x, u(x))) ≤ VN (x)− α`(x, u(x)). (4)

Then the origin is asymptotically stable under the closed-
loop control u(x) and the following holds:

J∞(x, u(x)) ≤ α−1VN (x),

where J∞(x, u(x)) =
∑∞
i=0 `(zi, u(zi)), z0 = x and zi+1 =

f(zi, u(zi)).

Remark 2. Since VN (x) ≤ V∞(x) we also have

J∞(x, u(x)) ≤ α−1V∞(x).

Definition 3. In the light of Remark 2 we call α the
performance measure, as it relates the total cost under the
closed-loop control to the infinite horizon optimal cost.

2.2 Primal-dual interior-point method

Interior-point methods are a class of algorithms for finding
local optimisers of constrained optimisation problems, see
Gondzio [2012] for an overview. Here we consider a primal-
dual interior-point method for solving the finite-horizon
constrained optimal control problems arising in the MPC
framework and briefly outline its algorithmic complexity
results.

The Lagrange function for problem (3) is given by:

L =

N−1∑
i=0

[
`(zi, ui) + sTi c(zi, ui) + λTi (f(zi, ui)− zi+1)

]
,

where λi ∈ Rn and si ∈ Rl are the vectors of dual
variables, and z, u, λ, s are stacks of the corresponding
vectors, e.g. s = [s0; . . . ; sN−1]. We introduce the i-th l-
dimensional vector of slack variables yi ∈ Rl such that
c(zi, ui) + yi = 0 and, similarly, y = [y0; . . . ; yN−1], and
denote S = diag[s] and Y = diag[y].

Once the Lagrange function is defined, the original opti-
misation problem can be cast as a min-max problem:

VN (x) = min
z,u

max
s≥0,λ

L(z,u,λ, s), (5)

where the minimisation is (possibly) understood to be
local in a neighbourhood of a local minimum of (3).

The idea of the primal-dual interior-point methods is to
solve the system of necessary conditions for optimality
(KKT) for a decaying perturbation µ > 0, while keeping s
and y strictly positive. Here, the perturbed KKT system
is defined with i = 0, . . . , N − 1 as follows:

∇z,uL(z,u,λ, s) = 0,

f(zi, ui)− zi+1 = 0,

c(zi, ui) + yi = 0,

SY e = µe,

(s,y) > 0,

(6)

where z0 = x and e is the vector of all ones, see Nocedal
and Wright [2006] for more details.

A locally optimal solution of (5) can be obtained as a
limit point of solutions to (6) with µ → 0. To finish the
calculation in finite time the algorithm checks whether
the user-provided tolerance is achieved and terminates
the sequence if the second-order sufficient condition for
a constrained local minimum holds.

As a single iteration of the interior point methods requires
a computation of the Newton direction for the perturbed
KKT system, it is necessary to compute a factorisation
of a (possibly large) matrix of size d with the complexity
bound O(d3) at each step. For the case of a non-condensed
formulation of the MPC problem, where states are kept
as decision variables, one can utilise the block-diagonal
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structure of the matrix to come up with a linear complexity
bound in the prediction horizon N , e.g. O(N) for Gaussian
elimination technique as opposed to O(N3) if the special
structure is not exploited as in a condensed formulation,
see Rao et al. [1998] for details.

For linear or convex quadratic programming problems, the
best known to date algorithms within the family of short-
step interior-point methods, given an appropriate solution
to (6) with the initial perturbation µ = µ0, provably
converge to an ε-accurate solution, i.e. a solution to (6)

with µ ≤ ε, in at most O(
√
d log(µ0/ε)) iterations, see

Potra and Wright [2000] for further details. Here d = Nl
is the dimension of the problem, i.e. the total number of
dual variables corresponding to N vector inequalities of
size l. The user-specified accuracy level ε is often chosen
to be sufficiently small, such that the algorithm is expected
to terminate at a nearly optimal solution.

2.3 Problem Statement

To be able to state the problem of interest, we define
algorithmic complexity of the MPC problem as the product
of the number of interior-point iterations needed to reach
an ε-accurate solution of (6) and the complexity of each
iteration, and denote the complexity by Comp(ε,N).

For example, given an initial solution to (6) for µ = µ0

and a non-condensed formulation of a linear or convex
quadratic MPC problem, the algorithmic complexity for
a short-step primal-dual interior-point method is given by

Comp(ε,N) = C0N
√
N log(µ0/ε). (7)

where C0 is a problem- and algorithm-specific positive
constant.

Problem 1. Consider the MPC problem (3) along with
an interior-point method. Find a prediction horizon N
and an accuracy level ε that minimises Comp(ε,N), the
algorithmic complexity of the MPC problem, and results
in closed-loop stability of the system and a certain lower
bound on its performance, as defined in Definition 3.

Problem 1 in its current form is not directly amenable
to analysis. In the next section, we introduce additional
results that allow us to provide a solution to this problem.

3. OPTIMAL PREDICTION HORIZON FOR
MINIMISED ALGORITHMIC COMPLEXITY

In order to ensure real-time implementability one would
prefer the shortest possible horizon N such that a specified
performance level α is attained. For complete complexity
analysis, also the required suboptimality has to be taken
into account, which will be done in the following. We
first introduce a standard controllability assumption in the
context of MPC without terminal constraints, see Grüne
and Pannek [2017].

Assumption 4. The dynamical system is asymptotically
controllable with respect to the stage cost `(x, u) with rate
β ∈ KL, i.e. for all x ∈ X and all N ∈ N≥1, there exists
an admissible state-control sequence (ẑi, ûi), where ẑ0 = x
and ẑi+1 = f(ẑi, ûi), such that for i = 0, . . . , N − 1 the
following holds:

`(ẑi, ûi) ≤ β(`?(x), i),

where `?(x) is given by (1).

Assumption 5. The function β ∈ KL is linear in the
first argument and submultiplicative, i.e. β(`, i1 + i2) ≤
β(β(`, i1), i2) for ` ≥ 0 and i1, i2 ∈ N≥0.

Remark 6. Validity of Assumption 5 can readily be es-
tablished for exponential controllability or, with a certain
modification, for finite-time controllability, see Proposition
7 of Sontag [1998] for details.

Definition 7. We call the iteration (z,u,λ, s,y) of an
interior-point method a γ-suboptimal solution to (3)
with a degree of suboptimality γ ∈ [0, 1) if it satisfies
(6) for µ ≤ µγ , where

µγ =
γ

Nl
`(z0, u0). (8)

Assumption 8. The Hessian of the Lagrange function is
positive semi-definite in a neighbourhood of a local min-
imum of problem (3). This neighbourhood contains the
γ-suboptimal solution, given by (z,u,λ, s,y).

Remark 9. The requirement for the Hessian to be locally
positive semi-definite can be restrictive and might be
difficult to check in general, but is required for the local
duality theory to be valid, see Chapter 14.2 of Luenberger
and Ye [2008]. Note that it always holds for convex
problems.

Corollary 10. For a γ-suboptimal solution (z,u,λ, s,y)
the following is true under Assumption 8

N−1∑
i=j

`(zi, ui) ≤ VN−j(zj) + γ
N − j
N

`(z0, u0).

where j = 0, . . . , N − 1.

Proof. The dual problem for (5) is defined by changing
the order of min and max operators, its solution obeys the
weak duality property:

max
s≥0,λ

min
z,u

L(z,u,λ, s) ≤ min
z,u

max
s≥0,λ

L(z,u,λ, s),

As the stationary conditions are satisfied from the defini-
tion of the γ-suboptimal solution, for given values s and
λ the local minimum with respect to z and u is attained:

L(z,u,λ, s) = min
z,u

L(z,u,λ, s) ≤ max
s≥0,λ

min
z,u

L(z,u,λ, s).

Moreover, since (5) is true and f(zi, ui)− zi+1 = 0 holds:

L(z,u,λ, s) =

N−1∑
i=0

`(zi, ui)− sTi yi ≤ VN (x),

where
∑N−1
i=0 sTi yi = Nlµ ≤ γ`(z0, u0).

Similarly, for the tails of (z,u,λ, s,y) for j = 1, . . . , N −1
we establish:

N−1∑
i=j

`(zi, ui)− sTi yi ≤ VN−j(zj).

2

Now we define functions Bk as follows

Bk(`) :=

k−1∑
i=0

β(`, i)
(∗)
= νk`, (9)

where (∗) is true, for some positive constants νk, under
Assumption 5.

Proposition 11. Consider a γ-suboptimal solution, de-
noted by (z,u,λ, s,y), and let Assumption 4 be satisfied.
Then the following upper bounds for j = 1, . . . , N−1 hold:
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VN (z1) ≤
j∑
i=1

`(zi, ui) +BN−j(`
?(zj+1)).

Proof. To show validity of the proposition one can bound
the optimal cost by a sum of stage costs generated by the
following suboptimal control trajectory:

u1, . . . , uj , ûj+1, . . . , ûN ,

where u1, . . . , uj is obtained from the γ-suboptimal solu-
tion and ûj+1, . . . , ûN is an admissible control sequence,
which exists according to Assumption 4. The result then
follows using the definition of Bk in (9). 2

Proposition 12. Consider a γ-suboptimal solution to (3)
for a given state x, denoted by (z,u,λ, s,y), with γ ∈
[0; 1), and let Assumptions 4 and 8 be satisfied.

If there exists α > 0 such that for all x ∈ X the sum of
stage costs satisfies

N−1∑
i=0

`(zk, uk) ≥ VN (z1) + (α+ γ)`(z0, u0),

then the control law generated by the γ-suboptimal solu-
tion, i.e. u(x) = u0, satisfies the hypothesis of Theorem 1.

Proof. Since Assumption 4 holds, by Collorary 10 and
the hypothesis of the proposition we have:

N−1∑
i=0

`(zk, uk) ≤ VN (z0) + γ`(z0, u0),

N−1∑
i=0

`(zk, uk) ≥ VN (z1) + (α+ γ)`(z0, u0),

and hence the hypothesis of Theorem 1 is satisfied:

VN (z1) ≤ VN (z0)− α`(z0, u0).

2

Theorem 13. Consider a γ-suboptimal solution, denoted
by (z,u,λ, s,y), and the following optimisation problem:

α? = min
`0,...,`N−1,v

[∑N−1
i=0 `i − v
`0

− γ
]

subject to (`0, · · · , `N−1, v) ∈ C
(10)

where
C := {(`0, · · · , `N−1, v) ≥ 0 | for j = 0, . . . , N − 2 :

N−1∑
i=j

`i ≤ BN−j(`j) + γ
N − j
N

`0,

v ≤
j∑
i=1

`i +BN−j(`j+1)}.

(11)

If the optimal value, α?, is strictly positive, then for the
γ-suboptimal solution the hypothesis of Proposition 12 is
satisfied.

Proof. Consider a γ-suboptimal solution (z,u,λ, s,y)
with γ ∈ [0; 1). Choose `i = `(zi, ui) and v = VN (z1),
which are non-negative by definition. These choices of
`0, . . . , `N−1, v satisfy constraints (11) by Corollary 10 and
Proposition 11, as VN−j(zj) ≤ BN−j(`j). Next, we assume
that `0 > 0, as the hypothesis of Proposition 12 is trivially
satisfied if `0 = 0, since z0 = 0 by (2) in this case.

As α? is the minimal value of the objective function:∑N−1
i=0 `i − v
`0

− γ ≥ α?,

which by multiplying with `0 gives
N−1∑
i=0

`i ≥ v + (α? + γ)`0.

Since α? > 0 the hypothesis of Proposition 12 is satisfied.
2

Proposition 14. Let Assumption 5 be satisfied, then the
optimal value of the optimisation problem (10) is given by

α? = 1− γ − νN + γ − 1∏N
i=2

νi
νi−1 − 1

, (12)

where νi for i = 2, . . . , N are the constants from (9).

Proof. (sketch) The complete proof of this result is
rather long and technical. In the following, we will outline
the modifications which are needed compared to the proof
of Proposition 6.17 in Grüne and Pannek [2017] for γ = 0
to arrive at the required result.

We start by noting that imposing `0 = 1 in (10) is
equivalent to scaling of all `0, . . . , `N−1, v by a constant
and does not affect the objective function or constraints,
thus the problem is equivalent to

α? + γ = min
`0,...,`N−1,v

[N−1∑
i=0

`i − v
]

subject to (`0, · · · , `N−1, v) ∈ C, `0 = 1.

(13)

where γ was moved to the left side as it is a fixed constant.
This is a modified version of the problem given by equation
(6.17) of Grüne and Pannek [2017]: it has the same
objective function, but perturbed inequality constraints,
which however does not affect the arguments used to
choose a set of active constraints:

N−1∑
i=0

`i = νN + γ and v =

j∑
i=1

`i + νN−j`j+1,

where j = 1, . . . , N − 2, and the system of N linear
equations in N variables can be solved. However, using
linearity we can get the final result by just replacing νN
in the numerator with νN + γ in the formula with γ = 0
from Grüne and Pannek [2010]:

min
(`0,...,`N−1,v)∈C, `0=1

[N−1∑
i=0

`i − v
]

= 1− νN − 1∏N
i=2

νi
νi−1 − 1

,

and write

α? + γ = 1− νN + γ − 1∏N
i=2

νi
νi−1 − 1

.

2

Proposition 14 provides an analytical expression for the
lower bound on MPC performance in the sense of Defini-
tion 3. If (6) is solved for µ = ε, where ε = γ

Nl`
?(x), then

µ ≤ µγ , since `?(x) ≤ `(x, u) (see (1) and (8)), and thus
the solution is a γ-suboptimal solution. Problem 1 can now
be modified as follows.

Problem 2. Consider the MPC problem (3) along with an
interior-point method. Given a positive scalar αmin, find a
degree of suboptimality γ ∈ [0, 1) and the prediction hori-
zon N such that the algorithmic complexity Comp(ε,N)

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

6170



with ε = γ
Nl`

?(x) is minimised and the constraint α? ≥
αmin is satisfied, where α? is defined by (12).

For a path-following interior point method and convex
quadratic problems, Problem 2 can be cast as follows

min
N≥2,γ∈[0,1)

N1.5 log
( Nlµ0

γ`?(x)

)
s.t. 1− γ − νN + γ − 1∏N

i=2
νi
νi−1 − 1

≥ αmin
(14)

where `?(x) is given by (1) and x is the current state of
the system.

Note that for each N the objective function is strictly
decreasing in γ, thus the inequality constraint is always
active at the optimal solution (given a feasible solution
γ ∈ [0, 1) exists), i.e.,

γ?(N) = 1− αmin +
αmin − νN∏N
i=2

νi
νi−1

.

This optimisation problem involves the discrete decision
variable N , and one possible way to solve it is to start
with N = 2, compute and check whether γ?(N) ∈ [0; 1),
increment N and repeat. Since the objective function is
convex in N for all N ≥ N̄ , where

N̄ =
γ`?(x)

lµ0
e−

2
3 ,

the process is terminated when γ∗(N) ∈ [0, 1) and the
value of the objective function can not be reduced by
increasing N .

Although no theoretical guarantees for an optimal choice
of N in terms of complexity minimisation can be given
if (14) is applied to the analysis of nonlinear MPC, we
show in the following section that it still can serve as a
good indicator for a good choice of N . In any case, the
preceding analysis shows that if N is chosen according to
(14), the closed-loop system is asymptotically stable in the
(mildly) nonlinear case.

4. EXAMPLE: NONHOLONOMIC ROBOT

In this section, we apply the proposed framework to a
nonholonomic robot with the following kinematic model:

x+ =

[
x1
x2
x3

]
+ T

u1 sinc
(
u2T/2

)
cos
(
x3 + u2T/2

)
u1 sinc

(
u2T/2

)
sin
(
x3 + u2T/2

)
u2


where x = [x1;x2;x3] and u = [u1;u2] are state and input
vectors, which are subject to the following constraints:
x ∈ [−2, 2]

2 × R and u ∈ [−0.6, 0.6] × [−π/4, π/4], and
T is a sampling time. The stage cost is chosen as follows:

`(x, u) = q1x
4
1 + q2x

2
2 + q3x

4
3 + r1v

4 + r2w
4.

For this choice of `(x, u) one can ensure satisfaction of
Assumptions 4 and 5 by constructing suitable admissible
state and control trajectories. We use expressions for νi
for i = 1, . . . , N provided in Worthmann et al. [2015], and
note that the expressions rely on the partitioning of the
state space into two regions:

x ∈ R3 : `?([x1;x2; 0]) < ρ and `?([x1;x2; 0]) ≥ ρ,
with an additional tunable parameter ρ, which helps to
mitigate the nonoptimality of manoeuvres to some degree.

Further we fix x = [0; 1; 0]T , q1 = 1, q3 = 0.1, r1 =
q1T/2, r2 = q3T/2 and consider combinations of q2 =
2, 5, 10, 100 and T = 1, 0.5, 0.25, 0.1. In the complexity
minimisation problem (14) we choose αmin = 0.1, and also
include the aforementioned parameter ρ as an additional
decision variable. Furthermore, we consider µ0 = `?(x).
This choice is a heuristic (and randomly generated initial
guesses for a solution of (3), which we will use later, might
not satisfy the perturbed KKT system with this µ0), which
ensures that the objective function in (14) is independent
of x. Note that this choice of µ0 is not justified if the initial
guess is constructed using the solution from the previous
time step.

Optimal horizon lengths N? and corresponding optimal
degrees of suboptimality γ? are provided in Table 1 (and
will be denoted as circles on the figures later in the sec-
tion). The optimal values for the degree of suboptimality
(for q2 = 2, 5 and T = 0.5, 0.25) are plotted in Fig. 1,
where γ?(N) corresponds to the minimiser of (14) for a
given (fixed) N . The minimal values of N such that the
problem is still feasible with γ > 0 are found to be 21, 26
for q2 = 5, q2 = 2 (T = 0.5) and 41, 52 for q2 = 5, q2 = 2
(T = 0.25). As can be seen from Fig. 2, the optimal values
of N in terms of computational complexity are higher than
the minimal one required for asymptotic stability (i.e., for
feasibility of (14) with γ > 0).

Table 1. Optimal values for the length of pre-
diction horizon and degree of suboptimality

T q2=2 q2=5 q2=10 q2=100

1 14, 0.125 11, 0.113 10, 0.104 9, 0.060
0.5 28, 0.087 22, 0.082 20, 0.082 19, 0.101
0.25 55, 0.064 43, 0.071 40, 0.073 37, 0.072
0.1 140, 0.065 107, 0.061 97, 0.059 91, 0.065

20 30 40 50 60 70
0

0.2

0.4

N

γ
?
(N

)

q2=5, T=0.5
q2=2, T=0.5
q2=5, T=0.25
q2=2, T=0.25

Fig. 1. Optimal values for the degree of suboptimality

To demonstrate the applicability of the proposed frame-
work, we solve the MPC problem for the given system at
x = [0; 1; 0]T multiple times, initialising the solver with
a random initial guess, and measure the computational
efforts as a product of the number of iterations and the pre-
diction horizonN . We use a nonlinear primal-dual interior-
point solver, namely IPOPT, see Wächter and Biegler
[2006] for details on its implementation, to measure the
number of iterations required to solve the MPC problem to
the desired degrees of suboptimality γ?(N). The optimal
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values of Comp(γ?(N), N) for different prediction horizon
lengths are provided in Fig. 2, and the mean values and
standard deviations of the computational efforts during
the experiment are plotted in Fig. 3.
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Fig. 2. Computational complexity over prediction horizon
length for different system parameters.
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Fig. 3. Measured computational efforts over prediction
horizon length for different system parameters.

While the upper bound on the number of iterations (up
to multiplication by a constant), utilised in (14), was
established for linear systems only, the shape of the mea-
sured curves still resembles the ones obtained by means
of analysis, as is evident from Fig. 2 and Fig. 3. Hence,
although optimality of N?, computed via (14), can not
be guaranteed, these values are close to the prediction
horizon lengths, which minimise algorithmic complexity in
the numerical experiment. This means that computing N?

via (14) is well suited also for this nonlinear example. Fur-
thermore, note that, as discussed in the previous section,
the choice of γ? preserves stability, despite the lack of op-
timality guarantee in terms of minimising computational
complexity.

5. CONCLUSIONS

We proposed a framework for algorithmic complexity min-
imisation for a family of MPC solvers by incorporating
suboptimality considerations into the MPC stability anal-
ysis. The framework is to be used during the design and
verification of MPC schemes without terminal constraints

with the interior-point method chosen as a solver. While
rigorous guarantees on an optimal choice of the prediction
horizon length have been derived for convex problems, a
numerical example demonstrates that the framework and
its outcomes remain applicable even when the practical
implementation of long-step primal-dual interior point al-
gorithm, namely IPOPT, is used for solving a nonlinear
MPC problem. In particular, our main result shows that
one might decrease computational efforts associated with
MPC control by increasing the prediction horizon length
above the minimum stabilising value and scheduling early
termination of the algorithm at a suboptimal solution.
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