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Abstract: Theoretical developments in the field of quantum optics and quantum supercon-
ducting electrical circuits involving continuous measurement based feedback control as well
as coherent control are an important prerequisites for advances in the domain of quantum
technology. Within these perspectives, this paper considers positive real properties for a class
of quantum systems whose quantum stochastic differential equation model involves annihilation
operators only and then relates them to corresponding bounded real properties and consequently
to physical realizability conditions developed earlier by the authors. Based on the positive real
properties of these quantum systems, it is anticipated that it is possible to use the Brune
algorithm in order to find an electrical circuit that can physically implement these quantum
systems. This theory, in the case of one-port circuits, may be useful for the implementation of
microwave circuits related to quantum filters found in the field of quantum computing.
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1. INTRODUCTION

Quantum computing is a new and revolutionary technol-
ogy that aims to store and process information based on
the principles of quantum physics. The main advantage of
quantum computing is that it can handle certain types of
hard problems that classical computers cannot. However,
the hardware implementation of quantum algorithms is
still under development. More explicitly, the main idea
behind quantum computing is to remove the binary bits
of classical computing and use instead their corresponding
quantum bits, which are referred to as qubits. A qubit is
a quantum system for which it is possible to prepare and
control its states with the possibility of implementing them
in large numbers and then couple them to one another in
a predefined manner.

Many technologies for building quantum computers have
been proposed. However, one of the most successful ones
involves super-conducting quantum circuit technology, op-
erating at extremly low temperatures. This enables super-
conducting qubits function in a way that allows the build-
ing of highly scaled complex quantum systems. These
devices have indeed many advantages over other tech-
nologies. They can be fabricated by applying lithographic
methods, and their physical properties can be managed at
the design and implementation phases. In addition, their
control is relatively simple, based mainly on high speed
(GSample/sec) microwave signals that can be produced
using electronics at the room temperature. Moreover, they
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can be cascaded with the entanglement necessary for
quantum logic, by using microwave signals distributed via
low-loss super-conducting transmission lines or resonant

cavities Schoelkopf (2016).

Recent research has improved significantly the critical per-
formance metrics for these qubits, especially the lifetime
over which they can faithfully store a bit of quantum infor-
mation Schoelkopf (2016). This allows for a sufficiently low
error rate to enable scaling. Although these developments
are considered to be important, other significant techni-
cal challenges remain, limiting the development of larger
quantum computers Schoelkopf (2016). In fact, because
the quantum information in these systems is stored by the
presence or absence of a single quantum of electrical energy
in a resonant circuit element, it is necessary to avoid many
subtle types of dissipation that can cause decoherence
Schoelkopf (2016).

For example, in quantum integrated circuits, it is necessary
to take extreme caution in order to avoid any small level
of radiation, cross-talk in circuits, and the influence of
microscopic amounts of lossy materials or defects. It is
important to mention here that in contrast to standard in-
tegrated circuits, quantum devices will achieve increasing
complexity and scaling by developing robust methods for
fabrication on a relatively large (millimeter to centimeter)
scales rather than by extreme miniaturization Schoelkopf
(2016).

Within this perspective, microwave circuits for quantum
systems are therefore an area of research that needs to
be developed to facilitate advances in super-conducting
quantum processors. For example, a surface code has
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Fig. 1. (a) LC oscillator. (b) LC oscillator connected to an
admittance Y (w) in parallel with the circuit.

been designed in order to realize fault-tolerant quantum
computers Kitaev (2003). This type of surface code is an
error correction code with a threshold error value around
1%. This is achievable for locally coupled qubits. However,
the configuration of the surface code is not an easy task.
This has been reported to be best achieved by using high
Q-factor resonators in addition to other components: e.g.,
see DiVincenzo (2009). One attempt in that direction has
been mentioned in Houck et al. (2008) where microwave
filters have been used in the quantum processors in order
to control the spontaneous emission rates of qubits. Within
these perspectives, some other research activities have
been carried by Bronn et al. (2015), Sete et al. (2015)
which have led to a new design of a certain type of filters
namely, ‘Bucy filters’. These types of filters are capable
of maintaining a measurable coupling of qubit resonators
while suppressing their emissions spontaneously. These
results were crucial in the development of multi-mode
structures for microwave circuits. In fact, these modes were
used to engineer the qubit interactions along with filters
designed in order to achieve high-fidelity of two-qubits
gates McKay et al. (2015).

In this paper, we use a Hamiltonian framework, which
provides a precise path to go from the classical to the
quantum description of a given system Vool and Devoret
(2017). Tt is shown how it can be applied to electrical
circuits by means of the positive real properties of the
class of quantum systems under consideration Vool and
Devoret (2017). Although it is straightforward to apply
the Hamiltonian framework to the LC oscillator of Figure
1, it is much more tedious to do so for more complicated
circuits Vool and Devoret (2017).

This framework allows for the establishment of a theoret-
ical relationship between microwave circuits as discussed
earlier with the positive real properties of the class of anni-
hilation operator only systems developed by the authors.
This will consequently result in a corresponding physical
implementation of the class of annihilation operator only
systems in terms of classical electrical circuits leading to
the construction of microwave circuits.

2. STATE-SPACE DESCRIPTION OF A CLASS OF
ANNIHILATION OPERATOR LINEAR QUANTUM
SYSTEMS

In the physics community, many models have been pro-
posed in order to mathematically represent linear quantum
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systems, such as those represented by using linear quan-
tum differential equations Gardiner and Collett (1985),
Gardiner and Zoller (2000), Hudson and Parthasarathy
(1984). These types of systems are found in the domain
of quantum optics. The quantum noise in these types of
systems is used to model the effect of boson fields as well
as heat baths along with optical and phonon fields. The
models are obtained by taking expectations in order to
get a master equation and then using specific Lindblad
generators along with some positive maps in order to
complete the models James (2005). By that means, linear
and nonlinear quantum differential equations are derived.
In that case, many systems in quantum optics can be
defined by means of differential equations; for instance,
see Walls and Milburn (2008), Gardiner and Zoller (2000)
and Bachor and Ralph (2004).

An important type of quantum system can be described
by using creation and annihilation operators in the Heisen-
berg picture involving harmonic oscillators that are cou-
pled to optical fields; for instance, see Wiseman and Mil-
burn (2010), Walls and Milburn (2008) and Gardiner and
Zoller (2000). A specific type of quantum systems are
governed by Wiener fields (e.g.; see James et al. (2008)).
In that case, the question of whether the quantum system
in question can be represented by a quantum harmonic
oscillator is related to the physical realizability conditions
that were developed in James et al. (2008). Moreover,
in Maalouf and Petersen (2009), Maalouf and Petersen
(2011b) and Maalouf and Petersen (2011c), the lossless
bounded real property of annihilation operator quantum
systems has been connected to the physical realizability of
these types of systems. The annihilation operator quantum
systems considered in this paper can be represented by us-
ing quantum probability theory Bouten et al. (2007) as in
Maalouf and Petersen (2011b) and Maalouf and Petersen
(2011a). In that case, the quantum differential equations
(QSDEs) describing the systems under consideration are
of the form

da(t) = Fa(t)dt + Gdw(t); a(0) = ag
dy(t) = Ha(t)dt + Jdw(t) (1)

where J € C"v>*™w H € C™w*™ [ € C"*", G € C"*™w,
Also, ny, ny, 1 are positive integers.

In addition, the vector of annihilation operators a(t) is
a(t) = [a1(t)---an(t)]". In that case, w represents the
input fields and has the following partition:

dw(t) = By (t)dt + di(t). 2)

Here, (.,(t) and w(t) are a self-adjoint adapted vector
and the quantum noise signal respectively (Please refer
to Bouten et al. (2007), K.R.Parthasarathy (1992) and
Hudson and Parthasarathy (1984)). The Ito table of the
quantum noise w(t) is

di(t)diw' (t) = Fydt (3)

(see Belavkin (1992) and K.R.Parthasarathy (1992))
where F; is a Hermitian positive definite matrix. Here,
the notation T represents the adjoint transpose vector of
operators. Also, the noise components satisfy the following
commutation relations:
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[di(t), dw* ()] = di(t)da' (t) — (dw* (t)daT ()T
= Tyt (4)

Here, T, is a Hermitian complex matrix. The signals
involving noises are operators on a Fock space (e.g; see
Belavkin (1992) and K.R.Parthasarathy (1992)). The pro-
cess f[,(t) represents the variables of fields interacting
with the system (1). Hence, £,,(0) should be an operator
on a Hilbert space that is different from that of ag and
the noises. The assumption is made that 3, (t) and a(t)
commute with each other for any ¢ > 0. In addition, being
an adapted field, §,,(t) and dw(t) commute together for
all t > 0. The following assumption is made on the system
(1): ny = ny. Equation (1) is an annihilation operator
quantum differential equation where the integration is
considered to be quantum Ito integration with respect to
dw(t). Note that a(t) is adapted, and the commutator of
dw(t) with a(t) is zero. If B, (t) represents the currents and
y(t) represent the output voltages of the quantum network
in question then n, = n, and the resulting impedance
transfer function is:

Z(s)=J+ H(sI — F)'G. (5)

It is important to mention here that complex realizations
are considered such that the matrices J, H,G, F are all
complex.

3. POSITIVE-REAL PROPERTIES FOR
ANNIHILATION OPERATOR QUANTUM SYSTEMS

An important question arises as to whether a given
impedance matrix Z(s) is physically realizable. For the
case of a one-port network, Brune in Brune (1931) showed
that if Z(s) satisfies some Positive Real (PR) conditions,
then it is possible to find a physical circuit having an
impedance of Z(s) across its terminals .

In an independent approach, the authors developed PR
conditions that correspond to the quantum system given
by (1). These PR conditions were then related to the
Bounded Real conditions developed in Maalouf and Pe-
tersen (2011a). Then in a related paper, the authors used
the Brune algorithm proposed in Brune (1931) in order
to find an electric circuit equivalent to the system given
in (1), which is crucial in the development of microwave
circuits for such quantum systems. By that means, in
this paper, the PR conditions developed for the system
in (1) are illustrated along with their relationship to the
bounded real properties for the system in question and
how they relate to the physical realizability conditions
proposed in Maalouf and Petersen (2011a). Then, the
authors showed how these PR conditions relate to the
Brune algorithm that is used to construct an equivalent
electrical circuit made up of resistors, inductors, capacitors
and transformers that describes the annihilation operator
quantum system as given by (1).

3.1 Positive Real Lemma

Theorem 1. Anderson and Moore (2007) Let Z.(.) be an
ny X n, rational function matrix of the complex variable
s, where Z.(00) < oo. Also, assume that Z.(s) has
a minimal realization {J, H,G, F}. Then the existence
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of a P, (Hermitian positive definite matrix) along with
matrices L and W, satisfying

P,F+F'P,=—LL";
P.G = H — LW,;
wiw,=J+Jt (6)
is equivalent to Z.(s) being positive real.

3.2 Positive Real Lemma in the Lossless Case

For the case when Z,(s) is lossless, the matrices L and W,
become zero. The corresponding Positive Real Lemma is
referred to as the Lossless Positive Real Lemma as follows:

Theorem 2. Anderson and Moore (2007) Let Z.(.) be an
ny X ny rational function matrix of the complex variable s,
with Z.(00) < co. Also, assume that Z.(s) has a minimal
realization {J, H, G, F'}. Then Z.(s) being lossless positive
real is equivalent to the existence of a positive definite
Hermitian matrix P, such that

P,F+F'P, =0;
P,G=H,
J+Jr=o. (7)

4. PHYSICAL REALIZABILITY AND THE LOSSLESS
POSITIVE REAL PROPERTY

4.1 The relationship between (S,L,H) properties and QSDEs

The type of annihilation operator quantum systems con-
sidered in this paper of the form (1), could be also de-
scribed in terms of a Hamiltonian operator, a coupling
operator and a scattering matrix. Within this perspective,
the type of quantum systems considered in this paper can
be represented by G, A (variable space) and H¢ (Hilbert
space). The Hamiltonian H € Ag describes the energy of
G. The quantum stochastic process W is composed of m
field channels which drive the system (1)

Wi
W = : . (8)
W,

The process W has the following second order Ito prod-
ucts:

dW;(t)dW;(t)*
AW, () dW; (t
dW;(t)dW;(t) =

dW;(t)*dW;(t)* =0
where W;(t)* is the adjoint of W;(t) defined on a Fock
space. This means that the process W is canonical. The
scattering matrix couples the different fields together. In
most cases, we let S = I. On the other hand, coupling

between the fields and the system is represented by means
of the coupling operators L as follows

Ly
L=| : (9)
Ly,

5ijdt;
0;
0

—~~

)
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where L; € Ag. In the notation G = (S, L, H), S, L are the
scattering matrix and the coupling operator respectively
whereas the system’s Hamiltonian is given by H. The
corresponding Schrodinger equation with U,(0) = I and
S =1 is as follows:

1
dU,(t) = {dWTL — Ltdw — 5LTLdt - int} U,(t). (10)

Equation (10) specifies the motion of the system in ques-
tion evolving unitarily with respect the principles of quan-
tum mechanics. In that case, the notation T refers to
the Hilbert space adjoint. Given an operator a; € Ag,
its Heisenberg evolution is given by a;(t) = ji(a;) =
U, (t)*a;U,(t) and satisfies

dai(t) = (Lo (t)(ai(t)) —ias(t), H(t)])
+ [L#)T, ai(t)] dW ().

Hence, [A, B] refers to the commutator of two operators.
In equation (11),

(11)

1 1
In this paper, L(¢) does not depend on creation operators
a;(t)* but depends only on the annihilation operators a; ().
Therefore, [a;, L] = 0 and then
1

Li(a;) =5 (LT, a;] L. (13)
The system’s generator G is given by
gg(ai) = 711 [CLMH} +£L(al) (14)
When a is a vector of n annihilation operators a,, ..., an,,
we can write
a= ;Z , (15)
Lr.(a) = % [LT,a;] L (16)
and
gGi (a) =—i [aiv H} + L:Li (a) (17)
Therefore, we can write
dai(t) = (Lr,(t)(ai(t)) —ilai(t), H(t)])
+[L#)T, ai(t)] aW (¢)
and
da(t) = (LL(t)(a(t)) —ila(t), H(t)])
+ [L(t)T, a(t)] dW (t)
where
‘CLl (a)
Lr(a) = : (18)
Ly, (a)
and
[ah H]
o= | (19)
[an, H]
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Let

and

|
t~
=
S

(22)
Hence,

da(t) = A(a(t), a(t))dt + B(a(t),a(t))dW (t)
da(t)* = A(a(t),a(t)")*dt + B(a(t), a(t))*dW (t)*.

*

The notation * and ' are the complex conjugate and the

complex conjugate transpose respectively. Also, y(t) =
Jt(W (1) = U (t)*W (t)U,(t) with

dy(t) = C(a(t))dt + D(t)dW (t)
dy(t)* = C(a(t))*dt + D(t)"dW ()"
t

where D(t) = I and C(a(t)) = L(t). Hence, the following
(QSDEs) are a description of the system G

da(t) = A(a(t), a(t)T)dt + B(a(t), a(t)T)dW(t),
dy(t) = C(a(t), a(t)")dt + D(a(t),a(t)")dW (1) (23)
where a(t) = | % A(a,at) = A(a,aT)* “a,a") =
h (t) |:a*:|7 A( 9 ) ‘|r:A(a,CLT :|a C( 9 )
C(a) _ | B(a,a") 0 _ B
{C(a)*}’ B(a,aT) { 0 B(a7aT) }, D(t) =
D(t 0 - dW (t

Since in this paper, we are mainly interested in annihila-
tion operators systems only, the system in (23) is described
by

da(t) = A(a(t),a(t)")dt + B(a(t),a(t))dW (t);

dy(t) = C(a(t),a(t))dt + D(a(t),a(t))dW(t) (24)
where
A(a(t),a(t)") = L (a) —ila, H] = La(a);
B(a(t),a(t)") = [LT,a] S;
C(a)=L;
D(t) =S,
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In that case,

Lr(a) = %L* [a, L] + % (LT, a] L. (25)

For the case when L = Aa, H = a'Ma, (A is n, x n
matrix and M is a n X n Hermitian matrix) (see Maalouf
and Petersen (2011b), Maalouf and Petersen (2011a) for
instance), we can write:

Lr(a)= % [aTAT, a] Ag;

= JAT@aAa.

5 (26)

Also,

(27)
Hence,

1
= —§AT®aAa —i0O.,Ma;
= —%AT@GAa —i0Q,M | a. (28)

Since A, M are constant matrices, then, we can write
A(a) = Fa where F = —%AT@@A —10,M. Also,

B(a,a’) = [L',a] = [a'AT,a] S

=—-0,ATS =G. (29)
In addition,
C(a) = L=Ag;
=Ha=G (30)
with H = A. Also,
D(t) = S. (31)

Therefore, the annihilation operator quantum system
given by (1) is given by:

da(t) = Fa(t)dt + Gdw(t); a(0) = ag
dy(t) = Ha(t)dt + Jdw(t)
where
F= —%A Ou A — iO,M;
G=—0,A"S;
H=A;
J=D=8=1 (32)

4.2 Transfer Function for a Quantum System Satisfying
The Physically Realizability Condition

As mentioned earlier, the transfer function for (1) is given
by:

Z.(s)=J+ H(sI — F)"'G. (33)
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When the system (1) is physically realizable then condi-
tions (32) are satisfied with

L = Aa (L is the coupling operator);
H =a'Ma; (H is the Hamiltonian);

S = I(scattering matrix) (34)

Therefore, the quantum system’s transfer function is as
follows:

-1
Za(s) =8 —A (sI + %ATQaA + i@aM) 0,ATS. (35)

4.8 Transfer Function of a Bounded Real Annihilation
Operator Linear Quantum System

The following theorem provides the form of the transfer
function of a bounded real annihilation operator linear
quantum system.

Proposition 3. A transfer function matrix Z,(s) corre-
sponding to a lossless bounded real quantum system
(S,L,H) of the form (1) can be represented in the fol-
lowing fractional form:

Za(s) = (0.7 = Zu(s)) (O, + Zuls)) 'S (36)

where

1
Sa(s) = FA(s] + iQ, M)A (37)
Remark: In this paper, we will be interested in the question
of when the transfer function (37) is physically realizable.

4.4 Lossless Positive Real versus Lossless Bounded Real

The following theorem provides a relationship between a
lossless bounded real and a lossless positive real transfer
function for a minimal annihilation operator quantum
system (1).

Theorem 4. Suppose that the quantum system (1) repre-
sented by (S, L, H) is minimal. Then the following hold:

(1) Suppose X.(s) = Js, + Hs, (s — Fx,) Gy, is
lossless positive real with (Jg, + J;a) nonsingular.
Then, the transformed transfer function: Z,(s) =
M(Za)(s) = (651 = Ba(5))(O7" + Ta(s))7'S s
lossless bounded real.

(2) Suppose Z,(s) is a lossless bounded real transfer
function Z,(s) = J,, + H. (sl — F,,)"'G,, with
det(I+ Z,(s)) # 0 and (J,, +J! ) nonsingular. Then
the transformed function: ¥,(s) = M(Zy(s))(s) =
(O, —Z,(s)) (O, 1+ Z,(s)) ! is lossless positive real.

A Relationship Between Physical Realizability And Loss-
less Positive Real Properties  The following theorem il-
lustrates a relationship between the physical realizability
condition for quantum systems involving annihilation op-
erators only and the lossless positive real property.

Theorem 5. Suppose that the quantum system (1) pre-
sented by (S, L, H) is minimal. Then, the system (1) is
physically realizable if and only if the transfer function
matrix system having ,(s) defined in (37) is lossless
positive real and J = 1.
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Theorem 5 follows from Theorem 4, Theorem 3 and
Theorem 6.6 in Maalouf and Petersen (2011b).

Remark: Note that by using the bounded real properties
of the impedance Z,(s) as defined in (35), it is possible
to implement physically the linear quantum system (1) by
means of quantum optical cavities. Whereas, by using the
positive real properties of the impedance X, (s), it is possi-
ble to implement physically the linear quantum system (1)
by means of electrical circuits using the Brune algorithm
(to be published in a separate paper). Both Z,(s) and
Y. (s) are related by means of a linear transformation as
given by Theorem 4. This justifies the contribution of
this paper in the implementation of microwave circuits
involving quantum filters that are used in the field of
quantum computing.

5. CONCLUSION

In this paper, the positive real properties (lossless positive
real) for a class of annihilation operator linear quantum
systems have been developed and related to the physical
realizability conditions developed earlier by the authors.
This relationship is fundamental in order to be able to
physically implement this class of quantum systems by
means of superconducting microwave circuits.
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