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Abstract: A new approach to parameter estimation of dynamical models is proposed.
Its objective is to approximate at best the different dynamics of the system, instead of
approximating at best the system output in time. This leads to a weighting of the error
depending on the samples location in the state-space and input space. A possible implementation
is proposed and applied for estimating the parameters of a two degrees of freedom vehicle
dynamics model. The proposed approach is shown to better approximate the fast transient
dynamics, at the cost of a degraded performance on steady-states.
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1. INTRODUCTION

System identification aims at modelling dynamical systems
using measurement data. It can be divided into differ-
ent steps: designing the experiment, collecting the data,
choosing the model structure, choosing a fitting criterion
to assess the model quality, optimising the model param-
eters and possibly the model structure according to this
criterion (Ljung (1999), Walter and Pronzato (1997)). This
criterion is often constructed as a sum of errors between all
samples and model outputs (Åström and Eykhoff (1971)),
hence the criterion evaluates how closely the model output
fits the measurements in time (since measurements are
usually obtained periodically in time). However, in most
cases all samples do not have equal importance, especially
if the measurements are obtained from experiments with
input signals not specifically designed for system identifi-
cation. To address this issue, one can compute the criterion
as a weighted sum, for example Walter and Pronzato
(1997) consider the case of measurements obtained using
a step input: weighting the samples by t(k) favours the fit-
ting of the steady state, while weighting by 1/t(k) favours
the fitting of the transient. In essence, this simple example
is close to the approach presented in this paper.

As mentionned above, classical methods use a quality
criterion to evaluate how closely the model output fits the
measurements in time. A different approach is proposed,
where the model quality is assessed by the fit between
the model behavior and the system behavior observed on
the measurements. The concept of model behavior is from
Polderman and Willems (1997). The proposed approach
leads to a similar objective function as usual approaches
but with an additional weighting of measurement samples
depending on their location in the state and input space.
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In the automotive field, simulation of vehicle dynamics
is increasingly used to assess the performance of a ve-
hicle. To have meaningful simulations, the model needs
to behave as closely as possible to the real vehicle. The
model parameters for a particular vehicle are obtained
from various sources (test bench, suppliers, other depart-
ments, etc.). It is observed that simply inserting these
parameter values into the model does not yield simulations
close enough to test-track measurements, especially for
aggressive sollicitations (e.g. for electronic stability con-
trol (ESC) performance evaluation). This error is mostly
attributed to the parameter values being imprecise, and
a specific attention is devoted to the tyres. Tyre model
parameters are usually obtained from bench tests, which
are not sufficiently representative of the tyre behavior onto
a vehicle on the road (Montrouge et al. (2018)). Also
other parameters (e.g. inertia, mass, position of center
of gravity, etc.) depends on the operating conditions of
the vehicle (number of passenger, payloads, etc.). For all
these reasons, a parameter tuning step is done to improve
the model accuracy, based on test-track measurements
(Porcel and Macchi (2012)). However, signals obtained
from test-track measurements only have few samples at
the operating points of interest. This motivates for the
study of parameter estimation algorithms that are robust
to insufficient model structure and that are efficient even
with measurement signals having very few samples at the
operating conditions of interest.

The paper is structured as follows: first, the parameter
estimation framework is introduced and some relevant
methods are reviewed. Then the proposed approach is
detailed, leading to a parameter estimation method. The
difference between the proposed method and classical ones
is discussed on an example. Finally, a conclusion and
perspectives are drawn.
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2. PARAMETER ESTIMATION

2.1 Model

The model class considered here is nonlinear deterministic
time-invariant models. Such models can be described in
the continuous-time state-space form

ẋ(t) = f(x(t), u(t), θ) (1)

y(t) = h(x(t), θ) (2)

Also the discrete-time form can be used

x(k + 1) = fd(x(k), u(k), θ) (3)

y(k) = h(x(k), θ). (4)

where x(k) ∈ Rn is the state vector, u(k) ∈ Rm is the
input vector, y(k) ∈ Rp is the output vector, and θ is a
constant parameter vector.

In this paper the following assumption is made: all states
are measured, the output function is

y(t) = x(t). (5)

This assumption permits to easily develop the proposed
approach without additional complexity related to an
observer synthesis. The general case where the output
function has the form (2) will be dealt with in future
work. It is noted that using this assumption is the same
as considering the model to be a nonlinear autoregressive
exogenous model (NARX) since replacing y(k) = x(k) in
(3) yields

y(k + 1) = fd(y(k), u(k), θ). (6)

2.2 Parameter estimation framework

The problem of parameter estimation can be seen as an
optimisation problem. An objective function J(θ) is con-
structed to evaluate how closely the model approximates

the system, and the optimal parameter estimate θ̂ is ob-
tained by minimizing J(θ). Depending on how the error
between the model output and the system measurements
is defined, and on the assumptions made by the model, dif-
ferent approaches can be employed to tackle the problem
of parameter estimation. However, usual approaches have
a common feature: the error is considered as a function
of time, and the objective function is constructed as the
integral over time of some appropriate measure of this
error

J(θ) =

∫ T

0

`(e(t, θ))dt (7)

where e(t, θ) is the error between the model outputs and
the measurements, ` is a suitable operator expressing how
the error penalises the cost function J(θ), and T is the
time length of the measurements. For discrete samples
uniformly taken over time, the objective function becomes

J(θ) =

N∑
k=1

`(e(k, θ)) (8)

where e(k, θ) is the error between the model output and
measurements for the k-th sample, N is the total number
of samples.

2.3 Prediction error

An often used error definition for e is the prediction error,
especially for transfer function and NARX models (Ljung

(2002)). It compares the one-step ahead prediction of the
model with the measurements, using the error

e(k, θ) = y(k)− fd(y(k − 1), u(k − 1), θ) (9)

= y(k)− ypred(k, θ) (10)

where ypred(k) is the model output prediction at time k.
The prediction error method is depicted in Fig. 1, the
blocks z−1 delay the signal by one sample period. Once all
errors e(1), . . . , e(N) are obtained, the objective function
is evaluated and the optimisation algorithm updates the
parameter vector θ.
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Optimisation

u

z−1
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+
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−
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J(θ)

θ

z−1

Fig. 1. Scheme of the prediction error method

In the special case where the system is the model plus a
gaussian noise η ∼ N (0, σ) on its output, the maximum
likelihood approach can be used to derive an appropriate
objective function

J(θ) =

N∑
k=2

(
y(k)− ypred(k, θ)

)2
σ2

. (11)

In practice the difference between the model and the
system is usually different from a gaussian noise, however
the objective function (11) is still often used. In the
particular case where the output is linear in the parameters
to estimate, the parameter vector θ is directly obtained
using the least-square method.

The prediction error mehod can be interpreted as follow :
the objective is to find θ such that the model (6) agrees
at best with the measurements. One way to achieve this
is to input the measurements in (6) and optimize θ so the
equality in (6) is as verified as possible. To see how well
the equality is verified, the error (9) is computed as the
difference between the left and right term of (6).

If the continous model (1) is used, for example if the
state derivative is measured or approximated, as in Swartz
and Bremermann (1975), the equation error method
amounts to minimizing the difference between ẋ(k) and
f(x(k), u(k), θ) for all samples k = 1, . . . , N . The relation
between the continuous and discrete cases can be observed
using the Euler discretization, where (1) is approximated
by

x(k + 1)− x(k)

t(k + 1)− t(k)
= f(x(k), u(k), θ) (12)

x(k + 1) = x(k) + (t(k + 1)− t(k)) f(x(k), u(k), θ)︸ ︷︷ ︸
fd(x(k),u(k),θ)

, (13)

hence assessing how well the equality (1) or (3) is verified
amounts approximately to the same. Note that here we
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used the notation x instead of y as the two quantites are
considered to be the same in this paper.

3. PROPOSED METHOD

In this approach, the interpretation given to the parameter
estimation problem is “the model should approximate at
best the system behavior”, and not “the model should
approximate at best some specific measurements in time”.
While classical objective functions equally weights all
samples (for measurements uniformly sampled in time),
the proposed method attempts at equally weighting all the
different dynamics observed on the measurement data. To
do this, weights are added, that are function of the samples
location in the state-space and input space. The objective
function becomes

J(θ) =

N∑
k=1

w(k) `(e(k)). (14)

The scheme of the method is described in Fig. 2.
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Fig. 2. Scheme of the proposed method

3.1 System behavior approximation

According to Polderman and Willems (1997), the behavior
of a dynamical system is defined as the set of signals
compatible with the laws governing the system. Similarly,
the behavior of a model is defined as the set of signals
compatible with the laws governing the model. In order
for the model behavior to be as close as possible to the
system behavior, the set signals compatible with the laws
governing the model should be as close as possible to
the set of signals compatible with the laws governing
the system. Hence, the laws govering the model should
be adapted to be as compatible as possible with the set
of signals measured on the system. In the context of
parameter estimation, the adapation of the laws governing
the model is done by optimising the parameter vector θ.

In the case of a deterministic state-space model of the
form (1) with y = x, the signals corresponds to (x, u),
while the laws governing the system corresponds to f(·)
parameterized by θ. The set of signals compatible with
the model, that is the behavior of the model, is

Bm(θ) = {(x, u) | ẋ = f(x, u, θ), x ∈ Rn, u ∈ Rm} . (15)

An error function which can be evaluated at different
operating points (x, u) can be constructed to assess how

well the laws governing the system are compatible with the
set of measured signals. The parameter estimation problem
becomes

θ̂ = arg min
θ

∫
Rm

∫
Rn

`(e(x, u, θ)) dxdu (16)

where ` is a suitable measure expressing how the error
penalises the cost function. The error e(x, u, θ) gauges
the error between the model evolution and the system
evolution at the operating point x and for the input u.

3.2 Weights computation

In practice, the integral in (16) cannot be evaluated, as
the measurements are a set of finite samples and are not
uniformly distributed over the state-space and input space.
Measurement samples are usually collected uniformly over
time, for a particular initial state of the system and a
specific signal input. Consequently, some regions of the
state-space and input space are rich in samples, while other
only have few, and many do not contain any sample. In
practice, to construct an objective function that addresses
the problem of approximating the system behavior, the
samples are weighted depending on the sample density in
the state-space and input space. The samples in densely
(resp. sparsely) sampled regions are less (resp. more)
weighted. Different methods are tried out to quantify the
measurements density around a given sample, they are
presented here.

Slicing into a grid. The state and input space is sliced
into a grid (Fig. 3 (a)). Each cell of the grid is considered to
represent different dynamics of the system. The weights on
each sample are computed such that the different grid cells
crossed by the system trajectory are equally represented
in the objective function. This leads to the weights

w(k) =
1

# samples in the same cell
(17)

where the denominator is the number of samples in the
same grid cell as the k-th sample. For example in Fig. 3
(a), the weight of the three samples that are in the same
cell is 1

3 , while the sample alone in its cell have a weight
of 1.

The user has to choose the grid scale. Note that refining at
the extreme the grid scale or on the opposite having a way
too large grid scale yields a similar objective function. In
the case there is only one region, each sample is weighted
by 1

N . In the case of an excessively refined scale, each
sample ends up in a different region (it is assumed not
two are exactly equal), hence each sample is weighted by
1. The two objective functions are proportionnal, so the

obtained θ̂ are the same. It is necessary to find a balance
between these two extreme cases.

A slightly less complete variant is to use only one sample
per region. Some information is lost since not all mea-
surements are used, but it has the advantage of being
faster to compute since the model is only evaluated once
for each grid cell. This is especially interesting if samples
close to one another do not add much information (low
noise and disturbances, good enough model structure). It
is a compromise between computational cost and accuracy.
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Fig. 3. Illustration of the different weighting techniques: (a) grid in the state and input space, (b) ellipses around the
samples, (c) distances between samples. Samples are represented as •.

One drawback to this method is the absolute positionning
of the grid in the state and input space: if the grid is only
slightly shifted, it changes the distribution of the samples
in the cells. For example, slightly shifting the grid in Fig. 3
(a) to the left would yield the rightmost sample to belong
to a different grid cell, changing the weights.

Ellipses around the samples. A different method which
do not have the problem of being sensitive to an absolute
positioning is detailed here. Similarly to the previous
approach, the samples are weighted by

w(k) =
1

# samples in the ellipse
(18)

where the denominator is the number of samples in the
ellipse drawn around the k-th sample (Fig. 3 (b)). The
axes of the ellipse are along the state and input dimensions,
and the length of the axes are chosen as a fraction (user-
defined ratio) of the total variation of the measured data
along each dimension. The two extreme cases of having too
large ellipses or too small ones yields the classical objective
function, as all sample have same weight (similarly to the
grid method).

Distances to all samples. This method does not require
parametrisation by the user, contrary to the other ones. In
order to measure how different two samples are, the 2-norm
is used in the joint state-space and input space (Fig. 3 (c)).
Since numerical values of the different states and inputs
are expressed on different scales as they represent different
physical quantities, some scale factors are introduced. The
distance between two samples (x(k), u(k)) and (x(j), u(j))
is defined as

d(k, j) =

√√√√ n∑
i=1

(xi(k)− xi(j))2
p2i

+

m∑
i=1

(ui(k)− ui(j))2
q2i

(19)
where xi(k) is the component of the state of sample
k ∈ {1, . . . , N} along the i-th dimension of the state-space.
Similarly, ui(k) is the component of the input of sample
k along the i-th dimension of the input space, and pi and
qi are scale factors. The scale factors for the states are
defined as the range of variation of the states along each
component

pi = max
k

xi(k)−min
k
xi(k) , ∀i = 1, . . . , n (20)

and similarly for the inputs,

qi = max
k

ui(k)−min
k
ui(k) , ∀i = 1, . . . ,m. (21)

The weight for the k-th sample is computed as the sum of
the distances from this sample to all the other samples

w(k) =

N∑
j=1

d(k, j) (22)

and then the weights are normalized to verify

N∑
k=1

w(k) = N. (23)

In this way, samples that are close to many others (many
small distances d) have smaller weights than samples that
are isolated (many large distances d).

3.3 Objective function

The objective function (14) is further modified to take into
account additional features. First of all, since the error for
a single sample is actually a vector of length n, and since
the different state derivatives represent different physical
quantites in different scales, a normalisation is required.
This is done in the same way as (20) and (21). In the case
of a prediction error, the scale factors are

ri = max
k

(xi(k + 1)− xi(k))−min
k

(xi(k + 1)− xi(k))

∀i = 1, . . . , n. (24)

The user can also adjust the weights to better approximate
some specific state components.
Also another weight can be added to take into account
a possible knowledge on the accuracy of the samples,
this could prove useful if the accuracy of the samples
changes over time or is dependent on the state value (e.g. a
sensor’s accuracy deteriorates outside its nominal range).
Furthermore, some user-designed weights can be added
so the model better approximates the system in specific
regions of the state-space and input space, for example if
the user only wants to run the model around some specific
operating points. Finally, using the prediction error (9) for
the k-th sample the objective function becomes

J(θ) =

n∑
i=1

1

ri

N∑
k=2

w(k) (xi(k)− fd,i(x(k − 1), u(k − 1), θ))
2

(25)
where the usual squared error is used, `(·) = (·)2.
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4. ILLUSTRATIVE EXAMPLE

An example is proposed which emphasizes the difference
between the proposed and the classic approaches. In this
example, the model structure does not contain the system,
and the model can only approximate the system in a
very limited way. The considered model is a linear vehicle
bicycle model with a nonlinear tyre model. The system
measurements are produced using the vehicle simulation
software IPG CarMaker (release version 7.0) with the
default vehicle model DemoCar.

4.1 Vehicle model

A vehicle bicycle model with a nonlinear tyre model is
used in this study (Fig. 4). As it has only two degrees
of freedom, it is possible to visualise the path of the
system in the state-space. This two-wheel model makes
strong assumptions such as constant non-zero longitudinal
velocity, no weight transfer, vehicle motion in a plane,
small angles, etc. The two states of the model are the
vehicle slip angle α at its center of mass, and the vehicle
yaw rate ψ̇.

Fy(αf)

Fy(αr)
β

αf

v
α

αr

lr

lf

ψ̇, ψ̈

Fig. 4. Vehicle bicycle model

The structure of the model is

α̇ =
Fy(αf) + Fy(αr)

Mvx
− ψ̇ (26)

ψ̈ =
lfFy(αf)− lrFy(αr)

Izz
(27)

where αf and αr are the slip angle at the front and rear
tyres, obtained as

αf = α+
lf ψ̇

vx
− β (28)

αr = α− lrψ̇

vx
(29)

A nonlinear function Fy is used to model the tyres (sim-
plified Magic Formula tyre model, Bakker et al. (1987)):

Fy(α) = D sin [C arctan {(1− E)Bα+ E arctan (Bα)}] .
(30)

A single set of coefficients B,C,D,E is used for both the
front and rear tyres. Due to the tyres operating in different
conditions (e.g. different vertical load, longitudinal slip
etc.), using two sets of coefficients would yield better
results, but the distinction between the different methods
is better emphasized this way. The front wheel steering

angle β is obtained by multiplying the steering wheel angle
u by a constant parameter:

β = rsteeru. (31)

4.2 Parameter estimation

The simulation contains two manoeuvers: a sine with dwell
and a steady state cornering (Fig. 5). The sine with dwell
manoeuver lasts about 2.5s, the tyres exhibit a strongly
nonlinear behavior. The steady state manoeuver lasts
about 100 seconds. The objective function (25) is used with
and without the weights w(k), corresponding respectively
to the proposed method and the prediction error method.
The parameters to be estimated are

θ = [rsteer, B,C,D,E]. (32)

The optimisation is done using Nelder-Mead downhill
simplex algorithm implemented in the Matlab function
fminsearch.

4.3 Results

Different parameter initialisation were tried and yields the
same estimated parameters for both methods, although
there is no guarantee that it corresponds to a global
minimum, for both methods. The bicycle model is then
simulated with the obtained parameters, for the same
input (Fig. 6). Note that values between time t = 10s
and t = 100s are not shown since input and outputs
are constant during this time interval. It can be seen
that the prediction error method minimises the average
error over the duration of the simulation (Fig. 6), whereas
the proposed method minimises the average error over
the different dynamics in the state-space and input space
(Fig. 7, although input space is not shown). Hence the
classical method better approximates the steady state
cornering manoeuver as it lasts a long time, and the
proposed approach better approximates the sine with
dwell manoeuver as it exhibits diverse dynamics. If a
better excitation signal had been used, or if the model
structure had been more capable of approximating the
system, the difference between the two methods would
have been reduced. The different methods presented for
the computation of sample weights yield similar results,
only the method distance to all samples is shown on
figures.

5. CONCLUSION AND PERSPECTIVES

A different interpretation of the problem of system identi-
fication has been proposed, following the concept of model
behavior. It consists in approximating the different dynam-
ics of the system, instead of approximating all measure-
ment data equally. This approach was implemented using
the prediction error method by weighting differently the
samples according to their coordinates in the state-space
and input space. Different implementations could be used.
The proposed approach is relevant if the estimated model
is required to approximate the system for various dynamics
that may be poorly represented in the measurement data.
Future work will address the case of having outputs that
are nonlinear functions of the states. Also the weight
computation could be improved, as the three methods
presented here are purely empirical.
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Fig. 5. Simulation input: steering wheel angle u
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Fig. 6. Simulations outputs in time: yaw rate ψ̇ and slip
angle α
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Fig. 7. Trajectories in the state-space
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