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Abstract: This paper studies the problem of shape-preserving formation control for multi-agent
systems where only bearing measurements are available. Most existing methods to solve the
problems assume that accurate global or local position measurements of agents are available, or
use estimators to get these information without analysis of estimators’ effects on the closed loop
system stability. In this work, we propose a framework integrating an estimator to get relative
positions using bearing-only measurements and an estimator-based controller to achieve tracking
a pair of leaders in a formation with a preserved shape. The estimator is designed by exploiting
orthogonality to cope with the high non-linearity of bearing measurements, based on which the
controller is designed with the estimated relative positions. With rigorous theoretical analysis
of the closed-loop system, we characterize the leaders which can be tracked by followers in a
shape-preserving formation using bearing-only measurements, and the asymptotic stability of
the closed-loop system can be guaranteed. Simulations testify the effectiveness of the proposed
framework.

Keywords: Shape-preserving control, integrated estimation and control, leader-follower
formation, bearing-only measurements.

1. INTRODUCTION

Due to the potential applications in many fields such as
military exercises, rescue and exploration of severe envi-
ronment and pollutant control, multi-robot coordination
has attracted intensive attention of researchers recently
(Zhu et al., 2015; Lin et al., 2013; Oh et al., 2015; Han
et al., 2015; Yu and Liu, 2016; Yu et al., 2018). In multi-
robot coordination problems, a group of robots are gener-
ally required to move in a specific geometric configuration
to cooperatively accomplish complex tasks. One of the
central problems is the formation tracking problem. In this
problem, followers are often required to track the leaders
and form a formation with the leaders inside, using direct
or indirect measurements.
In (Ren and Sorensen, 2008), formation tracking prob-
lems for first-order multi-agent systems were studied using
consensus-based approach, where the desired trajectory
was provided by a virtual leader. Authors in (Brinonarranz
et al., 2014) considered nonholonomic agents to track a
time-varying reference signal while keeping a time-varying
formation. The time-varying formation was achieved by
affine transformations to extend a translation control de-
⋆ This work was supported by grants from the Research Grants
Council of Hong Kong (No. CityU-11261516), the NSF of China un-
der Grants 61633017, 61922058, and NSF of Shanghai Municipality
under Grant 18ZR1419900.

sign for circular motions while tracking a time-varying
center. However, the reference signal needed to be known
by all agents. In (Dong and Hu, 2017) and (Dong et al.,
2017), the multiple leaders case was studied, where the
states of followers form a predefined time-varying forma-
tion while tracking the convex combination of the states
of multiple leaders. In (Hua et al., 2018), the authors
classified the agents into tracking leaders who generate the
translating trajectory, formation leaders who accomplish
a time-varying formation configuration, and followers. A
formation-containment tracking protocol was then pro-
posed for the followers based on neighboring relative infor-
mation. All the above works assume that accurate relative
positions or positions of the agents are available. This is
often not possible, especially in some severe circumstances
such as GPS-denied, cluttered or disaster environment.
Compared to position or relative position information,
bearing is the minimal requirement on the sensing capa-
bility of agents. The problem of bearing-only triangular
formation control was considered in (Bishop, 2011), where
each agent measured two inter-agent bearings locally to es-
tablish and maintain a desired angular separation relative
to its neighbours. In (Zhao and Zelazo, 2016) and (Trinh
et al., 2019), translational and re-scaled formations were
achieved using bearing rigidity theory and the bearing-
based Henneberg construction, respectively. The target
formation was described by desired relative bearings, such
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that the control laws were proposed to stablize the relative
bearings to the desired relative bearings. However, the
methods can only guarantee fixed formations. In (Mallik
et al., 2016), an approach to rigid polygonal formation
which rotates around the target was investigated, but only
circular motion along a common circle can be achieved
based on cyclic pursuit strategy. The perfect geometry
properties of circular motion were utilized to eliminate the
requirement on distance measurements. In the severe cir-
cumstance however, translational or circular formation is
not flexible enough to adapt to the complex environment.
A flexible formation should have four degrees of freedom
including rotation, rescaling, and translation, with the
least requirment on its shape being preserved.
To solve the complex formation control problem using
bearing-only measurement, extended Kalman filters were
adopted to linearize the nonlinear bearing measurements,
which was then applied to formation tracking problem
(Han et al., 2015). However, the estimator’s effect on
the controller is not clear, such that the overall stability
is still unknown for the problem. Therefore, whether
the problem of time-varying formation with a preserving
shape can be solved with only bearing measurements is
still not clear, and is quite challenging due to the high
non-linearity of bearings. Natural questions arise that
what estimator can be designed to apply into the time-
varying formation problem, and under what condition the
estimation and formation tracking errors both converge to
zero asymptotically.
In this work, to cope with the high nonlinearity of the
bearing measurement in a time-varying formation prob-
lem, we propose novel framework integrating a nonlinear
estimator and an estimator-based controller. A leader-
follower structure is adopted for the group of agents. The
estimator uses bearing-only measurements to estimate the
relative positions of leader-follower and inter-followers by
fully exploiting orthogonality, and a controller is designed
based on estimated relative position to achieve the leader
tracking in a time-varying formation while preserving its
shape. By theoretically analyzing the estimator proper-
ties and their effect on the controller, we find that the
bearing localizability is achieved under the persistence of
excitation condition on the relative angular velocity, which
is actually controlled by the estimator-based controller.
The bearing localizability in this work is related to the
resulting actual relative positions in the integrated system.
By showing the interaction of the estimator and the con-
troller, we characterize sufficient conditions on the leaders’
trajectories, under which the estimator can be combined
with the controller. Therefore the localizability is satisfied
for the estimation error to converge to zero, and the
formation tracking error can also asymptotically converge
to zero but not a neighborhood of it, as in (Han et al.,
2019). Rigorous theoretical analysis of the overall system
is given, and effectiveness of the proposed framework is
shown via simulations.
The rest of this paper is organized as follows. In section
2, the problem is formulated with models in the complex
domain. In sections 3 and 4, estimators and an estimator-
based controller for agents are proposed respectively, and
the theoretical analysis for the overall system is also given.
Simulations testify the effectiveness of the control method

in section 4. Conclusion and future work are discussed in
section 5.

2. PROBLEM FORMULATION

Consider a group of n agents in the plane, whose po-
sitions and velocities are denoted by complex numbers
z1, . . . , zn ∈ C and v1, . . . , vn ∈ C respectively. For
complex numbers, we introduce the following notations.
ι =

√
−1 denotes the imaginary unit. Re(z) and Im(z)

are the real and imaginary parts of a complex number
z ∈ C respectively. Besides, its modulus and angle are |z|
and ∠(z) respectively. The inner product of two complex
numbers x, y ∈ C is denoted as ⟨x, y⟩ = Re(xy†), where y†

is the conjugate of y. Note that the definition of the inner
product is different from the standard definition.

2.1 Graph Theory

There are 2 leaders in the group, and others are followers.
Suppose that coordinates of all the agents are aligned.
Without loss of generality, we label leaders as Vl = {1, 2}
and followers as Vf = {3, . . . , n} respectively. A digraph
G of n nodes consists of a non-empty node set V =
{1, 2, . . . , n} and an edge set E ⊆ V × V. G = (V, E) is
used to represent the sensing graph, where the edge (j, i)
indicates that agent i can measure the bearing from agent
j, namely, ϕij = ∠(zj − zi). Denote Ni as the in-neighbor
set of node i, i.e., Ni = {j|(j, i) ∈ E}. The complex
Laplacian matrix associated to G is L ∈ Cn×n with its
(i, j)th off-diagonal entry a complex number −wij if j ∈ Ni

and 0 otherwise, and the (i, i)th diagonal entry
∑

k∈Ni
wik.

It is clear that L1n = 0.
We assume that the digraph G is an acyclic graph through-
out this paper. Because leaders neither measure the bear-
ings nor receive information from any follower, the leader
nodes in digraph G do not have incoming edges, such that
the complex Laplacian of G takes the following form

L =

[
02×2 02×(n−2)

Llf Lff

]
, (1)

where Llf and Lff are block matrices with appropriate
dimensions. They indicates the interaction between leaders
and followers, and among followers, respectively.
For clarity of presentation, let the communication graph be
the same with the sensing graph. The subsequent analysis
can be slightly modified to fit in the case where the sensing
and communication graphs are different.

2.2 Shape-preserving Formation Control Problem

Agents i = 1, . . . , n are governed by the single-integrator
modeled dynamics:

żi = ui (2)
where the control input ui = vi. Denote z = [z1, . . . , zn]

⊤ ∈
Cn as the aggregated position vector of n agents.
To define a target formation shape, let a constant complex
vector ξ = [ξ1, . . . , ξn]

⊤ ∈ Cn denote a position assignment
of n agents which characterizes the formation shape that
agents try to achieve. Then the shape-preserving formation
control problem can be defined as follows.
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Definition 1. The system of n agents is said to form a
shape-preserving formation asymptotically, if there exist
time-varying complex variables c1(t) and c2(t) such that

lim
t→∞

|z(t)− Fξ(t)| = 0, (3)
with Fξ(t) = c1(t)1n + c2(t)ξ, which preserves the forma-
tion shape described by ξ.

Note that c1(t) represents the translation of the formation,
and the amplitude and modulus of c2(t) represent the
orientation and scaling of the formation respectively. It
is worth mentioning that by properly choosing ξ, c1(t),
and c2(t), we can derive general kinds of time-varying
formations, e.g., desired formations in (Dong et al., 2017;
Hua et al., 2018; Zhao and Zelazo, 2016; Trinh et al.,
2019). Furthermore, for the followers to track a pair of
leaders in order to form a shape-preserving formation, the
trajectories of leaders should be feasible as limt→∞ zl(t) =
c1(t)12 + c2(t)ξl,where zl = [z1 z2]

⊤ ∈ C2 and ξl =
[ξ1 ξ2]

⊤ ∈ C2. For such the pair of leaders, we assume that
their velocities vi, i ∈ Vl are continuously differentiable
and bounded.
In this work, we aim to solve the leader-tracking problem
where followers only use bearing measurements to track
the leaders and achieve a shape-preserving formation. A
natural question is then whether the bearing-only mea-
surements are adequate for followers to solve a time-
varying formation control problem. Furthermore, we need
to answer what the leader trajectory can guarantee the
successful tracking in a shape-preserving formation using
bearing only measurements.

3. FORMATION CONTROL WITH BEARING-ONLY
MEASUREMENTS

In this section, we propose the framework integrating a
bearing-based relative estimator and an estimator-based
formation controller to solve the aforementioned questions.
The estimator is designed to cope with the high non-
linearity of the bearing measurements, and the controller
is designed to achieve shape-preserving formation based
on the estimation of relative positions. The rigorous theo-
retical analysis of the overall system will be given.

3.1 Relative Estimator Using Bearing-Only Measurements

Denote the relative position from vehicle i to j as zij = zj−
zi = |zij |eιϕij , where the amplitude of zij , i.e., |zij |, is
the relative distance from vehicle i to j. We assume that
there is no collision between any pair (j, i) ∈ E , i.e.,
|zij(t)| > 0,∀t > 0 throughout this paper. This assumption
can be dropped by including additional relative distance
measurements into a switched control law, which could
give a repulsive force between the agents when they are
too close to each other. Note that the stability analysis
in the rest of this paper is always valid before collision
happens.
Denote the complex number with amplitude 1 and argu-
ment ϕij +

π
2 as ϱij = ιeιϕij . By the orthogonal property,

we obtain that ⟨zij(t), ιeιϕij(t)⟩ = 0 always holds for t > 0
and any i, j ∈ V. For each follower i, regarding ϱij as the
measurement of the relative bearings, the relative position

can be estimated only using bearing measurements. Taking
the orthogonal property into account, the relative position
estimator of any pair of (j, i) ∈ E can be designed in a
Kalman-like form:

˙̂zij = vij − γzϱij⟨ϱij , ẑij⟩, (4)
where vij = vj − vi is the relative velocity, and the real
number γz > 0 is the estimator gain. By (4), it is clear
that z̃ij = ẑij − zij has its dynamics as

˙̃zij = −γzϱij⟨ϱij , z̃ij⟩. (5)
Then we have the following result.
Lemma 1. For each pair (j, i) ∈ E , denote the steady state
of ṽij(t) = ˙̃zij(t) in (5) as ¯̃vij . Then the equilibrium state
¯̃vij = 0 can be reached asymptotically.

Proof. Consider a Lyapunov functional candidate V ′(t) =
1
2 ⟨z̃ij(t), z̃ij(t)⟩ ≥ 0. By (5) we have V̇ ′ = −γz⟨z̃ij , ϱij⟩2 ≤
0, which implies that

lim
t→∞

⟨z̃ij(t), ϱij⟩ = 0. (6)
Due to |z̃ij(t)| ≤ |z̃ij(0)| for t > 0, |z̃ij(t)| must have
a limit. It means z̃ij(t) may reach either a steady-state
solution or a periodic solution. Without loss of generality,
assume that |z̃ij(t)| → zij for some positive constant zij
as t → ∞. We now prove that z̃ij(t) cannot be periodic
in a steady state by contradiction argument. Assume that
z̃ij(t) is a periodic solution, such as, lim

t→∞
˙̃zij(t) = ιωz z̃ij(t)

for some ωz > 0. It follows from (5) that
⟨ ˙̃zij(t), ϱij⟩ = −γz⟨z̃ij(t), ϱij⟩⟨ϱij , ϱij⟩ = −γz⟨z̃ij(t), ϱij⟩.

(7)
Therefore, together with (6), lim

t→∞
⟨z̃ij(t), ϱij⟩ = 0 and

lim
t→∞

ωz⟨ιz̃ij(t), ϱij⟩ = 0 hold at the same time. It thus
derives that lim

t→∞
ω2
z = 0, such that ωz → 0 as t → ∞,

which contradicts with ωz > 0. Therefore, z̃ij(t) must
converge to a steady-state solution, say ¯̃zij , which satisfies
¯̃zij = zij ∈ R. It implies that lim

t→∞
ṽij = 0.

Besides, we can derive some boundedness result for the
subsequent analysis in this paper. We have already known
that z̃ij is bounded, thus by (5) that ˙̃zij is also bounded.
Furthermore, to obtain that zij = 0, some extra conditions
need to hold. We have the following result.
Lemma 2. The relative position estimation error z̃ij ,
(j, i) ∈ E converges to zero asymptotically if the actual
relative angular velocity ωij = ϕ̇ij satisfies
(a) ωij is bounded and continuously differentiable;
(b) ω̇ij is bounded; and
(c) there exist ε > 0 and δ > 0 such that∫ t+δ

t

|ωij(τ)|dτ > ε. (8)

holds ∀t > 0.

Proof. We follow the proof of Lemma 1 to prove this
further result. Denote ηij = ⟨z̃ij(t), ϱij⟩. Under conditions
(a) and (b), η̇ij = −γz⟨z̃ij(t), ϱij⟩ + ⟨z̃ij(t), ιωijϱij⟩ is
uniformly continuous, due to the fact that η̈ij is bounded
as ωij , ω̇ij , z̃ij , and ˙̃zij are all bounded. Therefore, with
Barbalat’s Lemma (Khalil, 2002), we obtain by (6) that
limt→∞ η̇ij = 0, such that limt→∞ ωij⟨z̃ij(t), ιϱij⟩ = 0.
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Under condition (c), there must exist a time sequence
[t1, . . . tk, . . .] where tk → ∞ as k → ∞, for which
|ωij(tk)| > ε/δ. One can conclude with (6) that z̃ij(tk)
converges to be orthogonal to both the unit-modulus com-
plex number ϱij and its orthogonal number ιϱij simulta-
neously, i.e., ⟨z̃ij(tk), ϱij(tk)⟩ → 0, ⟨z̃ij(tk), ιϱij(tk)⟩ → 0
as k → ∞, such that z̃ij(tk) → 0 as k → ∞. By the
continuity of z̃ij and the decreasing |z̃ij(t)|, we can derive
that z̃ij(t) → 0 as t → ∞.

The bearing localizability can be divided into two parts:
the boundedness and continuity (conditions (a) and (b));
and the persistence of excitation (condition (c)). We focus
on finding what conditions should be satisfied, under which
the relative angular velocity ωij is still persistently excited
in the presence of estimation errors z̃ij .

3.2 Estimator-based Controller

Based on estimated relative positions ẑij for any pair
(j, i) ∈ E , the controller is proposed for followers to form a
preserving-shape formation. The integrated controller for
i ∈ Vf is proposed as

żi =
∑
j∈Ni

wij(vj + γv ẑij)/wii, (9)

where γv > 0 is the controller gain, and wij is the asso-
ciated weight in the complex Laplacian matrix. The con-
troller, as shown in (9), does not require extra information
but only needs neighbor’s velocity.
Before presenting the main result, we establish the follow-
ing preliminary result.
Lemma 3. Assume that ξ ∈ Cn satisfies ξi ̸= ξj for i ̸= j.
Then the equilibrium state of ẋ = −Lx where x ∈ Cn is
x̄ = c11n + c2ξ with[

c1(t)
c2(t)

]
=

[
1 ξ1
1 ξ2

]−1 [
x̄1

x̄2

]
, (10)

where x̄1 = lim
t→∞

x1(t) and x̄2 = lim
t→∞

x2(t), if and only if
Lξ = 0 and det(Lff ) ̸= 0.

A similar result could be found in (Lin et al., 2013). The
difference lies in the property that x̄i for i ∈ Vl are no
longer constant, such that the configuration c1 and c2 are
time-varying. The idea of the proof is almost the same and
thus omitted due to page limitation.
Notice now that, the controller (9) is proposed based
on the estimator (4). We say that the estimator can be
integrated with the controller and the asymptotic stability
of the overall system can be guaranteed, if the localizability
can be satisfied in the leader-tracking formation problem.
To answer the question of under what conditions the
bearing localizability of the overall system can be satisfied
by the controller in existence of the estimation error, we
must analyze the closed-loop interaction of the estimator
and the controller, which is the main challenge of this
work. Out of the observation that the pairwise relative
position zij inside a formation is actually controlled by
the estimator-based controller (9) and steered by the pair
of leaders, we propose the following condition on the
trajectories of the leaders.
Condition 1. Let vll = v2 − v1 be the relative velocity of
the pair of leaders, where |vll(t)| > 0, ∀t > 0. There exist

εv > 0 and δv > 0 such that the persistence of excitation
condition on the leaders relative velocity holds ∀t > 0,∫ t+δv

t

|⟨v̇ll(τ), ϱll(τ)⟩|dτ > εv, (11)

where ϱll = ιeιθll with θll = ∠(vll).

Then we present our main result in this work.
Theorem 1. Assume that Lξ = 0, det(Lff ) ̸= 0, and
ξ ∈ Cn satisfies ξi ̸= ξj for i ̸= j. Then for a pair of leaders
and a group of followers (2) with the estimator (4) and the
controller (9), the leaders can be tracked while forming a
shape-preserving formation asymptotically, if Condition 1
on the trajectories of leaders holds.

Proof. We firstly give the overall system which consists
of the estimator and the controller. By rewriting (9), we
can obtain that for i ∈ Vf ,
wiivi−

∑
j∈Ni

wijvj=γv
∑
j∈Ni

wijzj − γvwiizi + γv
∑
j∈Ni

wij z̃ij .

We now can write in the aggregated form that Lv =
−γvLz + z̃, where v = [v1, . . . , vn] ∈ Cn is the aggregated
velocity vector, and z̃ ∈ Cn with its ith element being
z̃(i) = γv

∑
j∈Ni

wij z̃ij for i ∈ Vf and 0 for i ∈ Vl. Taking
the time derivative of its both sides of we have

Lv̇ = −γvLv + ṽ, (12)
where ṽ ∈ Cn with its ith element being

ṽ(i) = γv
∑
j∈Ni

wij ṽij = −γvγz
∑
j∈Ni

wij⟨z̃ij , ϱij⟩ϱij (13)

for i ∈ Vf and 0 for i ∈ Vl. Then (12) can be written
equivalently in the form as ẋ = −γvx + ṽ, by denoting
x = Lv. We firstly prove some boundedness for checking
the bearing localizability of the overall system. Its solution

x(t) = e−γvtx(0) +

∫ t

0

e−γv(t−τ)ṽ(τ)dτ

is bounded if ṽ(t) is always bounded. By (13) we have
ṽ being bounded due to the bounded z̃ij for any pair of
(j, i) ∈ E . Then we can obtain that x = Lv is always
bounded. By vl = [v1 v2]

⊤ and vf = [v3, . . . , vn]
⊤, we can

derive equivalently that Llfvl + Lffvf is bounded. Due
to bounded vl, Lflvl is bounded and by the triangular
inequality Lffvf is bounded, such that vf is bounded.
We now can conclude that v = [v⊤l v⊤f ]

⊤ is bounded,
such that for any pair of i, j ∈ V, vij is bounded. With
bounded ṽ and v, by (12) we can similarly derive that
v̇ and thus v̇ij are also bounded. Let dij = |zij | then
vij = żij = ḋije

ιϕij + ιωijdije
ιϕij , yielding ωij being

bounded. Furthermore, taking the time derivative of vij
yields v̇ij = (d̈ij −ω2

ijdij)e
ιϕij +(2ωij ḋij + ω̇ijdij)ιe

ιϕij . It
implies that ω̇ij is bounded, such that ωij is continuously
differentiable and uniformly bounded. It can be concluded
that the first two conditions in Lemma 2 are satisfied for
any pair (j, i) ∈ E .
We now start to check the persistence of excitation condi-
tion of the localizability for integrated system. As shown
in Lemma 1, for any pair (j, i) ∈ E , ṽij → 0 as t → ∞.
Then each element of ṽ converges to zero as time goes to
infinity. We can obtain by (Ryan, 2005) that for γv > 0
there is x → 0, that is, Lv → 0 as t → ∞. By the result in
Lemma 3, we derive that
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lim
t→∞

v = c′1(t)1n + c′2(t)ξ, (14)
where c′2(t) = (v2(t) − v1(t))/(ξ2 − ξ1) = vll(t)/(ξ2 − ξ1).
Denote ξij = ξj − ξi, then for any i, j ∈ V there is

lim
t→∞

vij = vll(t)ξij/ξ12. (15)

In the following it will be proved that the actual relative
position satisfies the persistence of excitation condition
(8) if condition (11) holds. We prove this using the con-
tradiction argument. Suppose that (8) fails, then it can
be proved by continuity that for a uniformly bounded
ωij , lim

t→∞
ωij = 0, such that limt→∞⟨vij , ϱij⟩/dij = 0. By

|dij | > 0, we further obtain that
lim
t→∞

⟨vij , ϱij⟩ = 0. (16)
Denote ζij = ⟨vij , ϱij⟩, and its first and second order
derivatives are

ζ̇ij = ⟨v̇ij , ϱij⟩+ ωij⟨vij , ιϱij⟩ (17)
ζ̈ij = ⟨v̈ij , ϱij⟩+ ⟨2v̇ij , ιωijϱij⟩ − ⟨vij , ω2

ijϱij⟩ (18)
respectively. We now prove that ζ̈ij is bounded such that
ζij is uniformly bounded. We have proven that vij , v̇ij and
ωij are bounded. Taking the time derivative of ṽij and by
(5) yields
˙̃vij = −γzιωijϱij⟨ϱij , z̃ij⟩−γzωijϱij⟨ιϱij , z̃ij⟩+γ2

zϱij⟨ϱij , z̃ij⟩,
such that ˙̃vij for any pair (j, i) ∈ E is bounded. Therefore
˙̃v is bounded. By taking time derivative of both sides of
(12), we obtain that Lv̈ = −γvLv̇+ ˙̃v. Following the same
idea of proving the boundedness of v̇ij as aforementioned,
we can similarly derive that v̈ij is also bounded. Now
we can conclude that ζ̈ij is bounded, such that ζ̇ij is
uniformly bounded. Therefore with (16), by Barbalat’s
Lemma again, lim

t→∞
ζ̇ij = 0. Since limt→∞ ωij = 0, it

follows from (17) that
lim
t→∞

⟨v̇ij , ϱij⟩ = 0. (19)
Recall (12) and (14), we can derive that limt→∞ Lv̇ = 0
as limt→∞ ṽ = 0, such that limt→∞ v̇ = c′′11n + c′′2ξ, with
c′′2 = v̇ll/ξ12. It yields that

lim
t→∞

v̇ij = v̇ll(t)ξij/ξ12. (20)
We now can consider (15), (16), (19), and (20) to derive the
following equations which are satisfied at the same time:

lim
t→∞

⟨vll(t), ϱij⟩ = 0, lim
t→∞

⟨v̇ll(t), ϱij⟩ = 0, (21)
for any pair (j, i) ∈ E , where ξij/ξ12 is constant thus we
can neglect this term in above equations. Under Condition
1, we now obtain the orthogonal decomposition of v̇ll onto
the orthogonal basis {vll, ιvll} as v̇ll = ⟨v̇ll, vl⟩vll/|vll| +
⟨v̇ll, ιvll⟩ιvll/|vll|. Substituting it into the second equation
in (21) and combine it with the first equation, we can easily
derive lim

t→∞
⟨v̇ll, ιvll⟩⟨ιvll, ϱij⟩/|vll| = 0. Consider this result

together with (21) again, one has
lim
t→∞

⟨v̇ll, ιvll⟩/|vll| = lim
t→∞

⟨v̇ll, ϱll⟩ = 0, (22)
which contradicts with the sufficient condition (11). Then
we can draw the conclusion that under the condition (11),
the uniformly bounded ωij for any pair (j, i) ∈ E must
satisfy condition (8) in Lemma 2.
Up to this point, it is proved that all the three conditions
in Lemma 2 are satisfied. We can derive that for any pair

(j, i) ∈ E , limt→∞ z̃ij = 0, which means z̃ → 0 as t → ∞.
Then Lz → 0, such that limt→∞ z = c1(t)1n + c2(t)ξ
and a time-varying formation with a preserving-shape is
achieved by the group of agents.
Remark 1. Note that Condition 1 is rather mild. Leaders
do not need to keep |⟨v̇ll(t), ϱll(t)⟩| always greater than
zero or as a constant. It provides flexibility for the leaders
in obstacle-cluttered environments.

4. NUMERICAL EXAMPLES

In this section we testify the effectiveness of our method
with numerical examples. We consider 9 agents in the
simulations. The desired formation shape is described by
the target configuration ξ which is illustrated by Fig.1(a).
The topology of the communication and sensing network

(a) (b)

Fig. 1. Formation shape ξ and digraph G.

is shown by Fig.1(b). A feasible way to choose the complex
weights wij and its influence on the convergence speed can
be found in (Lin et al., 2015). Select the initial parameters
and positions of followers randomly.

Fig. 2. Snapshots of agent positions.

To enable the followers to track the leaders in a shape-
preserving formation, the leaders’ trajectories are pair-
wisely designed to control the translation and rotation
of the formation. In this simulation we let the desired
scale of the formation, which is controlled by leaders, be
invariant. It is desired that the formation could asymp-
totically translate at a sin wave, while the orientation
of the formation is varying with the curve. Therefore,
we let c1(t) = 0.5t + ι sin t, and the orientation be
∠(c2(t)) = π

4 (1 + sin t). Then the trajectories of the
leaders are zi(t) = c1(t) + 0.5eι

π
4 (1+sin t)ξi for i = 1, 2.

The velocities vi(t), i.e., the control input of the lead-
ers are derived by taking time derivative of zi(t) for
i = 1, 2. Snapshots of the leaders positions at time
t = 0, 3.85, 7.7, 11.55, 15.4, 19.25, 23.1, 26.94, 30.8, 34.65,
and 38.5 are shown by red in Fig.2. Set the gains of

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

6040



(a) (b)

Fig. 3. Evolution of |z̃ij(t)| for (j, i) ∈ E and |zi(t) −
(c1(t)1n + c2(t)ξi)| for i ∈ V.

the estimator and controller as γz = 4 and γv = 5
respectively. Then the snapshots of the follower positions
are shown by blue in Fig.2. It can be observed that the
followers could asymptotically track the leaders in a shape-
preserving formation where the desired shape is described
by Fig.1(a). Fig.3(a) shows the estimation error z̃ij for
each pair (j, i) ∈ E . The formation tracking error could
converge to zero with estimator error, as shown in Fig.3(b).
To see that Condition 1 is satisfied, we show it in Fig.4.

Fig. 4. Evolution of |⟨v̇ll, ϱll⟩| in Eq. (11).

Since the leaders are modeled with single-integrator, v̇ll
are approximated by differentiating the control inputs of
the leaders. It is observed that the persistence of excitation
condition is always satisfied.

5. CONCLUSION

In this paper, we studied the problem of tracking a pair
of leaders in a shape-preserving formation with bearing-
only measurements. To cope with the nonlinearity of the
bearing measurements, we develop an estimator to derive
the relative position and a controller with the estimated
relative position to form a time-varying formation. To
enable the stability of the overall system, the leaders’
relative velocity must satisfy the persistence of excitation
condition. Then the equilibrium of the overall system can
be reached asymptotically. In the future, more general
topology of the leader-follower network and more general
models of the agents will be considered.
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