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Abstract: This paper addresses a formation control problem for multi-agent systems with non-
holonomic constraints under relative measurements. To overcome the issue of non-holonomic
constraints, we design a feedback controller deriving rotational and translational motions
according to formation error. A special form of formation error is employed here, which depends
only on relative positions in a local frame. Hence, the designed controller is distributed and
relative, meaning that only relative measurements of neighbors are used. Because a clique-based
function is used, not an edge-based one, the best performance is yielded of all distributed,
relative, gradient-based controllers. Moreover, we derive a necessary and sufficient condition of
graphs under which a desired formation is achieved by such controllers. The proposed method
is valid regardless of the dimension of the space, and thus it is applicable to not only unmanned
ground vehicles (UGVs) but also unmanned aerial vehicles (UAVs). The effectiveness of the
proposed method is demonstrated by simulations.
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1. INTRODUCTION

Multi-agent systems composed of many components
that communicate and/or observe each other have been
strongly focused in the field of the control engineering.
For these systems, distributed control is important for re-
duction of computational burdens (Mart́ınez et al., 2007),
and distributed control methods for various control tasks
have been developed, e.g., consensus (Olfati-Saber and
Murray, 2004; Olfati-Saber et al., 2007), coverage (Cortés
et al., 2004), and attitude synchronization (Igarashi et al.,
2009; Ren, 2010), and so forth. Besides distributed control,
relative control, relying on relative measurements of other
agents, should be taken into account to utilize practi-
cal measurement data from sensing devices (Olfati-Saber
et al., 2007; Lin et al., 2014).

Formation control is one of important tasks of multi-
agent systems (Fax and Murray, 2004; Oh et al., 2015)
for effective surveillance, inspection, and investigation.
Especially, distance-based formation control is successfully
achieved under distributed, relative control (Anderson
et al., 2008; Krick et al., 2009; Dörfler and Francis,
2010; Lin and Jia, 2010; Sun and Anderson, 2015). This
approach allows flips in the formation, which might cause
an undesired configuration. This issue has been tackled
in several papers by employing area constrains, matrix
constraints, or so forth (Anderson et al., 2017; Sakurama
et al., 2018).

⋆ A part of this work was supported by JSPS KAKENHI Grant
Number 19K04439.

On the other hand, in many papers, motions of agents
are assumed to be controllable in any directions. How-
ever, many robots including unmanned ground vehicles
(UGVs), unmanned surface vehicles (USVs), unmanned
underwater vehicles (UUVs), and unmanned aerial ve-
hicles (UAVs) have non-holonomic constraints under
which agents cannot slide laterally. Multi-agent systems
with non-holonomic constraints have been investigated
in several papers. For example, Dimarogonas and Kyr-
iakopoulos (2008); Liu and Jiang (2013) have consid-
ered displacement-based formation control, and Montijano
et al. (2016) have dealt with distance-based formation
control. Zhao et al. (2018) have developed a method to
drive rotational and translational motions according to
gradient-based controllers.

This paper addresses a formation control problem of non-
holonomic multi-agent systems under relative measure-
ments. We focus on the method of Zhao et al. (2018)
because there still remains the option for gradient-based
controllers. Particularly, in the present paper, we employ
a clique-based function instead of edge-based ones con-
ventionally employed in gradient-based controllers. Note
that the clique is a complete subgraph, which has a poten-
tial for enhancing control performance while maintaining
distributedness of controllers.

We obtain the following contributions. First, the gradient
of the clique-based function employed in the present paper
depends only on relative positions in a local frame. Hence,
the designed controller is distributed and relative, mean-
ing that only relative measurements of neighbors are used.
Second, we show that this clique-based function yields
the best performance of all distributed, relative, gradient-
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based controllers under non-holonomic constraints. Third,
we derive a necessary and sufficient condition of graphs
under which the formation is achieved by such controllers.
Forth, we can prevent the formation from flips because
cliques can measure the discrepancies in formation shapes,
while edges can only in distances. Finally, the proposed
method does not limit the dimension of the space to 2 or
3, but is applicable to any finite dimensions.

Notation: Let SO(d) ⊂ Rd×d be the special orthogonal
group of dimension d, and let SE(d) = SO(d)×Rd be the
special Euclidean group. Let Skew(d) ⊂ Rd×d denote the
set of the d-dimensional skew-symmetric matrices. The
notation 1n ∈ Rn denotes the vector with all components
1, and En ∈ Rn×n does the n-dimensional identity matrix.
For vectors x1, x2, . . . , xn ∈ Rd and a set C ⊂ {1, 2, . . . , n}
of positive integers, let (xj)j∈C be the collection of xj
according to j ∈ C, defined as

(xj)j∈C = (xj1 , xj2 , . . . , xj|C|),

where |C| is the number of the elements of C, and
j1, j2, . . . , j|C| ∈ C satisfy 1 ≤ j1 < j2 < · · · < j|C| ≤ n.
Let ave(·) be the component-wise average of a collection
of vectors, namely,

ave((xj)j∈C) =
1

|C|
∑
j∈C

xj .

For (xj)j∈C ∈ Rd×|C| and a set A ⊂ Rd×|C|, their distance
is defined as

dist((xj)j∈C ,A) = inf
(yj)j∈C∈A

√∑
j∈C

∥xj − yj∥2, (1)

where ∥ · ∥ denotes the Euclidean norm of vectors.

Consider a graph G = (V, E) with a vertex set V =
{1, 2, . . . , n} and an edge set E . We say that a subgraph
G|C = (C, E|C) is induced by C if {i, j} ∈ E , i, j ∈
C ⇔ {i, j} ∈ E|C holds. A clique is defined as a set
of vertexes which induce a complete subgraph (Bolloás,
1998). A clique is said to be maximal clique if it is not
contained by any other cliques. Let clq(G) be the set of
all maximal cliques in G. For i ∈ V , let clqi(G) denote
the set of all maximal cliques in G containing vertex i.
For a graph G and a collection of vectors (x∗j )j∈V ∈ Rd×n,
a pair (G, (x∗j )j∈V) is called a framework. A framework
(G, (x∗j )j∈V)) is said to be locally clique-rigid if there exists
an open set O ⊃ X ∗ such that

X ∗ = X ∗
clq(G) ∩ O (2)

for the sets

X ∗ = {(xj)j∈V ∈ Rd×n : ∃(Θ, τ) ∈ SE(d)

s. t. xj = Θx∗j + τ ∀j ∈ V} (3)

X ∗
clq(G) = {(xj)j∈V ∈ Rd×n : ∀C ∈ clq(G)

∃(ΘC , τC) ∈ SE(d) s. t. xj = ΘCx
∗
j + τC ∀j ∈ C}.

(4)

2. PROBLEM SETTING

2.1 Variables in global and local frames

Consider a multi-agent system consisting of n agents,
numbered from 1 to n. Let V = {1, 2, . . . , n} be the set
of the agent indexes. Let Σ be the global frame, which is

i

p
xi

θi

0

Σ

p [i]

b
i

Σ
i

Fig. 1. Coordinates on the global and local frames (d = 2)

common among the agents, and let Σi(t) be the local frame
of agent i ∈ V, which is different from each other. The
position coordinate of agent i in Σ is denoted as a vector
xi(t) ∈ Rd, and the orientation of Σi(t) from Σ is given
by the matrix Ri(t) ∈ SO(d). Then, the global and local
coordinates of a point are described by p(t), p[i](t) ∈ Rd

satisfying

p(t) = Ri(t)p
[i](t) + xi(t). (5)

The variables defined in Σi(t) are denoted with the su-
perscript [i]. See Fig. 1 for an illustration in the case of
d = 2.

Let ẋi(t) ∈ Rd and v
[i]
i (t) ∈ Rd be the global and local

velocities of agent i, defined in Σ and Σi(t). From (5),
these velocities have the following relation:

ẋi(t) = Ri(t)v
[i]
i (t). (6)

2.2 Dynamics

We assume that the local speed of agent i is controllable
via ui(t) ∈ R, while the direction of the local velocity is
limited to bi ∈ Rd (∥bi∥ = 1). Hence, the following holds:

v
[i]
i (t) = biui(t). (7)

Moreover, the angular velocity of agent i is controllable
via Si(t) ∈ Skew(d) in the following way:

Ṙi(t) = Ri(t)Si(t). (8)

Eq. (8) means that a tangent vector of SO(d) at Ri(t) is
given by Ri(t)Si(t) with a skew-symmetric matrix Si(t).
This can be derived by differentiating the definition of the
orthogonal matrix R⊤

i (t)Ri(t) = Ed as

R⊤
i (t)Ṙi(t) + (R⊤

i (t)Ṙi(t))
⊤ = 0,

which shows that R⊤
i (t)Ṙi(t) is skew-symmetric and can

be represented by Si(t).

Let (Ri(t), xi(t)) ∈ SE(d) be the state of the system and
let (Si(t), ui(t)) ∈ Skew(d)×R be the control input. Then,
from (6), (7), and (8), the dynamics of the system can be
described as {

Ṙi(t) = Ri(t)Si(t)
ẋi(t) = Ri(t)biui(t)

. (9)

Note that for d = 2, (9) is reduced to the common non-
holonomic model of a rolling coin as{

θ̇i(t) = ωi(t)
ẋi(t) = [cos θ(t) sin θ(t)]⊤ui(t)

for bi = [1 0]⊤, θi(t) ∈ [0, 2π), and ωi(t) ∈ R.
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2.3 Distributed and relative controller

Agent i can obtain the information only on its neighbors
Ni ⊂ V through sensing. Let E = {{i, j} ⊂ V : j ∈ Ni},
and graph G = (V, E) represents the network of sensing
between agents. We assume that G is undirected and time-
invariant.

Let x
[i]
j (t) ∈ Rd be the relative position of agent j ∈ Ni

from agent i, and from (5), it can be described as

x
[i]
j (t) = R⊤

i (t)(xj(t)− xi(t)). (10)

Assume that information on the relative positions x
[i]
j (t)

of the neighbors j ∈ Ni is available to agent i, but
its own state (Ri(t), xi(t)) nor the neighbors’ states
(Rj(t), xj(t)), j ∈ Ni are unavailable. Then, the control
input (Si(t), ui(t)) ∈ Skew(d)× R has to be generated as{

Si(t) = Fi((x
[i]
j (t))j∈Ni

)

ui(t) = fi((x
[i]
j (t))j∈Ni

)
(11)

with some functions Fi : Rd×|Ni| → Skew(d) and fi :
Rd×|Ni| → R. We said that the controller of the form (11)
is distributed and relative.

2.4 Control objective

Let (x∗i )i∈V ∈ Rd×n be a desired configuration of the
agents. The control objective is that the global positions
(xi(t))i∈V of the agents to attain a congruent shape of
(x∗i )i∈V . This can be described as

∃(Θ(t), τ(t)) ∈ SE(d)

s. t. lim
t→∞

(xi(t)− (Θ(t)x∗i + τ(t))) = 0 ∀i ∈ V, (12)

where Θ(t) ∈ SO(d) and τ(t) ∈ Rd represent the rotational
and translational freedoms in the coordination. By using
the set X ∗ in (3), (12) is represented as

lim
t→∞

dist((xi(t))i∈V ,X ∗) = 0. (13)

We say that X ∗ is locally attractive if there exists an open
set A ⊃ X ∗ such that the state (xi(t))i∈V from every
initial state (xi(0))i∈V ∈ A satisfies (13). We say that X ∗

is globally attractive if this holds for A = Rd×n.

Now, we consider the following problem in this paper.

Problem 1. For the system (9) and graph G, design a
distributed, relative controller (11) such that X ∗ is lo-
cally/globally attractive.

3. PRELIMINARY

For vectors yj , zj ∈ Rd, j ∈ {1, 2, . . . ,m}, consider the
optimization problem

min
(R,τ)∈SE(d)

∑
j∈{1,2,...,m}

∥yj − (Rzj + τ)∥2. (14)

Let (R̂, τ̂) ∈ SE(d) be the solution of (14), which is derived
as

R̂ = V diag(

d−1︷ ︸︸ ︷
1, . . . , 1,det(UV ))U⊤ ∈ Rd×d (15)

τ̂ = ave((yj − R̂zj)j∈{1,2,...,m}), (16)

where U, V ∈ Rd×d are orthogonal matrices satisfying

(Z − ave(Z)1⊤
m)(Y − ave(Y )1⊤

m)⊤ = USV ⊤ (17)

with the diagonal matrix S = diag(σ1, σ2, . . . , σd) of
the entries σ1, σ2, . . . , σd (σ1 ≥ σ2 ≥ · · · ≥ σd ≥ 0),
Y = [y1 y2 · · · ym], and Z = [z1 z2 · · · zm].

Let Rm : Rd×m × Rd×m → pow(SO(d)) be the set-valued
function of (yj)j∈{1,2,...,m} and (zj)j∈{1,2,...,m} consisting

of the matrices R̂ ∈ SO(d) given by (15) with any
orthogonal matrices U, V ∈ Rd×d satisfying (17), where
pow(·) is the power set of a set. Then, the following holds

with R̂ ∈ Rm((yj)j∈{1,2,...,m}, (zj)j∈{1,2,...,m}) and τ̂ in
(16):

(14) =
∑

j∈{1,2,...,m}

∥yj − (R̂zj + τ̂)∥2. (18)

4. MAIN RESULT

4.1 Solution to Problem 1

For the control objective (12), we propose a distributed
and relative controller (11) with the functions

Fi((x
[i]
j )j∈Ni

) = (Ed − bib
⊤
i )ϕi((x

[i]
j )j∈Ni

)b⊤i
−((Ed − bib

⊤
i )ϕi((x

[i]
j )j∈Ni)b

⊤
i )

⊤

fi((x
[i]
j )j∈Ni

) = b⊤i ϕi((x
[i]
j )j∈Ni

)

(19)

of (x
[i]
j )j∈Ni

for the function

ϕi((x
[i]
j )j∈Ni

) =
∑

C∈clqi(G)

(ave((x
[i]
j )j∈C)

+ R̂
[i]
C (x∗i − ave((x∗j )j∈C))),

(20)

where x
[i]
i = 0 and R̂

[i]
C ∈ SO(d) is a matrix satisfying

R̂
[i]
C ∈ R|C|((x

[i]
j )j∈C , (x

∗
j )j∈C). (21)

Let us consider the meaning of the controller (19). The

function ϕi((x
[i]
j )j∈Ni) in (20) consists of the position error

of agent i from the average of the other agents belonging
to each maximal clique C ∈ clqi(G). The controller (19)
works to make the errors converge to zero, as illustrated
as follows. From (7), (11), and (19),{

Si(t)bi = (Ed − bib
⊤
i )ϕi((x

[i]
j (t))j∈Ni

)

v
[i]
i (t) = biui(t) = (bib

⊤
i )ϕi((x

[i]
j (t))j∈Ni

)
(22)

is obtained, which implies the following two: (i) the local

velocity v
[i]
i (t) is given by the orthogonal projection of

ϕi((x
[i]
j (t))j∈Ni

) to the line in the direction of bi; (ii) the
effect of the angular velocity to the local velocity, denoted
by Si(t)bi, is the orthogonal complement of the projection.

By the combination of the effects of Si(t)bi and v
[i]
i (t),

ϕi((x
[i]
j (t))j∈Ni) is expected to converge to zero.

As the expectation, ϕi((x
[i]
j (t))j∈Ni

) always converges to

zero, and the control objective (12) is achieved under some
conditions on graph G.

Theorem 1. For a connected graph G, consider the system
(9) and the distributed and relative controller (11) with
(19) for the function ϕi(·) in (20). Then, (i) Φ is globally
attractive, where
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Φ = {(xi)i∈V ∈Rd×n : ∀i ∈ V, ∃R̄i ∈ SO(d)

s. t. ϕi((R̄
⊤
i (xj − xi))j∈Ni) = 0}, (23)

(ii) X ∗ is locally attractive if and only if the framework
(G, (x∗j )j∈V) is locally clique-rigid, and (iii) X ∗ is globally
attractive if G is complete. 2

Due to the limit of the space, only a sketch of the proof
is given for Theorem 1. (i) According to Sakurama et al.
(2018), the function ϕi(·) in (20) satisfies

ϕi((R
⊤
i (xj − xi))j∈Ni

) = −R⊤
i

∂v

∂xi
((xj)j∈V) (24)

with the function v : Rd×n → R given by

v((xj)j∈V) =
∑

C∈clq(G)

1

2
(dist((xj)j∈C ,DC))

2 (25)

for the set

DC = {(xj)j∈C ∈Rd×|C| : ∃(RC , τC) ∈ SE(d)

s. t. xj = RCx
∗
j + τC ∀j ∈ C}. (26)

By using (24), (19) is represented as
Fi((x

[i]
j )j∈Ni

) = −(Ed − bib
⊤
i )R

⊤
i

∂v

∂xi
((xj)j∈V)b

⊤
i

+((Ed − bib
⊤
i )R

⊤
i

∂v

∂xi
(((xj)j∈V)b

⊤
i )

⊤

fi((x
[i]
j )j∈Ni

) = −b⊤i R⊤
i

∂v

∂xi
((xj)j∈V)

.

(27)

In this way, the proposed controller (19) is based on
the gradient-based controller with the objective function
v((xj)j∈V) in (25). Hence, its gradient converges to zero,
which is mentioned in Theorem 1(i) from (24).

(ii) Locally, v((xj)j∈V) = 0 holds if and only if its gradient
is zero, and thus v((xj(t))j∈V) locally converges to zero.
Then, from (25), for any C ∈ clq(G), (xj(t))j∈V converges
to DC . Note that ∩C∈clq(G)DC = X ∗

clq(G) from (4) and

(26). From the assumption that G is locally clique-rigid,
(2) holds, which implies that locally X ∗

clq(G) = X ∗ holds.

Hence, (xj(t))j∈V locally converges to X ∗. From (3), (13)
is locally achieved, and Theorem 1(ii) is obtained.

(iii) For the complete graph G, globally X ∗
clq(G) = X ∗

holds, and v((xj)j∈V) = 0 holds if and only if its gradient
is zero. Hence, the discussion for (ii) globally holds, and
Theorem 1(iii) is obtained.

4.2 Discussion on local clique-rigidity

The local clique-rigidity is essential for the attraction
of X ∗. Actually, if a framework (G, (x∗j )j∈V)) is not
locally clique-rigid, we cannot achieve the attraction of X ∗

with for the gradient-based controller (27) not only with
(25), but also with any objective functions. The following
theorem describes this fact.

Theorem 2. For a graph G, consider system (9) with the
distributed and relative controller (11) which is given by
the gradient-based controller (27) with some v((xj)j∈V)
satisfying v((xj)j∈V) = 0 for (xj)j∈V ∈ X ∗. Then,
there exists a function v((xj)j∈V) such that X ∗ is locally
attractive if and only if the framework (G, (x∗j )j∈V)) is
locally clique-rigid.

Proof. The sufficiency follows Theorem 1 (ii).

To prove the necessity, assume that X ∗ is an equilibrium
set and is locally attractive with a function v((xj)j∈V) sat-
isfying v((xj)j∈V) = 0 for (xj)j∈V ∈ X ∗ whose gradient-
based controller is distributed and relative. Because X ∗ is
locally attractive,

v−1(0) ∩ A = X ∗ (28)

holds for any open set A ⊃ X ∗. Otherwise, there exists
(ψj)j∈V ∈ v−1(0) ∩ A such that (ψj)j∈V ̸∈ X ∗. Then, the
solution (xj(t))j∈V from (xj(0))j∈V = (ψj)j∈V satisfies
(xj(t))j∈V = (ψj)j∈V ̸∈ X ∗for all t ≥ 0 because v−1(0) is
a set of critical points. Hence, (xj(t))j∈V does not converge
to X ∗

From Sakurama et al. (2015, 2018), the following holds:

X ∗ ⊂ v̂−1(0) ⊂ v−1(0) ∀v((xj)j∈V) ∈ F , (29)

where v̂((xj)j∈V) is the function defined in (25), F is the
set of the functions v((xj)j∈V) such that X ∗ ⊂ v−1(0) and
its gradient is distributed and relative, namely there exists
a function ϕi(·) such that (24) holds. From (4), (25), and
(26),

v̂−1(0) = X ∗
clq(G) (30)

holds. Because of v̂((xj)j∈V) ∈ F and A ⊃ X ∗, from (28)
and (29), we obtain

X ∗ = X ∗ ∩ A ⊂ v̂−1(0) ∩ A ⊂ v−1(0) ∩ A = X ∗,

which leads to X ∗ = v̂−1(0) ∩ A. From this equation and
(30), (2) is achieved for O = A. Hence, (G, (x∗j )j∈V)) is
locally clique-rigid. 2

There are two comments on Theorem 2. First, the objec-
tive function is not limited to (25) in this theorem. Hence,
the local clique-rigidity is an essential property of the
network topology, not depending on objective functions.
Second, we do not have to consider any gradient-based
controllers other than the proposed one (19) because if the
framework is locally clique-rigid, the attraction of X ∗ is
achieved by this controller; otherwise, the attraction can-
not be achieved by any other gradient-based controllers.
In this sense, the proposed controller (19) is the best of
all such controllers.

5. NUMERICAL EXAMPLES

The effectiveness of the proposed method is demonstrated
through numerical examples for n = 6 agents in the d = 2-
dimensional space. The control objective is given as (12)
with the desired configuration (x∗i )i∈V ∈ R2×6 in Fig. 2.
The edges of graph G are given as Fig. Fig. 2.

Simulations are carried out for the model (9) with the
distributed, relative controller (11), (19). Figs. 3 and 4
show the simulation results from different initial states.
The trajectories (xi(t))i∈V of agent positions from t =
0 to 20 are drawn by the dotted lines, and the final
positions are described by the squares. Figs. 3 and 4 show
that from any initial states the agents attain the desired
configuration in Fig. 2 with some rotations. The rotations
are determined by the initial positions. Anyway, in any
cases, the control objective (13) is achieved.
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Fig. 2. Desired configuration (x∗i )i∈V ∈ R2×d and the
desired velocity v∗ = [−1 1]⊤
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Fig. 3. Simulation result: case 1
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Fig. 4. Simulation result: case 2

6. CONCLUSION

This paper addressed a formation control problem for
multi-agent systems with non-holonomic constraints un-
der relative measurements. We designed a feedback con-
troller deriving rotational and translational motions ac-
cording to a particular type of formation error. Actually,

this formation error depends only on relative positions in
a local frame, and thus the designed controller is dis-
tributed and relative. Moreover, the formation error is
based on a clique-based function, which yields the best
performance of all distributed, relative, gradient-based
controllers. Next, a necessary and sufficient condition
of graphs was derived with which a desired formation
is achievable. Finally, the effectiveness of the proposed
method was demonstrated by simulations.
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