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Abstract: It is widely known that the classical PID (proportional-integral-derivative) controller
still plays a dominating role in engineering control systems, and that most of the theoretical
studies on PID control focus on linear deterministic systems. In this paper, we will extend
the authors recent theoretical investigation by considering additional uncertainties in the input
channel, and try to establish a theoretical foundation on the PID control for a class of high-
dimensional nonlinear stochastic systems with structural uncertainties consisting of dynamics
uncertainty, diffusion uncertainty and input channel uncertainty. We will construct a three
dimensional parameter set based on the available information, so that under the classical PID
control, the closed-loop control system can be globally stabilized with regulation error tending
to zero in the mean square sense, as long as the three PID parameters are chosen from this set.
We will further show that global stabilization and asymptotic regulation of a class of multi-agent
uncertain nonlinear stochastic systems can also be achieved by uncoupled PID controllers of the
agents.
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1. INTRODUCTION

With the rapid development in information technology,
various advanced control techniques have been proposed
and investigated over the past 60 years. However, the
classical linear proportional-integral-derivative (PID) con-
troller is still found to be a dominating feedback law in en-
gineering control systems (see, e.g. Åström and Hägglund
(1995), Åström et al. (2006), Samad (2017)).

The PID controller is constructed based on the present
(P-term), past (I-term) and future (D-term) control errors
and it does not rely on the precise mathematical models of
the controlled system. The simple and easy-to-use linear
structure of the PID control has shown its supremacy
in real world control applications, however, most of the
practical PID control systems are not well tuned (see,
e.g. O’Dwyer (2006)). In fact, almost all of the existing
tuning methods including the well-known Ziegler-Nichols
rules heavily rely on experience of the operators, which
makes it rather complicated to achieve the desired control
performance. In view of this, extensive research attention
has been paid to the theoretical investigation on PID
control. However, except for a few related investigation
on nonlinear systems (see, e.g. Killingsworth and Krstic
(2006), Xue and Huang (2018)), mostly are focus on linear
deterministic systems (see, e.g. Åström et al. (2006), Silva
et al. (2004)). Furthermore, practical control systems are
bound to contain various uncertainties including random
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noise and hence the random cases also deserve investiga-
tion (see, Cong and Guo (2017), Zhang and Guo (2019a)).

These motivate our investigation on the fundamental the-
ory of PID control(see, e.g. Zhao and Guo (2017a), Zhao
and Guo (2017b), Krstic (2017), Zhang and Guo (2019b),
Cong and Guo (2017),Zhang and Guo (2019a)). For in-
stance, it has been shown in Zhao and Guo (2017b) that
a three dimensional parameter set can be constructed
explicitly within which the PID parameters can be chosen
arbitrarily to achieve global stabilization for a class of
one dimensional uncertain nonlinear systems, and such
result can be extended to stochastic system, see, e.g.Cong
and Guo (2017). In Zhang and Guo (2019b), we proved
that similar results can be obtained for high-dimensional
nonlinear system and the regulation error vanishes ex-
ponentially. Moreover, it has also been shown in Zhang
and Guo (2019a) that such method can be extended to
stochastic system without input channel uncertainty.

The main purpose of the current paper is to extend our
previous results on stochastic nonlinear uncertain systems
to include uncertainty in the input channel. To be specific,
we will construct a three dimensional PID parameters’ set
on the basis of the upper bounds of partial derivatives of
both the drift and diffusion functions, and will show that
the PID controlled closed-loop can be globally stabilized
with exponential convergence rate in the mean square
sense. Moreover, we will show that a similar approach
can be used to deal with a class of multi-agent uncertain
stochastic systems, and will demonstrate that uncoupled
PID controllers have the expected capability in dealing
with coupled nonlinear systems.
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The remainder of this paper is organized as follows.
In Section 2, we will introduce some denotations and
formulate the mathematical problem based on Newton’s
second law. Main results of this paper will be provided in
Section 3, with their proofs given in Section 4.

2. PROBLEM FORMULATION

First, we will give some notations to be used in the rest of
this paper:

Denote R3+ = (0,∞) × (0,∞) × (0,∞). The Euclidean
norm of a vector or matrix is ∥ · ∥. Let Φ : Rn → Rm be a
matrix function defined by

∂Φ(x)

∂x
=


∂Φ1

∂x1
· · · ∂ϕ1

∂xn
...

. . .
...

∂ϕm

∂x1
· · · ∂ϕm

∂xn

 , ∀x ∈ Rn.

Now, consider a moving body in Rn, with its position,
velocity and acceleration denoted by p(t),v(t), and a(t)
respectively. Assume that the moving body is affected
by three kind of external forces: uncertain system force
f(p,v), an unknown disturbance force σ“white noise”,
and the control force Bu, where B ∈ Rn×n is an unknown
positive definite parameter matrix in the input channel
with known lower and upper bounds, i.e., b̄In ≥ B ≥ bIn >
0.

By the well-known Newton’s second law, we have the
following kinetic equation:

ma = f(p,v) +Bu+ σ(p,v)“white noise”, (1)

where m is the mass of the body.

We assume that the control force is produced by a classical
PID controller:

u(t) = kpe(t) + ki

∫ t

0

e(s) ds+ kdė(t), (2)

where kp, ki, kd are the three PID parameters to be de-
signed in the paper, and where e is the control error,
defined by

e(t) = r∗ − p(t),

with r∗ being a given vector-valued setpoint.

The control objective is to design a PID controller to
guarantee that the moving body can be induced to any
setpoint r∗ from any initial position with arbitrary initial
velocity.

In the sequel, we assume that the body has the unit mass
m = 1 for simplicity. Mathematically, the “white noise”
in the continuous-time case can be roughly regarded as
the “derivative” of a standard Brownian motion {ω(t)}t≥0

defined on a complete probability space (Ω,F , P ). Denote
x1 = p and x2 = ṗ, then we have the following corre-
sponding state space equation with PID control:


dx1 = x2dt

dx2 = f(x1,x2, t)dt+Bu(t)dt+ σ(x1,x2, t)dω(t)

u(t) = kpe(t) + ki

∫ t

0

e(s) ds+ kdė(t)

(3)

where x1(0),x2(0) ∈ Rn and e(t) = r∗ − x1(t).

We will show that under the control law (2) with three PID
controller parameters kp, ki, kd chosen from a constructed
set, the position of the body can track a given vector-
valued setpoint r∗ with the regulation error vanishes
exponentially fast in the mean square sense for any initial
position and velocity, as long as both f = f(x1,x2, t) and
σ(x1,x2, t) are continuously differentiable functions with
known upper bounds for their partial derivatives.

3. MAIN RESULTS

Motivated by the investigation of maximum feedback
capability in Xie and Guo (2000), we first define two
function spaces to describe the uncertainty of systems
mathematically as follows:

FM1,M2
=

{
f ∈ C1(R2n × R+,Rn)

∣∣∣∣ ∥∥∥∥ ∂f

∂x1

∥∥∥∥ ≤ M1,∥∥∥∥ ∂f

∂x2

∥∥∥∥ ≤ M2, ∀x1,x2 ∈ Rn, ∀t ∈ R+,

}

PN1,N2 =

{
σ ∈ C1(R2n × R+,Rn)

∣∣∣∣ ∥∥∥∥ ∂σ

∂x1

∥∥∥∥ ≤ N1,∥∥∥∥ ∂σ

∂x2

∥∥∥∥ ≤ N2, ∀x1,x2 ∈ Rn, ∀t ∈ R+,

}
where M1, M2, N1 and N2 are known positive constants,
and C1(R2n × R+,Rn) denotes the space of all functions
from R2n × R+ to Rn which are piecewise continuous in
t and with continuous partial derivatives with respect to
(x1,x2). We further assume that for all t ∈ R+ and
r ∈ Rn, f(r, 0, t) = f(r, 0, 0), σ(r, 0, t) = σ(r, 0, 0) and
σ(r∗, 0, t) = 0.

Next, we introduce the following three-dimensional param-
eter set:

Ωpid =

{
(k̄p, ki, k̄d) ∈ R3+

∣∣∣∣ b2k̄pk̄d − b̄ki −
1

2
N2

1 >

{(bk̄pM1 + bk̄pN1N2 + b̄kiM2 +
1

2
M2N

2
1 )(M1 + bk̄dM2+

N1N2)}
1
2

}
where k̄p = kp − 1

bM1, k̄d = kd − 1
b (M2 +

1
2N

2
2 ).

Below is the main result of this paper:

Theorem 1. Consider the PID controlled uncertain system
(3) with unknown nonlinear function f ∈ FM1,M2 and
σ ∈ PN1,N2 . Then for any M1,M2, N1, N2 > 0, whenever
the controller parameters (kp, ki, kd) are taken such that
(k̄p, ki, k̄d) ∈ Ωpid, the state of the closed-loop control
system (3) will satisfy

lim
t→∞

E∥x1(t)− r∗∥2 = 0, lim
t→∞

E∥x2(t)∥2 = 0,

with exponential convergence rate, for any initial value
x1(0),x2(0) ∈ Rn and any vector-valued setpoint r∗ ∈
Rn.

Remark 1. When σ = 0, i.e. N1 = 0, N2 = 0, and
b̄ = b = 1, Theorem 1 will be degenerated to the special
case considered in Zhang and Guo (2019b).
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Remark 2. It is quite obvious that the set Ωpid defined in
Theorem 1 is an open unbounded set, which gives some
flexibility for the choice of PID parameters. Besides, it is
easy to convince oneself that the feedback gains in the PID
controller are not necessary large.

Remark 3. The upper bounds of the derivatives for both
the drift and diffusion terms may be obtained based on the
physical mechanism or some prior information. Also, when
the upper bounds are not constants, some semi-global
results may be derived (see, e.g.Zhao and Guo (2019)).

Furthermore, we point out that similar results may be got
for a class of coupled multi-agent stochastic systems (see,
Yuan et al. (2018)), where each agent can be described as:

dx1j = dx2jdt,

dx2j = fj(x1,x2, t)dt+Bjuj(t)dt+ σj(x1,x2, t)dω(t),

uj(t) = kjpej(t) + kji

∫ t

0

ej(s) ds+ kjdėj(t),

(4)
where x1j , x2j ∈ Rm and b̄Im ≥ Bj ≥ bIm > 0, j =
1, 2, · · · , n.
Denote

x1 = (xτ
11, x

τ
12, · · · , xτ

1n)
τ , x2 = (xτ

21, x
τ
22, · · · , xτ

2n)
τ ,

f = (fτ
1 , f

τ
2 , · · · , fτ

n )
τ , σ = (στ

1 , σ
τ
2 , · · · , στ

n)
τ .

To deal with this problem, we extend the PID parameters
and the input channel to positive definite matrices as
follows:

kp = diag(k1pIm, k2pIm, · · · , knp Im),

ki = diag(k1i Im, k2i Im, · · · , kni Im),

kd = diag(k1dIm, k2dIm, · · · , knd Im),

B = diag(B1, B2, · · · , Bn),

where kjp, k
j
i , k

j
d > 0, j = 1, 2, · · · , n.

Then kp,ki,kd, B ∈ Rn∗×n∗
, where n∗ = mn.

Next, we introduce the following parameter set:

Ω∗
pid =

{
(k̄p, ∥ki∥ , k̄d) ∈ R3+

∣∣∣∣ b2k̄pk̄d − b̄∥ki∥ −
1

2
N2

1 >

{
(bk̄pM1 + bk̄pN1N2 + b̄∥ki∥M2 +

1

2
M2N

2
1 )(M1 + bk̄dM2

+N1N2)
} 1

2

}
where k̄p = min

j
kjp − 1

bM1, k̄d = min
j

kjd − 1
b (M2 +

1
2N

2
2 )

and ∥ki∥ = max
j

kji .

The following Theorem shows that the uncoupled PID
controllers have the expected capability in dealing with
coupled nonlinear systems.

Theorem 2. Consider the PID controlled stochastic sys-
tems (4) with uncertain functions f ∈ FM1,M2 and σ ∈
PN1,N2 . Then for any M1,M2, N1, N2 > 0, whenever the
controller parameter matrix (kp,ki,kd) are taken such
that (k̄p, ∥ki∥ , k̄d) ∈ Ω∗

pid, the state of the closed-loop

control system (3) will satisfy

lim
t→∞

E∥x1(t)− r∗∥2 = 0, lim
t→∞

E∥x2(t)∥2 = 0,

with exponential convergence rate, for any initial value
x1(0),x2(0) ∈ Rn and any vector-valued setpoint r∗ ∈
Rn.

4. PROOFS OF THE THEOREMS

4.1 Proof of Theorem 1

Proof. Denote ei(t) =
∫ t

0
e(s) ds + (Bki)

−1f(r∗, 0, 0),
e(t) = e(t), ed(t) = ė(t), g1(e, ed, t) = −f(r∗ −
e,−ed, t)+f(r∗, 0, t) and g2(e, ed, t) = −σ(r∗−e,−ed, t),
then (3) can be rewritten as

dei =edt

de =eddt

ded =[g1(e, ed, t)−Bkiei −Bkpe−Bkded]dt

+ g2(e,ed, t)dω(t)

(5)

From f ∈ FM1,M2 , we have g1 ∈ FM1,M2 and g1(0, 0, t) =
0, ∀t > 0. Similarly, it is easy to see that g2 ∈ PM1,M2

and g2(0, 0, t) = 0, ∀t > 0. Hence (0,0,0) is an equilibrium
of (5).

Note that by utilizing the mean value theorem of integral
type (see, e.g. Huang and Liu (2016)), g1(e, ed, t) can be
decomposed as :

g1(e, ed, t)

=[g1(e, 0, t)− g1(0, 0, t)] + [g1(e, ed, t)− g1(e, 0, t)]

=

{∫ 1

0

∂g1(ē, 0, t)

∂ē
dλ

}
e+

{∫ 1

0

∂g1(e, ēd, t)

∂ēd
dλ

}
ed

,β1(e, t)e+ α1(e, ed, t)ed
where ē = λe and ēd = λed.

Notice the fact that g1 ∈ FM1,M2 , we can deduce the upper
bounds of ∥β1(e, t)∥ and ∥α1(e, ed, t)∥ by using Schwarz
inequality:

∥β1(e, t)∥ =

∥∥∥∥∫ 1

0

∂g1(ē, 0, t)

∂ē
dλ

∥∥∥∥
≤

√∫ 1

0

∥∥∥∥∂g1(ē, 0, t)∂ē

∥∥∥∥2 dλ ≤ M1,

Similarly, we can deduce ∥α1(e, ed, t)∥ ≤ M2.

Through the same approach, g2(e, ed, t) can be expressed
as

g2(e, ed, t) , β2(e, t)e+ α2(e, ed, t)ed,

where ∥β2(e, ed, t)∥ ≤ N1 and ∥α2(e, ed, t)∥ ≤ N2.

Hence,the closed-loop equation (5) goes over into:

dx = F (ei, e, ed, t)dt+G(ei, e, ed, t)dω(t) (6)

where

xτ = [eτi , e
τ ,eτd ]

F (ei, e,ed, t) =

[
e
ed

Φ(ei,e, ed, t)

]

G(ei,e, ed, t) =

[
0
0

g2(e, ed, t)

]
where

Φ(ei, e,ed, t) =−Bkiei +
(
−Bkp + β1(e, t)

)
e

+
(
−Bkd + α1(e, ed, t)

)
ed.
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Similar to Reissig et al. (1974) ,we now proceed to show
that the following quadratic form is indeed a Lyapunov
function,

V (x) = xτPx

where the constant matrix P is

P =
1

2

[
µBki Bki εIn
Bki Bkp + µBkd µIn
εIn µIn In

]
, (7)

µ is a constant defined by

µ =
2(b2k̄dk̄p + b̄ki) +N2

1 −M1M2 −N1N2M2

4bk̄p +M2
2

,

and ε is an arbitrarily small positive constant.

It is quite obvious that the matrix P is positive definite
as long as P0 is positive definite, where P0 is a symmetric
matrix defined by

P0 =

[
µBki Bki 0
Bki (Bkp + µBkd) µIn
0 µIn In

]
.

To show P0 is positive definite, we now prove the following
inequalities hold,

µ > 0 (8)

µ < bk̄d (9)

4(−b̄ki + µbk̄p −
1

2
N2

1 )(−µ+ bk̄d)

>(µM2 +M1 +N1N2)
2 (10)

− b̄ki + µbk̄p −
1

2
N2

1 > 0 (11)

From the definition of Ωpid, it is obvious to see that

b2k̄pk̄d − b̄ki −
1

2
N2

1 > 0,

and that

(b2k̄pk̄d − b̄ki −
1

2
N2

1 )
2 > (bk̄pM1 + bk̄pN1N2 + b̄kiM2

+
1

2
M2N

2
1 )(M1 + bk̄dM2 +N1N2) (12)

Consequently, the inequality (9) can be verified since

µ− bk̄d =
1

(4bk̄p +M2
2 )

[−2(b2k̄pk̄d − b̄ki −
1

2
N2

1 )

−N1N2M2 −M1M2 −M2
2 bk̄d] < 0.

Furthermore, by using (12), we have

4(−b̄ki + µbk̄p −
1

2
N2

1 )(−µ+ bk̄d)− (µM2 +M1

+N1N2)
2

=− (4bk̄p +M2
2 )µ

2 + [4(b2k̄pk̄d + b̄ki) + 2N2
1

− 2(M1 +N1N2)M2]µ− (4b̄ki + 2N2
1 )bk̄d

− (M1 +N1N2)
2

=
4

4bk̄p +M2
2

[
(b2k̄pk̄d − b̄ki −

1

2
N2

1 )
2 − (bk̄pM1 + b̄kiM2

+ bk̄pN1N2 +
1

2
M2N

2
1 )(M1 + bk̄dM2 +N1N2)

]
>0.

Thus, we can deduce (10), and consequently (11) follows
from (9) and (10). Additionally, from (11) and the fact
ki, k̄d > 0, we will see (8) is valid.

Let H1 =

 In 0 0

− 1

µ
In In −µIn

0 0 In

 , then we have

H1P0H
τ
1 =

µBki
P ′

In

 ,

where P ′ = Bkp + µBkd − 1
µBki − µ2In.

Since H1 is invertible, we only to show both the matrices
µBki and P ′ are positive definite. Noted that B is positive
definite and µki > 0, thus we only need to verify P ′ is
positive definite.

In fact, from (9) and (11), ∀y ̸= 0, we have

yτP ′y

=yτ (Bkp + µBkd −
1

µ
Bki − µ2In)y

≥ 1

µ
(µbkp + µ2bkd − b̄ki − µ3)∥y∥2 > 0,

which means P ′ is positive definite. As a result, we have
both the matrices P0 and P are positive defintie.

Let γ̄ and γ be the maximum and minimum eigenvalues
of P respectively. Then γ̄ ≥ γ > 0. Hence, we have

γxτx ≤ V (x) ≤ γ̄xτx, (13)

and consequently, V (x) is a positive definite function
which is radically unbounded in x.

Next, we define the differential operator L acts on the
function V (x) associated with the equation (6) as follows:

LV (x) =
∂V

∂t
+

∂V

∂x
F +

1

2
trace[Gτ ∂

2V

∂x2
G].

Then, by simple calculation, we have:

LV (ei,e, ed)

=
∂V

∂t
+

∂V

∂x
F +

1

2
Gτ ∂

2V

∂x2
G

=ε[−kiei
τBei + ei

τ (−Bkp + β1)e+ ei
τ (−Bkd + α1)ed]

− eτ
[
−Bki + µ(Bkp −

β1 + βτ
1

2
)− βτ

2 β2

2

]
e

+ eτ (µα1 + βτ
1 + εIn + βτ

2 α2)ed

− ed
τ

(
−µIn +Bkd −

α1 + ατ
1 + ατ

2α2

2

)
ed

≤− bkiε ∥ei∥
2
+ ε(b̄kp +M1) ∥ei∥ ∥e∥

+ ε(b̄kd +M2) ∥ei∥ ∥ed∥ − [−b̄ki + µ(bkp −M1)

− 1

2
N2

1 ] ∥e∥
2
+ (µM2 +M1 + ε+N1N2) ∥e∥ ∥ed∥

− (−µ+ bkd −M2 −
1

2
N2

2 ) ∥ed∥
2

=− [∥ei∥ , ∥e∥ , ∥ed∥]Q[∥ei∥ , ∥e∥ , ∥ed∥]τ ,

where Q is a symmetric matrix, expressed by
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Q =
bkiε ∗ ∗

−(b̄kp +M1)ε

2
−b̄ki + µbk̄p −

1

2
N2

1 ∗
−(b̄kd +M2)ε

2
−µM2 +M1 +N1N2 + ε

2
−µ+ bk̄d


(14)

Next, we will show that the matrix Q is also positive
definite.

Let H =


1 0 0

b̄kp +M1

2bki
1 0

b̄kd +M2

2bki
0 1

 , then we have

HQHτ =

[
bkiε

Q′ − εC

]
,

where Q′ and C are both symmetric matrices, defined by

Q′ =

−b̄ki + µbk̄p −
1

2
N2

1 ∗
µM2 +M1 +N1N2

2
−µ+ bk̄d

 ,

and

C =


(b̄kp +M1)

2

4bki
∗

(b̄kp +M1)(b̄kd +M2) + 2bki
4bki

(b̄kd +M2)
2

4bki

 .

Noted that H is invertible, thus we only prove Q′ − εC is
positive definite. By using (10) and (11), we have

lim
ε→0+

−b̄ki + µbk̄p −
1

2
N2

1 − (b̄kp +M1)
2

4bki
ε > 0,

lim
ε→0+

det(Q′ − εC) > 0,

which means Q′ − εC is positive definite as long as ε is
small enough. Consequently, the positive definiteness of Q
is valid.

Let λ present the minimum eigenvalue of Q. Thus, we have
λ > 0, since Q is positive definite. Then, it is obvious to
see

LV (x) ≤ −λ(xτx) (15)

Next, by using the Itô formula, we have

dV (x(t)) = LV (x(t))dt+Φ(x(t), t)dω(t),

where Φ(x, t) is expressed as:

Φ(x, t) = (εeτi + µeτ + eτd)(β2(e, t)e+ α2(e, ed, t)ed).

Then, for any T > 0, we have

V (x(T ))

=V (x(0)) +

∫ T

0

LV (x(t))dt+

∫ T

0

Φ(x(t), t)dω(t).
(16)

Noted that, by the boundedness of α2(e, ed, t) and β2(e, t),
we can get

|Φ(x(t), t)|2 = O(∥x(t)∥4).
Hence, by using Theorem 2.4.1 in Mao (2007), it is obvious
to see that

E

∫ T

0

|Φ(x(t), t)|2dt < ∞,

and consequently, we can get

E

∫ T

0

Φ(x(t), t)dω(t) = 0.

By taking mathematical expectation on both sides of (16)
and taking derivative with respect to T, we have

˙(
EV (x(T ))

)
= ELV (x(T )),

thus, by using (13) and (15) we can deduce the following
inequality:

EV (x(t)) ≤ EV (x(0))e−
λ
γ̄ t,

hence, we can get

E∥x(t)∥2 ≤ 1

γ
EV (x(0))e−

λ
γ̄ t, (17)

which means

lim
t→∞

E∥x1(t)− r∗∥2 = 0,

lim
t→∞

E∥x2(t)∥2 = 0,

exponentially fast.

4.2 Proof of Theorem 2

Proof. Similar to the proof of Theorem 1, the system (4)
can be transformed into the following form:

dx = F (ei, e,ed, t)dt+G(ei, e, ed, t)dω(t) (18)

where

F (ei, e,ed, t) =

[
e
ed

Φ(ei,e, ed, t)

]

G(ei,e, ed, t) =

[
0
0

g2(e, ed, t)

]
and

Φ(ei, e,ed, t) =−Bkiei +
(
−Bkp + β1(e, t)

)
e

+
(
−Bkd + α1(e, ed, t)

)
ed.

Similar to the previous proof, we consider the following
quadratic form

V (x) = xτP1x,
where the constant matrix P1 is

P1 =
1

2

[
θBki Bki ε1In∗

Bki Bkp + θBkd θIn∗

ε1In∗ θIn∗ In∗

]
, (19)

θ is a constant defined by

θ =
2(b2k̄dk̄p + b̄ ∥ki∥)−M1M2 +N2

1 −N1N2M2

4bk̄p +M2
2

,

and ε1 is an arbitrarily small positive constant.

Similar to the proof in Theorem 1, the following four
inequities are true:

θ > 0, (20)

θ < bk̄d, (21)

4(−b̄ ∥ki∥+ θbk̄p − N2
1

2
)(−θ + bk̄d)

>(θM2 +M1 +N1N2)
2, (22)

− b̄ ∥ki∥+ θbk̄p > 0, (23)

and consequently, the matrices P1 is positive definite.
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Denote k̄i = min
j

kji .

By simple calculation, the differential operator L acts on
the function V along the trajectories of (18) is as follows:

LV (ei, e,ed)

=
∂V

∂t
+

∂V

∂x
F +

1

2
Gτ ∂

2V

∂x2
G

=− ε1[e
τ
i Bkiei + eτi (−Bkp + β1)e+ eτi (−Bkd + α1)ed]

− eτ
[
−ki + θ(Bkp − β1 + βτ

1

2
)− βτ

2 β2

2

]
e

+ eτ (θα1 + βτ
1 + βτ

2 α2 + ε1In∗)ed

− ed
τ

(
−θIn∗ +Bkd − α1 + ατ

1 + ατ
2α2

2

)
ed

≤− ε1bk̄i ∥ei∥
2
+ ε1(b̄ ∥kp∥+M1) ∥ei∥ ∥e∥

+ ε1(b̄ ∥kd∥+M2) ∥ei∥ ∥ed∥ − [−b̄ ∥ki∥+ θbk̄p

− N2
1

2
] ∥e∥2 + (θM2 +M1 +N1N2 + ε1) ∥e∥ ∥ed∥

− (−θ + bk̄d − N2
2

2
) ∥ed∥2

=− [∥ei∥ , ∥e∥ , ∥ed∥]Q1[∥ei∥ , ∥e∥ , ∥ed∥]τ ,

where Q1 is a symmetric matrix, expressed by
bk̄iε1

−(b̄ ∥kp∥+M1)ε1
2

−(b̄ ∥kd∥+M2)ε1
2

∗ −b̄ ∥ki∥+ θbk̄p − N2
1

2
−θM2 +M1 +N1N2 + ε1

2

∗ ∗ −θ + bk̄d − N2
2

2


Then, we could deduce that the constant matrix Q1 is
positive definite through the same approach used in the
previous proof.

Similar to the proof of Theorem 1, the conclusion of
Theorem 2 could be verified.

5. CONCLUSION

In this paper, we have provided a theoretical analysis
together with an explicit parameters’ design method on
PID control for nonlinear stochastic systems with struc-
tural uncertainties including input channel uncertainty.
It has been shown that based on some prior knowledge
about the upper bounds of the derivatives for both the
drift and diffusion terms, a three dimensional set can be
obtained from which the PID parameters can be chosen
arbitrarily to globally stabilize the nonlinear uncertain
systems with exponentially vanishing regulation errors in
the mean square sense. It has been also shown that for a
class of nonlinearly coupled multi-agent stochastic system-
s, uncoupled PID controllers can be designed to achieve the
desired control performance. We remark that the results
of this paper include the authors’ previously established
results as special cases (Zhang and Guo (2019b), Zhang
and Guo (2019a)). For further investigation, it would be
interesting to consider more complicated situations such
as inputs saturation and time-delays, etc.
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