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Abstract: Grinding plays a vital role in modern gear manufacturing industry while the need for
high quality products is continuously increasing. A methodology for gear grinding monitoring,
exploiting the power of Deep Learning architectures and 2D representations, is presented in
this paper. Vibration signals, measured during the grinding process under healthy and faulty
conditions, are classified with high accuracy. Three types of faults i.e., a high profile form error,
a high lead error, and a high profile slope variation, have been emulated. The Short-Time
Fourier Transform (STFT) of each vibration signal is calculated, and the 2D time-frequency
representations are input to a Deep Convolutional Neural Network (DCNN) for classification.
Different filter sizes are tested, and the classification accuracy of 95.0% has been achieved,
demonstrating the efficiency of the methodology for gear grinding monitoring.

Keywords: Process monitoring, deep learning, convolutional neural network, class activation
map, gear grinding.

1. INTRODUCTION

The concept of Industry 4.0 sparks a revolution in the
manufacturing industry. Traditional industrial automation
is upgrading to a data stream-based, fully connected,
and more flexible manufacturing system, also known as
the smart factory (Albers et al., 2016). Supported by
highly digitalized facilities, advanced sensor technologies
as well as powerful signal processing tools, engineers now
focus more on optimizing the manufacturing processes to
achieve higher quality and accuracy products. Grinding
is one of the most widely applied machining processes.
In the gear manufacturing industry, grinding presents,
compared to other processes, higher abrasives delivering
stability, higher material removal efficiency, and longer
tool life. The performance of the gear grinding process
depends mainly on the condition of the tool, the correct
positioning of the workpiece and the machine stability.
In practice, a lousy execution of grinding will impact
both the gear surface integrity and the geometric accuracy
and will lead to various manufacturing faults, which may
result in low quality gear products and finally in increased
machine noise and reduced machine performance. Gupta
et al. (2017) illustrated that, during the gear grinding
process, several manufacturing faults can occur and can
be classified under three major categories: high profile
form error ffα, high lead error ffβ and high profile slope
variation fhβ. When the defected gears are not identified

on time, they are normally delivered to the customer,
leading to complaints, dissatisfaction, and economic loss.
Therefore there is a strong need for automated systems
that can monitor the grinding process and detect in
almost real-time any abnormalities in the quality of the
produced gears. Strangely enough, until today, only a
limited number of papers on online monitoring of grinding
processes are available. Several frequency domain features
have been proposed by Gryllias et al. (2017) which shed
some light on the study of gear grinding characteristics.
However, due to the high complexity of the grinding
process, extracting such frequency domain features mostly
depends on the diagnostic expertise. Besides, such features
in some cases may have low generalization ability and
therefore might be valid only in specific cases.

Recently, deep learning gained much attention from re-
searchers in different fields. In the area of process moni-
toring, deep learning provokes a leap forward from tradi-
tional engineering crafted features towards intelligent fea-
ture extraction. Thanks to the advantage of self-learning,
an efficient and automatic deep learning architecture can
adaptively capture the representative information from
any input through multiple non-linear transformations and
approximate complex non-linear functions with very small
error (Jia et al., 2016). So far, various attempts have
proved the effectiveness of deep architectures in machine
fault detection and classification, including 1D Convo-
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lutional Neural Networks (CNN) (Zhang et al., 2018b),
deep autoencoder (Chen and Li, 2017) and Long-Short
Term Memory (LSTM) networks (Sang et al., 2018). These
models have been successfully applied in vibration-based
signal classification problems. The usage of 2D images to
feed the deep neural network has been recently exploited
by Fanioudakis et al. (2018) and Huang et al. (2017)
using respectively Short-Time Fourier Transform (STFT)
and Wavelet Transform representations as inputs for fault
classification.

The work of this paper focuses on the monitoring of
gear quality and more specifically on the gear grind-
ing fault identification and classification, exploiting the
power of Deep Convolutional Neural Networks (DCNN).
Gear grinding experiments are conducted with 6 types
of artificial defects embedded, and the vibration signals
are collected during the experiments, which are further
transformed into 2D representations using STFT. The 2D
images are adopted as the inputs of a specially designed
DCNN architecture with selected hyper-parameters. A
comparative analysis is conducted to investigate further
the influence of filter size on the output classification
performance. The testing results show that the proposed
methodology achieves high accuracy in grinding faults
classification. Furthermore, the Gradient-weighted Class
Activation Mapping (Grad-CAM) is used to get more
insights into the network operations.

The rest of the paper is organized as follows: an introduc-
tion of CNN is presented in Section 2, while the method-
ology is briefly presented in Section 3. The detailed ex-
perimental study is discussed in Section 4, and the results
are provided in Section 5. In Section 6, a first effort to
understand the interior of CNN via visualization is demon-
strated. The paper finally closes with some conclusions.

2. THEORETICAL BACKGROUND

CNN is nowadays one of the dominate deep learning
approaches, proposed initially for image processing. So
far, it has been widely and successfully applied in image
classification (Wenhui and Fan, 2017), moving object de-
tection (Zhang et al., 2018a), (Grassi and Grieco, 2003)
and semantic segmentation (Noh et al., 2015).

Fig. 1. Classic CNN structure

A classic CNN structure for classification is formed by
two major modules i.e., the feature extraction and the
classification module, as shown in Fig. 1. In the feature
extraction module, convolutional layers and pooling layers
are combined. The convolutional layer is structured by
a certain number of filter kernels, which represent the
weights in the neural network. These filters are convolved
with the input to extract local features and are followed by
the activation functions, which lead to the output feature

maps. The mathematical description of the convolutional
operation is described by Noh et al. (2015) as following:

X
(m)
k = f (

c∑
c=1

W
(c,m)
k ∗X(c)

k−1 + B
(m)
k ) (1)

where ∗ is the convolution operator; k represents the
number of layers, c is the number of channels, and m is
the number of the filters. Xk−1 denotes the input, and
Xk is the output feature map. Wk is the weight i.e.,
the filter with the corresponding bias Bk. Finally, the
activation function f is applied to the summation of all
convolution operations. A pooling layer is usually set after
the convolutional layer in the CNN architecture. It acts
as the downsampling process to reduce the spatial size of
the feature map. Max-pooling is the most commonly used
pooling method which can be described as:

pl(i,j) = max(i−1)W+1≤t≤jw{αl(i,t)} (2)

where {αl(i,t)} represents the i-th neuron in the t-th frame
of the l layer. W is the width of the pooling region, and t
is the step for each pooling operation. The output of the
max-pooling layer is a maximum local value pl(i,j), which
can be considered as the extracted feature. The purpose
of pooling is to reduce the number of parameters of the
network, meanwhile obtaining location-invariant features.
The classification module is formed by fully connected
layers i.e. dense layers. For most classification problems,
the dense layer usually uses a softmax activation function:

yk =
eak

Σn
i=1e

ai
(3)

where yk is the output of the k-th neuron, and ak is
the input signal from the former layer. Softmax function
is often used in the output layer of the neural network
to give a final probability of the output class. The final
decision of the classifier is made based on this probability.
In the case of multiple convolutional and pooling layers,
CNN is constructed as a DCNN. With the increasing of
the layer depth, more abstract features can be captured
with deeper layer filters. Typically, the number of filters
for each convolutional layer will increase simultaneously
with the depth of layers. Layers with other functions, such
as drop-out layers and batch-normalization layers, can
also be added into the structure for particular purposes.
The training of the DCNN mainly includes three parts:
the loss function, the optimization algorithm, and the
backpropagation process. Among others, the cross-entropy
error and the mean square error are the most widely
used loss functions. After applying the loss function, the
gradient should be calculated to find the fastest descent
using an optimization algorithm.

3. METHODOLOGY

Instead of directly using features extracted from a 1D
vibration signal, the combination of a 2D spectrogram with
a DCNN architecture is used in this paper to detect and
classify gear grinding faults. The flow chart of the proposed
STFT-CNN methodology is shown in Fig. 2. The measured
vibration signal is firstly transformed using the Short-Time
Fourier Transform (STFT) to obtain the spectrogram.
Then the spectrogram is converted to a 2D matrix and
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is used as an input to the DCNN. A sufficient number of
labeled data, including data from all classes, are used for
training. The trained DCNN model can be used for the
identification and classification of process faults. In this
framework, the spectrogram can practically be replaced
by any time-frequency (i.e., Wigner-Ville spectra) or time-
scale representations (i.e., wavelets).

Fig. 2. Flow chart of the proposed methodology

4. EXPERIMENTAL STUDY

To test and evaluate the effectiveness of the abovemen-
tioned methodology, a series of measurements, emulating
healthy and faulty operating conditions, have been per-
formed on an industrial gear grinding system (Fig. 3). The
workpiece is mounted on the spindle, and the grinding
worm moves and machines the workpiece. Three types
of signals are captured simultaneously: the worm speed
signal, the worm current signal, and the vibration signals.
Two accelerometers are mounted on the grinding worm
holder and on the workpiece spindle base, respectively, to
capture the vibration during the grinding process. The
emulated process faults are achieved by adjusting the
operational parameters of the grinding program. The three
types of faults i.e. the ffα, the ffβ, and the fhβ are
emulated by controlling the feed rate, the infeed distance,
and the workpiece eccentric distance respectively. The
detailed implementation and the physical explanation of
these operational parameters can be found in (Gryllias
et al., 2017). Each process fault is realized in two groups
of parameters to simulate two levels of fault severity. In
total, 120 measurements have been captured with 7 labels,
as listed in Table. 1. For each fault type, five sequential
measurements have been captured before redressing the
grinding worm. Due to production needs, a rather lim-
ited dataset has been made available for deep learning
research. Therefore to prevent overfitting on the small
number of training samples, a cross-validation strategy has
been adopted, as described in the following section.

Fig. 3. Gear grinding machine

Table 1. Gear grinding dataset

Label Operation Parameters Number

Healthy Feed rate 0.2 mm/rev; Infeed 0.1 mm 60

Feed 1 Feed rate +0.15 mm/rev 10

Infeed 1 Infeed +0.08 mm 10

Excenter 1 Excenter 20 µm 10

Feed 2 Feed rate +0.30 mm/rev 10

Infeed 2 Infeed +0.15 mm 10

Excenter 2 Excenter 40 µm 10

A vibration signal, captured under normal gear grinding
operation (healthy condition - baseline), is illustrated in
Fig. 4. The signals have been captured from the accelerom-
eter mounted on the grinding worm holder with a sampling
frequency of 25600 Hz. The signal measured at the z-
axis presents higher energy and represents the vibration
characteristics better than the other two axes. For this
reason, only the z-axis signals are used. The accelerometers
record the whole grinding operation, including the run-up
of the grinding machine and its final run down after the
end of the grinding process. The vibration signal, the worm
motor current signal, and the worm motor speed signal (in
RPM) are presented in Fig. 4a. A speed increasing and
decreasing section at the beginning and the end can be
identified. The grinding process takes place only during
the stationary speed condition. Therefore the worm speed
signal is used to remove the starting and ending sections
from the vibration signals to reduce the irrelevant noise, as
shown in Fig. 4b. The spectrogram of the baseline signal,
estimated with an overlap of 1 second, is presented in Fig.
5. Several excited frequency bands can be observed: a)
below 1000 Hz, b) between 3000 and 4000 Hz, c) around
10000 Hz, and d) around 12000 Hz.

(a)

(b)

Fig. 4. Gear grinding signal in normal (healthy) oper-
ation (a) original signals from multiple sensors (b)
segmented vibration signal
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Fig. 5. 2D STFT representation of a healthy baseline signal

5. APPLICATION

Signal processing results show that gear grinding is a
rather complex process due to time-varying cutting forces,
high level of noise, and various interfering parameters. It is
rather difficult to identify different types of faults by signal
processing tools during the grinding process. Therefore
DCNN is adopted in this work to capture the hidden
patterns embedded in the signals and extract information
that can be used for the discrimination of the classes/fault
types. Inspired by the classic LeNet-5, a 5 block DCNN
is built with Keras and Tensorflow. The main structure
of the DCNN is shown in Table. 2. The spectrogram is
initially downsampled to the size of 64×224, which is
selected as a trade-off between computational efficiency
and feature representing ability. The first 4 blocks are
constructed with the same frame: a convolution layer with
a Rectified Linear Unit (ReLU) activation, a max pooling
layer, and a batch normalization layer. The last block
consists of a flatten layer and two dense layers. In order to
conduct the classification, the 2D representations have to
be transformed into 1D before being input to the classifier.
The last dense layer uses softmax as the final activation
function.

Table 2. DCNN architecture

Input 1×64×224

Layer 1: Convolution (stride-1)-6-ReLu

Layer 2: 2×2 Max Pooling-BN

Layer 3: Convolution (stride-1)-6-ReLu

Layer 4: 2×2 Max Pooling-BN

Layer 5: Convolution (stride-1)-12-ReLu

Layer 6: 2×2 Max Pooling-BN

Layer 7: Convolution (stride-1)-12-ReLu

Layer 8: 2×2 Max Pooling-BN

Layer 9: Flatten

Layer 10: Fully Connected (dim-500)-ReLu

Layer 11: Fully Connected (dim-7)-Softmax

The training of the DCNN is realized using the adaptive
moment estimation optimization algorithm (Adam) and
the categorical cross-entropy as a loss function. The selec-
tion of hyper-parameters is one of the toughest challenges
in deep learning research. Szegedy et al. (2016) proposed
that 2×2 max pooling can effectively reduce the scale
of hidden layers, which makes it the common choice for
deep architectures. Zhang et al. (2018b) has reported that

the increasing of kernel numbers can help to increase the
depth of the feature space and results in sufficient learning
of global abstract features. Based on the abovementioned
remarks, the proposed DCNN architecture uses 2×2 as the
size of max pooling and 6-6-12-12 as the kernel depth with
3×3 kernels. Since the total number of the available mea-
surements is relatively limited, a 5-fold cross-validation
approach is adopted to guarantee the generalization per-
formance of the proposed DCNN. For each fold, 96 samples
are used for training, and 24 remain for testing. Training
and testing sets are stratified random split for each label
group. The classification results are presented in Table 3.

Table 3. 5-fold cross validation results

Fold 1 2 3 4 5 Average

Accuracy 91.6% 91.6% 91.6% 95.8% 100.0% 95.0%

It should be noted a priori that 95.8% and 91.6% corre-
spond respectively to 1 and 2 samples of misclassification.
The results show that the proposed DCNN structure is
effective, with an average accuracy of 95.0%. Since the
selection of kernel size has effects on the feature dis-
tribution, 5 DCNN structures, marked from DCNN1 to
DCNN5 with various combinations of kernels, are further
studied to explore the influence of filter sizes to the global
classification accuracy. The results are presented in Table
4.

Table 4. Classification results

Experiment Filter Sizes Average Accuracy

DCNN1 3-3-3-3 95.0%

DCNN2 3-3-3-5 91.6%

DCNN3 3-3-5-5 90.8%

DCNN4 3-5-5-5 79.2%

DCNN5 5-5-5-5 80.3%

It can be found that the classification accuracy of the
smaller filter size structure is better than the large filter
size. Small filters are more suitable to capture the features
from the spectrograms. According to Defferrard et al.
(2016), the use of a stack of multiple small size filters can
reduce the structure complicity significantly compared to
large filters. The accuracy and the loss curves of DCNN1
and DCNN5 with different filter sizes are presented in Fig.
6. The model accuracy of the testing process grows with
training (Fig. 6a). It can be observed that the two curves
almost overlap, highlighting that the model has gained
generalization ability after the training. Fig. 6c shows that
in experiment DCNN5, the accuracy drops after epoch 25.

The confusion matrix of DCNN1 is presented in Fig. 7.
It can be found that the misclassification of each fold
is no more than 1 sample. Considering the amount of
samples in the dataset, this number is acceptable. It
should also be noticed that one sample labelled Feed
1, one labelled Infeed 2, and one labelled Excenter 2
are misclassified as Healthy, while one Healthy and one
Infeed 1 are misclassified both as Excenter 2 during this
experiment. Mathematically speaking, there is a strong
possibility that similar features are extracted for the labels
Healthy and Excenter 2 since they are both misclassified
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(a) (b)

(c) (d)

Fig. 6. Training and testing of DCNN models (a) DCNN1
accuracy curve (b) DCNN1 loss curve (c) DCNN5
accuracy curve (d) DCNN5 loss curve

to each other. On the other hand, based on the comments
of the machine operators, the eccentricity might have been
corrected during the grinding process; therefore, some of
the eccentric samples might be finally healthy.

Fig. 7. Confusion matrix of DCNN1

6. VISUALIZATION

In an effort to understand the classification results of
the structure with different filter sizes, a number of the
trained filters for each layer of DCNN1 and DCNN5 are
visualized and presented in Fig. 8. It has been reported
that the shallow layer filters of CNN depict the edges
of the image and that the deeper ones focus on more
complex textures. Szegedy et al. (2015) have found that
smaller filter sizes could focus on local features. Thus
vast information is extracted, especially in deep layers.
Besides, a smaller filter size could reduce the number of
hyper-parameters to improve computational efficiency. It
can be seen from Fig. 8a that the filters in the first two
convolutional layers of DCNN1 have shown some patterns
along the horizontal direction. The filters in red dotted
boxes show a texture-like spatial arrangement of pixels,

which can be interpreted as feature extraction tools. 5×5
filters also show such pattern, as can be seen in Fig. 8b,
but in less cases. Other filters behave more noisy compared
to the 3×3 filters. The classification results indicate that
the proposed DCNN architecture can generalize to unseen
data. The neural network is regarded as a black-box model,
and its learning process is difficultly interpreted.

(a)

(b)

Fig. 8. Visualization of filters in (a) DCNN1 (b) DCNN5

Recently, several attempts have been proposed targeting
to peek inside the network to understand and obtain
knowledge on what and how the deep networks are learning
from data. Gradient-weighted Class Activation Mapping
(Grad-CAM) is one way to visualize the attention of
the network. It generates a localization map highlighting
important regions based on the gradient information from
the last convolutional layer (Selvaraju et al., 2017). With
the 2D spectrogram input, the Grad-CAM can be used
to trace the discriminative time-frequency regions of the
different classes according to the ground-truth. The Grad-
CAM is derived from the convolutional layer in block 4
of the proposed DCNN architecture. 14 Grad-CAMs from
testing samples of the 7 classes (same class each column)
of DCNN1 and DCNN5 are presented in Fig. 9. The red
color regions represent the attention of the network, and
it can be found that the network is focusing on diverse
regions for samples from different classes. In Fig. 9a, the
attention region of DCNN1 is concentrated for the samples
with the same label. The frequency band below 1kHz is the
decisive area for all classifications. The focused regions of
Feed1, Infeed1, Infeed2, and Excenter 2 are distributed
in the longer area. On the other hand, the attention of
the network is more centralized for Healthy, Feed2, and
Excenter1. The results show that 3×3 filters can capture
the features in the characteristic frequency zone. On the
contrary, the Grad-CAMs of DCNN5, shown in Fig. 9b,
present a widespread of activations with lower intensity of
activation for all labels. It is noticed that samples Run 017,
Run 037, and Run 047 are misclassifications in this case.
Since a larger filter size extends the receptive field, it is
obvious that DCNN5 lacks the ability to capture small and
complex features, and results in more misclassifications
with lower classification accuracy.
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(a)

(b)

Fig. 9. Grad-CAMs of samples in (a) DCNN1 (b) DCNN5

7. CONCLUSION

A novel gear grinding monitoring methodology, exploiting
the power of DCNN and 2D spectrograms, has been
proposed in this paper. The methodology has been tested
and validated on an industrial gear grinding system, and
vibration signals have been classified in 7 classes with an
average accuracy of 95.0%, proving the efficiency of the
method. To understand the influence of the kernel size,
varying sizes of filters are tested, and the results show that
3×3 filters can achieve a better classification performance
compared to 5×5 filters. Moreover, the visualization of
the filters and the Grad-CAM method can provide some
explanation about the results as well as about the learning
process of DCNN. Globally the proposed deep architecture
is proved extremely effective for the process monitoring of
gear manufacturing.
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