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Abstract: A novel adaptive backstepping controller is developed to achieve the asymptotic
synchronization. The designed controller only contains the values of system states, and doesn’t
contain any other prior knowledge of system. Firstly, the designed controller regards the
unknown system nonlinearities and the disturbance of state time-delay as “disturbance-like”
terms, which are guaranteed to be bounded by using the pre-set barrier functions, such that
any prior knowledge of system nonlinearities and state time-delay are released. Then, the
“disturbance-like” terms are compensated adaptively by designing the novel compensator at
each step, such that the synchronization errors are eliminated to zero eventually for each agent.
It is proved that our developed controller guarantees the convergence on the basis of Lyapunov
stability theory. Some simulations are shown to demonstrate the effectiveness and advantages
of the developed method.
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1. INTRODUCTION

The cooperative tracking control of multiagent systems
(MASs) has become a hot topic and has been applied to
many practical areas over the past decades, such as au-
tonomous underwater vehicles, unmanned aerial vehicles
and other intelligent robotic systems (Arcak (2006); Fax
and Murray (2004)). The main task of the cooperative
tracking control is to design a controller only using the
local information, such that the states or outputs of MASs
reach an agreement. Many literatures have extensively
studied the such issues for linear and nonlinear MASs
(Huang Y (2018); Olfatisaber and Murray (2004)). Espe-
cially, to precisely describe the practical systems, which
usually possess high-order dynamics in the real world,
quite a few unknown time-varying high-order nonlinear
MASs cooperative tracking control problems have been
studied, see Liu and Huang (2017); Jie et al. (2015).
Recently, more research results focused on the effects of
time-delay. As is known to all, time-delay widely exists
in physical equipments and it can lead to the instable
of systems (Niculescu (2001)). Many research results for
the cooperative control problems of time-delay MASs
can be found in Lin and Jia (2010); Zhu and Jiang
(2014); Yu et al. (2017). Unfortunately, the aforementioned
works only concerned with either input time-delays or
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communication time-delays which were usually regarded
as the linear terms. In the recent past, the cooperative
control problems of nonlinear multiagent state time-delay
systems have gained more attention (Chen et al. (2014);
Ma et al. (2016); Chen et al. (2018)). The consensus
schemes in Chen et al. (2014) and Ma et al. (2016) were
only suitable to first-order MASs. Chen et al. (2018)
extended the result in Chen et al. (2014)and Ma et al.
(2016) to a class of nonlinear strict-feedback high-order
MASs with state time-delays, where an adaptive neural
controller was constructed. However, the tracking errors
are only limited to a compact domain, and the prior
knowledge of the state time-delay terms should be known
for the designed controller.
In addition, in the aforementioned nonlinear MASs, the
dynamics of agents were usually assumed to be known.
However, it is difficult to establish the accurate system
model for practical MASs. Therefore, the study of coop-
erative tracking control problems for unknown nonlinear
MASs without prior knowledge of system nonlinearities is
a challenging topic. The neural networks (NNs) and fuzzy
logical are employed to approximate the system uncertain
terms, which is usually considered as a continuous func-
tion by giving some assumptions (Das and Lewis (2010);
Hua et al. (2015)). However, some training processes and
external testing signals, which will require excessive com-
putational resources, are necessary for controller design in
these NNs-based and Fuzzy-based adaptive controllers. In
addition, the consensus tracking errors are only limited
to a compact domain, whose size depends on the design
parameters and some unknown bounded terms, and the
transient performance cannot be guaranteed.
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In some control systems with high accuracy requirements,
prescribed performance control (PPC), which uses the pre-
scribed performance functions (PPF) to convert the orig-
inal system into a system with the required performance
constraints, is developed to satisfy the specific performance
requirements (Gao et al. (2018); Hashim et al. (2019)).
It makes the convergence rate no less than a prescribed
value and the maximum overshoot less than a sufficiently
small constant, meanwhile the output or tracking error is
confined within the prescribed performance bounds for all
times. Inspired by PPC, prescribed performance coopera-
tive control for MASs has attracted considerable attention.
Significant strides, including input quantization, hystere-
sis input uncertainties, unknown control directions and
switching networks (Yu et al. (2019); Cui et al. (2018)). In
Gang et al. (2017), the distributed control problem of non-
linear strict-feedback MASs is addressed under directed
and time-invariant communication graphs, such that each
agent can achieve the prescribed performance. However,
these methods can not achieve the asymptotic tracking
with prescribed performance. Recently, in Wang et al.
(2020), asymptotic tracking control problem for a class
of strict-feedback time-varying nonlinear systems with un-
known control directions is studied.
In spite of the progress, there are some problems that need
to be further studied: For high-order nonlinear multia-
gent time-delay systems, can we design a novel controller
without any prior knowledge of system nonlinearities and
state time-delay to achieve the asymptotic tracking with
prescribed performance?
In this paper, we develop a novel adaptive backstepping
control approach to solve this problem. The designed
controller regards the unknown system nonlinearities and
the disturbance of state time-delay as “disturbance-like”
terms, which are guaranteed to be bounded by using
the pre-set constrained functions, such that any prior
knowledge of system nonlinearities and state time-delay
are released. Then, the “disturbance-like” terms are com-
pensated adaptively by designing the novel compensator
at each step, such that the tracking error is confined
within the prescribed performance bounds and eliminated
to zero eventually for each agent. In addition, it should be
pointed out that the developed control scheme releases the
assumption for the available of the differentiable reference
trajectory yr, and only one tuning law is necessary at each
backstepping step.
The rest of this paper is organized as follows. The prelim-
inaries and problem statement are presented in Section 2.
Section 3 shows the developed adaptive control scheme.
Simulation results are given in Section 4 to demonstrate
the effectiveness and advantages of the proposed method.
Section 5 concludes this paper.

2. PRELIMINARIES AND PROBLEM STATEMENT

2.1 Graph theory

In this paper, a directed graph G ≜ (V, E), where
V ≜{1, 2, . . . , N} denotes the set of nodes and E ⊆ V × V
describes the set of edges, is defined to narrate the commu-
nication topology among N agents. Meanwhile, an ordered
pair of distinct node ξig = (i, g), where ξig = (i, g) ∈ E

if and only if node i can receive information from g,
is defined to represent the directed edge. Additionally,
A = (aig)N×N is defined as the adjacency matrix asso-
ciated with G, where (i, g) ∈ E ⇔ aig > 0, and aig = 0
otherwise. Moreover, the graph does not contain repeated
edges or self-loops. The set of neighbors of the i-th agent is
denoted by Ni = {g ∈ V∥(i, g) ∈ E , g ̸= i}. The in-degree
matrix is defined as D = diag(d1, . . . , dN ) ∈ RN×N , where
di =

∑
g∈Ni

aig. The Laplacian matrix of G is defined as
L = D − A. A path is a sequence of ordered edges, e.g.,
(i1, i2), (i2, i3), . . . , (ik−1, ik), and is called a directed path
from node ik to node i1. The directed graph contains a
directed spanning tree if there exists at least one agent
that has directed paths to all other agents.

A graph Ḡ ≜ (V̄, Ē), where V̄ ≜ {0, 1, 2, . . . , N} and Ē ⊆
V̄ × V̄, is defined to depict the relationship among N fol-
lowers and leader(labeled by 0). B = diag{b1, b2, . . . , bN}
is defined to model the relationship between the leader and
each follower, i.e., bi > 0 if the agent i can receive infor-
mation from leader, and bi = 0 otherwise. The following
assumption is needed in this paper.
Assumption 1. Ḡ contains a directed spanning tree with
the leader as the root node.

2.2 Problem Statement

Consider a class of nonlinear state time-delay MASs, which
consists of one leader and N followers. The dynamics of
the i-th follower is{

ẋi,j(t) = xi,j+1(t) + fi,j(x̄i,j(t)) + pi,j(x̄i,j(t− τi,j))
ẋi,n(t) = ui(t) + fi,n(x̄i,n(t)) + pi,n(x̄i,n(t− τi,n))
yi(t) = xi,1(t), i = 1, . . . , N ; j = 1, . . . , n− 1

(1)

where n describes the order of the i-th follower; N de-
scribes the number of the followers in system; ui ∈ ℜ
and yi ∈ ℜ describe the control input and the output
of the i-th follower; x̄i,j = [xi,1, . . . , xi,j ]

T ∈ ℜj and
x̄i,n = [xi,1, . . . , xi,n]

T ∈ ℜn are the system states; The
system nonlinearities fi,j(·), pi,j(·) : ℜj → ℜn denote the
unknown smooth functions. We assume that the system
nonlinearities fi,j(x̄i,j(t)) satisfy the inequality |fi,j(·)| ≤
f̄i,j(·), i = 1, 2, . . . , N ; j = 1, 2, . . . , n, where f̄i,j(·) is
continuous non-negative functions. τi,j is the unknown
state time-delay, and we assume that τi,j is bounded and
τi,j < τi,max is satisfied (τi,max is a known constant).
We assume that the time-delay function pi,j(·) satisfies
the inequality ∥pi,j(·)∥ ≤ p̄i,j(·), where p̄i,j(·) is bounded
positive smooth function.
The objective of this paper is to develop a novel adaptive
controller ui for state time-delay MASs (1) without any
prior knowledge of system nonlinearities, such that: (A)
The state error zi,j , i = 1, . . . , N ; j = 1, . . . , n of each agent
satisfies |zi,j | < ki. zi,j will be defined later, ki(t) is the
prescribed performance function; (B) The synchronization
error asymptotically converges to zero, which means that
limt→∞ ∥ye∥ → 0. ye = y − 1Nyr is defined to denote the
synchronization error, where yr is the desired trajectory,
y = [y1, y2, . . . , yN ]T . 1N is defined as 1N = [1, 1, . . . , 1]T .
The signal yr of leader is a pre-set, smooth and bounded
function. ẏr is bounded but may be not available. Unlike
the requirements for the smooth and bounded high order
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derivatives of yr in existing backstepping-like approaches,
the high order derivatives of yr is only needed to be
bounded but not necessary to be available in our method.
Lemma 1. (Das and Lewis (2010)) Assumption 1 ensures
∥ye∥ ≤ ∥z1∥/⨿(L + B), where ⨿(L + B) is the minimum
singular value of L + B, and z1 = [z1,1, z2,1, . . . , zN,1]

T

will be defined later as the local tracking error. The
synchronization problem can be solved if the local tracking
error is small enough, i.e., ∥z1∥ → 0 ⇒ ∥ye∥ → 0.
Actually, ye is suitable for analysis, but it cannot be used
as a feedback signal in the controller due to the influence
of communication topology. Local information of agent i
(zi, i = 1, 2, . . . , N) can be used in the controller.
Lemma 2. (Li and Yang (2016); Song et al. (2019)) For
any w ∈ ℜ, there is a constant ϵ > 0 satisfying the
inequality 0 ≤ |w| − w2

√
w2+ϵ2

≤ ϵ.

2.3 Prescribed Performance Function

In this subsection, the PPF is introduced. PPF is usually
designed as a monotone exponentially decreasing time
function, which starts within a predefined bigger set and
reduces to a given smaller set with a systematic manner. In
this paper, the smooth monotone exponentially decreasing
function is defined as

ρi,j(t) = (ρ0,i,j − ρ∞,i,j) exp(−ai,jt) + ρ∞,i,j (2)
where ρi,j(t) : ℜ+ → ℜ+; ρ0,i,j is the initial value
of ρi,j(t), and ρ∞,i,j represents the ultimate value of
ρi,j(t); ai,j denotes the damped coefficient. It is clear that
limt→∞ ρi,j(t) → ρ∞,i,j . The bounds of output constrained
state errors zi,j(t) for all t ≥ 0 can be described as

−λi,jρi,j(t) < zi,j(t) < ρi,j(t), if zi,j(0) ≥ 0 (3)

−ρi,j(t) < zi,j(t) < λi,jρi,j(t), if zi,j(0) < 0 (4)
where 0 ≤ λi,j ≤ 1. A transformed error is defined as

ηi,j :=
zi,j
ki,j(t)

; ki,j(t) = bk̄i,j(t) + (1− b)ki,j(t) (5)

where b = 1 if zi,j(t) ≥ 0, and b = 0 if zi,j(t) < 0. k̄i,j(t)
and ki,j(t) are defined as: if zi,j(0) ≥ 0, k̄i,j(t) = ρi,j(t),
ki,j(t) = −λi,jρi,j(t), otherwise, k̄i,j(t) = λi,jρi,j(t),
ki,j(t) = −ρi,j(t).
Lemma 3. (Han and Lee (2014)) The inequality 0 < ηi,j <
1 (prescribed performance) can be guaranteed if and only
if ρ0,i,j , ρ∞,i,j , ai,j and λi,j satisfy (3) and (4).

3. DESIGN OF DISTRIBUTED ADAPTIVE
CONTROLLER

In this section, a novel adaptive controller is developed by
using barrier Lyapunov functions to achieve the asymp-
totic cooperative tracking performance within PPF.
The cooperative tracking control design will become more
difficult owing to the unknown terms fi,j(·), pi,j(·), and
unknown time delay τi,j are included in the MASs (1).
Moreover, the state xi,j(t − τi,j) is uncertain because the
delay term τi,j is unknown. Thus, xi,j(t− τi,j) can not be

directly used in the controller design. In order to handle
these problems, some existing papers approximate the
uncertain nonlinear dynamics by using the approximation
property of NNs or Fuzzy logical, and compensate the
uncertainties of unknown time delay by using appropriate
Lyapunov–Krasovskii functional. However, some training
processes and external testing signals are necessary for
controller design in these NNs-based and Fuzzy-based
adaptive controllers. The tracking errors are only limited
to a compact domain, and the transient performance
cannot be guaranteed. In addition, the prior knowledge
of p̄i,j(·) should be known for the designed controller.
In this paper, the designed controller regards the unknown
system nonlinearities and the disturbance of state time-
delay as “disturbance-like” terms. And a novel compen-
sator is designed to compensate the “disturbance-like”
terms adaptively. The barrier functions are used as Lya-
punov function to design the controller such that the pre-
scribed performance is guaranteed. Moreover, the designed
controller doesn’t require any prior knowledge of fi,j(·),
pi,j(·), and the state time-delay term τi,j .
Backstepping approach is used to construct the controller
for each agent.
step (i, 1): The first change of coordinates are defined as

zi,1 =
∑
g∈Ni

aig(xi,1 − xg,1) + bi(xi,1 − yr)

−ϱ(t)
[ ∑
g∈Ni

aig(x
0
i,1 − x0g,1) + bi(x

0
i,1 − y0r)

]
ηi,1 :=

zi,1
ki,1

; χi,1 =
ηi,1

1− η2i,1
i = 1, 2, . . . , N (6)

where x0i,1, x0g,1, y0r denote the initial values of the xi,1,
xg,1, yr, respectively; ϱ(t) is a tuning function, and is
used to compensate the influence of initial state errors.
Thus, in our algorithm, we assume that the information
of the initial condition of the each agent is known and can
be transferred to other agents. In this paper, the tuning
function ϱ(t) is defined as ϱ(t) = e−t. It is obvious that
both ϱ(t) and ϱ̇(t) are bounded. ki,1(t) is defined in (5).
The first virtual controller αi,1 of the i-th agent and the
corresponding adaptive compensator are designed as

αi,1 =
−1

bi + di
χi,1

(
ψi,1 +

ιi,1M̂i,1√
χ2
i,1 + σ2

i,1(t)

)

+

∑N
g=1 aigxg,2

bi + di
(7)

˙̂
M i,1 =

βi,1χ
2
i,1√

χ2
i,1 + σ2

i,1(t)
, M̂i,1(0) ≥ 0 (8)

where M̂i,1 is the estimated value of Mi,1, which will be
specified later; M̂i,1(0) is the initial condition of M̂i,1;
ψi,1, ιi,1 are positive constants; σi,1(t) is a positive func-
tion. There are two positive constants σi,1,1 and σi,1,2,
which have limt→∞

∫ t

0
σi,1(ι) dι ≤ σi,1,1 < +∞ and

|σ̇(t)| ≤ σi,1,2 < +∞. βi,1 is a positive constant.
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step (i, j(j = 2, . . . , n−1)): The j-th change of coordinates
are defined as

zi,j = xi,j − αi,j−1 − ϱ(t)x0i,j

ηi,j :=
zi,j
ki,j

; χi,j =
ηi,j

1− η2i,j
i = 1, 2, . . . , N (9)

where x0i,j denotes the initial values of the xi,j ; αi,j−1

represents the virtual control law at the (j − 1)-th step
of the i-th agent; ki,j(t) is defined in (5).
The j-th virtual controller αi,j of the i-th agent and the
corresponding adaptive compensator are designed as

αi,j =−χi,j

(
ψi,j +

ιi,jM̂i,j√
χ2
i,j + σ2

i,j(t)

)
(10)

˙̂
M i,j =

βi,jχ
2
i,j√

χ2
i,j + σ2

i,j(t)
, M̂i,j(0) ≥ 0 (11)

where M̂i,j is the estimated value of Mi,j , which will be
specified later; ψi,j , ιi,j are positive constants; σi,j(t) is a
positive function. There are two positive constants σi,j,1
and σi,j,2, which have limt→∞

∫ t

0
σi,j(ι) dι ≤ σi,j,1 < +∞

and |σ̇(t)| ≤ σi,j,2 < +∞. M̂i,j(0) is the initial condition
of M̂i,j ; βi,j is a positive constant.
step (i, n): The n-th change of coordinates are defined as

zi,n = xi,n − αi,n−1 − ϱ(t)x0i,n

ηi,n :=
zi,n
ki,n

; χi,n =
ηi,n

1− η2i,n
i = 1, 2, . . . , N (12)

where x0i,n denotes the initial values of the xi,n, respec-
tively; αi,n−1 represents the virtual control law at the
(n− 1)th step of the i-th agent; ki,n(t) is defined in (5).
The actual controller ui of the i-th agent and the corre-
sponding adaptive compensator are designed as

ui =−χi,n

(
ψi,n +

ιi,nM̂i,n√
χ2
i,n + σ2

i,n(t)

)
(13)

˙̂
M i,n =

βi,nχ
2
i,n√

χ2
i,n + σ2

i,n(t)
, M̂i,n(0) ≥ 0 (14)

where χi,n =
ηi,n

1−η2
i,n

; M̂i,n is the estimated value of
Mi,n, which will be specified later; ψi,n, ιi,n are positive
constants. There are two positive constants σi,n,1 and
σi,n,2, which have limt→∞

∫ t

0
σi,n(ι) dι ≤ σi,n,1 < +∞ and

|σ̇(t)| ≤ σi,n,2 < +∞. M̂i,n(0) is the initial condition of
M̂i,n; βi,n is a positive constant.
The following theorem illustrates that the main control
objective of MASs (1) can be achieved by using the
developed control scheme.
Theorem 1. For high-order nonlinear multiagent time-
delay systems (1), the controller (13), the virtual control
laws (7), (10), and the adaptive compensators (8), (11),

(14) can guarantee that: i) All signals of the resulting
closed loop system are bounded; ii) The state error zi,j , i =
1, . . . , N ; j = 1, . . . , n of each agent satisfy |zi,j | < ki,j ;
iii) The output synchronization error ye converges to zero
asymptotically, i.e., z1 → 0 ⇒ ye → 0 for i = 1, 2, . . . , N .
z1 = [z1,1, z2,1, . . . , zN,1].

Proof: It is clear that the virtual control laws αi,1, . . . , αi,n

and the actual control law ui of the i-th agent can be de-
scribed as function of the vector Si = [M̂i,1, . . . , M̂i,n, ηi,1,
. . . , ηi,n] as follows

αi,1 := α∗
i,1(t, M̂i,1, ηi,1)

αi,j := α∗
i,j(t, M̂i,j , ηi,j)

ui := u∗i (t, M̂i,n, ηi,n)

In addition, the states xi,1, . . . , xi,n of the i-th agent can
be described as

xi,1 =
1

bi + di

{
ki,1ηi,1 +

N∑
g=1

aigxg,1 + biyr

+ϱ(t)

[ ∑
g∈Ni

aig(x
0
i,1 − x0g,1) + bi(x

0
i,1 − y0r)

]}
:= x∗i,1(t, ηi,1)

xi,j = ki,jηi,j + αi,j−1 + ϱ(t)x0i,j

:= x∗i,j(t, M̂i,j−1, ηi,j−1, ηi,j), j = 2, . . . , n.

Thus, we have

żi,1 = (bi + di)
{
x∗i,2(t) + fi,1(x

∗
i,1(t))

+pi,1(x
∗
i,1(t− τi,1))

}
−

N∑
g=1

aigẋg,1 + biẏr

−ϱ̇(t)
[ ∑
g∈Ni

aig(x
0
i,1 − x0g,1) + bi(x

0
i,1 − y0r)

]
żi,j = x∗i,j+1(t) + fi,j(x̄

∗
i,j(t))

+pi,j(x̄
∗
i,j(t− τi,j))−

∂α∗
i,j−1

∂t

−
∂α∗

i,j−1

∂M̂i,j−1

˙̂
M i,j−1 − ϱ̇(t)x0i,j , j = 2, . . . , n− 1

żi,n = u∗i + fi,n(x̄
∗
i,n(t) + pi,n(x̄

∗
i,n(t− τi,n))

−
∂α∗

i,n−1

∂t
−
∂α∗

i,n−1

∂M̂i,n−1

˙̂
M i,n−1 − ϱ̇(t)x0i,n

where x̄∗i,j = [x∗i,1, . . . , x
∗
i,j ], j = 1, . . . , n.

Consequently, the closed loop system of the vector Si is
written as

˙̂
M i,j =

βi,jχ
2
i,j√

χ2
i,j + σ2

i,j(t)

:= hi,j(t, ηi,j) j = 1, . . . , n.

η̇i,1 =
1

ki,1

{
żi,1 − k̇i,1ηi,1

}
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:= hi,n+1(t, M̂i,1, ηi,1, ηi,2)

η̇i,j =
1

ki,j

{
żi,j − k̇i,jηi,j

}
:= hi,n+j(t, M̂i,1, . . . , M̂i,j , ηi,1, . . . , ηi,j+1)

j = 2, . . . , n− 1

η̇i,n =
n

ki,n

{
żi,n − k̇i,nηi,n

}
:= hi,2n(t, M̂i,1, . . . , M̂i,n, ηi,1, . . . , ηi,n)

Hence, the Ṡi can be written as

Ṡi = hi(t, Ṡi)

=


hi,1(t, ηi,1)

. . .
hi,n(t, ηi,n)

hi,n+1(t, M̂i,1, ηi,1, ηi,2)
. . .

hi,2n(t, M̂i,1, . . . , M̂i,n, ηi,1, . . . , ηi,n)

 (15)

Furthermore, define the open set:

Ωi = Rn × (−1, 1)× . . .× (−1, 1)︸ ︷︷ ︸
n−times

(16)

It is clear that Si(0) = [M̂0
i,1, . . . , M̂

0
i,n, 0, . . . , 0] ∈ Ωi. The

set Ωi is nonempty and open. The constrains function
ki,j , j = 1, . . . , n have been selected to satisfy ki,j(0) >
zi,j(0), j = 1, . . . , n. Thus, |ηi,j(0)| < 1, j = 1, . . . , n,
which results in ηi,j(0) ∈ Ωi. Meanwhile, hi(t, Ṡi) : R+ ×
Ωi → R2n is piecewise continuous in t and locally Lipschitz
in Ωi. Owing to the fact that the desired trajectory yr, the
constrained functions ki,j , j = 1, . . . , n, and the tuning
function ϱ(t) are bounded and differentiable, the nonlin-
earities fi,j , qi,j are continuously differentiable functions,
the actual control laws αi,j , j = 1, . . . , n−1 and the actual
control law ui are smooth over Ωi. According to Theorem
in Sontag (1990), the conditions on hi guarantees the
existence and uniqueness of a maximal solution Si on the
time interval [0, tmax).
Next, seeking a contradiction. Consider a barrier Lya-
punov function candidate Vi,j as follows.

Vi,j =
1

2
log

1

1− η2i,j
+
ιi,jρi,j
2βi,j

M̃2
i,j (17)

where M̃i,j =Mi,j−M̂i,j ; ρi,j is an unknown constant and
will be specified later. It is clear that Vi,j , i = 1, . . . , N ; j =
1, . . . , n are positive definite and continuously differen-
tiable in the set Ωi.
step (i, 1): The time derivative of Vi,1 leads to

V̇i,1 =
χi,1

ki,1

(
(bi + di)

(
zi,2 + αi,1 + ϱ(t)x0i,2

)
+(bi + di)

(
fi,1(x̄i,1(t)) + pi,1(x̄i,1(t− τi,1))

)
−

N∑
g=1

aigxg,2 −
N∑

g=1

aigfg,1(x̄g,1(t))

−
N∑

g=1

aigpg,1(x̄g,1(t− τg,1))− biẏr

−ϱ̇(t)Q0
i,1 −Ki,1zi,1

)
− ιi,1ρi,1

βi,1
M̃i,1

˙̂
M i,1 (18)

where Q0
i,1 =

∑
g∈Ni

aig(x
0
i,1 − x0g,1) + bi(x

0
i,1 − y0r) is a

constant; Ki,1 =
k̇i,1

ki,1
.

Substituting the virtual control law (7) into (18), it yields

V̇i,1 ≤−ψi,1Hi,1χ
2
i,1 −

ιi,1Hi,1χ
2
i,1M̂i,1√

χ2
i,1 + σ2

i,1(t)
+ Fi,1|χi,1|

− ιi,1ρi,1
βi,1

M̃i,1
˙̂
M i,1 (19)

where Hi,1 = 1
ki,1

, and Fi,1 = 1
ki,1

(∣∣(bi + di)f̄i,1(x̄i,1(t))
∣∣+∣∣zi,2∣∣ + ∣∣∑N

g=1 aig f̄g,1(x̄g,1(t))
∣∣ + ∣∣∑N

g=1 aigp̄g,1(x̄g,1)
)∣∣ +∣∣(bi + di)ϱ(t)x

0
i,2

∣∣ +
∣∣Ki,1zi,1

∣∣ +
∣∣p̄i,1(x̄i,1)∣∣ +

∣∣biẏr∣∣ +∣∣ϱ̇(t)Q0
i,1

∣∣.
It is known that |ηi,j | < 1, ki,1, k̇i,1, yr, ẏr, ϱ, ϱ̇, xi,1 are
bounded. We can obtain that 0 ≤ Hi,1,L ≤ Hi,1 ≤
Hi,1,U and 0 ≤ Fi,1,L ≤ Fi,1 ≤ Fi,1,U , where Hi,1,L,
Hi,1,U ,Fi,1,L,Fi,1,U are unknown constants. Thus, substi-
tuting the corresponding adaptive compensator (8) into
(19) and using the Lemma2, we have

V̇i,1 ≤−ψi,1Hi,1,Lχ
2
i,1 −

ιi,1ρi,1χ
2
i,1Mi,1√

χ2
i,1 + σ2

i,1(t)

+ιi,1ρi,1Mi,1|χi,1|
≤ −ψi,1Hi,1,Lχ

2
i,1 + Fi,1,Uσi,1(t) (20)

where Mi,1 :=
Fi,1,U

Hi,1,Lιi,1
, ρi,1 := Hi,1,L.

Integrating (20) over [0, t], it yields

Vi,1(t) +

t∫
0

ψi,1Hi,1,Lχ
2
i,1(s)ds ≤

Vi,1(0) + Fi,1,U

t∫
0

σi,1(s)ds,∀t ∈ [0,+∞). (21)

which indicates that

1

2
log

1

1− η2i,1
≤ Vi,1 ≤ Vi,1(0) + Fi,1,Uσi,1,1 = Di,1

ιi,1ρi,1
2βi,1

M̃2
i,1 ≤ Vi,1 ≤ Di,1.

Thus, we can obtain

|ηi,1| ≤
√
1− e−2Di,1 ≤ 1

|M̂i,1| ≤

√
2βi,1Di,1

ιi,1ρi,1
+Mi,1.

Then, it deduces that αi,1 and xi,2 are bounded.
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step (i, j(j = 2, . . . , n− 1)): Taking the time derivative of
Vi,j , it yields

V̇i,j =
χi,j

ki,j

((
zi,j+1 + αi,j + ϱ(t)x0i,j+1

)
+fi,j(x̄i,j(t)) + pi,j(x̄i,j(t− τi,j))− α̇i,j−1

−ϱ̇(t)x0i,j −Ki,jzi,j

)
− ιi,jρi,j

βi,j
M̃i,j

˙̂
M i,j (22)

where Ki,j =
k̇i,j

ki,j
.

Employing the virtual control law (10), we have

V̇i,j ≤−ψi,jHi,jχ
2
i,j −

ιi,jHi,jχ
2
i,jM̂i,j√

χ2
i,j + σ2

i,j(t)
+ Fi,j |χi,j |

− ιi,jρi,j
βi,j

M̃i,j
˙̂
M i,j (23)

where Hi,j = 1
ki,j

, Fi,j = 1
ki,j

(∣∣zi,j+1

∣∣ + ∣∣ϱ(t)x0i,j+1

∣∣ +∣∣f̄i,j(x̄i,j)∣∣+ ∣∣p̄i,j(x̄i,j)∣∣+ ∣∣α̇i,j−1

∣∣+ ∣∣ϱ̇(t)x0i,j∣∣+ ∣∣Ki,jzi,j
∣∣).

It is known that |ηi,j | < 1, ki,j , k̇i,j , yr, ẏr, ϱ, ϱ̇, xi,1, . . . , xi,j ,
α̇j−1 are bounded. We can obtain that 0 ≤ Hi,j,L ≤
Hi,j ≤ Hi,j,U and 0 ≤ Fi,j,L ≤ Fi,j ≤ Fi,j,U , where
Hi,j,L,Hi,j,U ,Fi,j,L,Fi,j,U are unknown constants.
Next, employing (11) and Lemma2, (23) becomes

V̇i,j ≤−ψi,jHi,j,Lχ
2
i,j −

ιi,jρi,jχ
2
i,jMi,j√

χ2
i,j + σ2

i,j(t)

+ιi,jρi,jMi,j |χi,j |
≤ −ψi,jHi,j,Lχ

2
i,j + Fi,j,Uσi,j(t) (24)

where Mi,j :=
Fi,j,U

Hi,j,Lιi,j
, ρi,j := Hi,j,L.

Integrating (24) over [0, t], it yields

Vi,j(t) +

t∫
0

ψi,jHi,j,Lχ
2
i,j(s)ds ≤

Vi,j(0) + Fi,j,U

t∫
0

σi,j(s)ds,∀t ∈ [0,+∞)

j = 2, . . . , n. (25)
which indicates that

1

2
log

1

1− η2i,j
≤ Vi,j ≤ Vi,j(0) + Fi,j,Uσi,j,1 = Di,j

ιi,jρi,j
2βi,j

M̃2
i,j ≤ Vi,j ≤ Di,j , j = 2, . . . , n.

Thus, we can obtain

|ηi,j | ≤
√
1− e−2Di,j ≤ 1

|M̂i,j | ≤

√
2βi,jDi,j

ιi,jρi,j
+Mi,j , w = 2, . . . , n.

Then, it deduces that αi,j and xi,j+1 are bounded. Differ-
entiating αi,j , we have

α̇i,j =−
{
χ̇i,j

(
ψi,j +

ιi,jM̂i,j√
χ2
i,j + σ2

i,j(t)
−

ιi,jM̂i,jχ
2
i,j

(χ2
i,j + σ2

i,j(t))
3
2

)
+ χi,j

(
ιi,jβi,jχ

2
i,j

χ2
i,j + σ2

i,j(t)
−

ιi,jM̂i,jσi,j(t)σ̇i,j(t)

(χ2
i,j + σ2

i,j(t))
3
2

)}
,∀t ∈ [0, tmax]

j = 2, . . . , n− 1 (26)

The time derivative of χi,j is

|χ̇i,j | ≤
1 + η2i,j

ki,j(1− η2i,j)
2

(∣∣zi,j+1

∣∣+ ∣∣f̄i,j(x̄i,j)∣∣+ ∣∣αi,j

∣∣
+
∣∣p̄i,j(x̄i,j)∣∣+ ∣∣ϱ̇(t)x0i,j∣∣+ ∣∣Ki,jzi,j

∣∣) (27)

which is straightforward to deduce the boundedness of χ̇i,j .
Immediately, α̇i,j is also bounded.
step (i, n): The time derivative of Vi,n is

V̇i,n =
χi,n

ki,n

(
ui + fi,n(x̄i,n(t))− α̇i,n−1

+pi,n(x̄i,n(t− τi,n))− ϱ̇(t)x0i,n −Ki,nzi,n

)
− ιi,nρi,n

βi,n
M̃i,n

˙̂
M i,n (28)

where Ki,n =
k̇i,n

ki,n
.

Substituting the actual control law (13) into (28), it follows
that

V̇i,n ≤−ψi,nHi,nχ
2
i,n −

ιi,nHi,nχ
2
i,nM̂i,n√

χ2
i,n + σ2

i,n(t)
+ Fi,n|χi,n|

− ιi,nρi,n
βi,n

M̃i,n
˙̂
M i,n (29)

where Hi,n = 1
ki,n

, and Fi,n = 1
ki,n

(∣∣f̄i,n(x̄i,n(t))∣∣ +∣∣p̄i,n(x̄i,n)∣∣+ ∣∣α̇i,n−1

∣∣+ ∣∣ϱ̇(t)x0i,n∣∣+ ∣∣Ki,nzi,n
∣∣).

Based on the fact that |ηi,n| < 1, ki,n, k̇i,n, yr, ẏr, ϱ, ϱ̇, xi,1,
. . . , xi,n, α̇n−1 are bounded, we can know that 0 ≤
Hi,n,L ≤ Hi,n ≤ Hi,n,U and 0 ≤ Fi,n,L ≤ Fi,n ≤ Fi,n,U ,
where Hi,n,L,Hi,n,U ,Fi,n,L,Fi,n,U are unknown constants.
Furthermore, employing (14), (29) becomes

V̇i,n ≤−ψi,nHi,n,Lχ
2
i,n −

ιi,nρi,nχ
2
i,nMi,n√

χ2
i,n + σ2

i,n(t)

+ιi,nρi,nMi,n|χi,n|
≤ −ψi,nHi,n,Lχ

2
i,n + Fi,n,Uσi,n(t) (30)

where Mi,n :=
Fi,n,U

Hi,n,Lιi,n
, ρi,n := Hi,n,L.

Integrating (20), (24) and (30) over [0, t], it yields

Vi,n(t) +

t∫
0

ψi,nHi,n,Lχ
2
i,n(s)ds ≤
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Vi,n(0) + Fi,n,U

t∫
0

σi,n(s)ds,∀t ∈ [0,+∞) (31)

which indicates that

1

2
log

1

1− η2i,n
≤ Vi,n ≤ Vi,n(0) + Fi,n,Uσi,n,1 = Di,n

ιi,nρi,n
2βi,n

M̃2
i,n ≤ Vi,n ≤ Di,n.

Thus, we can obtain

|ηi,n| ≤
√
1− e−2Di,n ≤ 1

|M̂i,n| ≤

√
2βi,nDi,n

ιi,nρi,n
+Mi,n.

Thus, there exists a compact subset Ωs
i = [−M̂i,1, M̂i,1]×

. . .× [−M̂i,n, M̂i,n]× [−ηi,1, ηi,1]× . . .× [−ηi,n, ηi,n] ⊂ Ωi

such that the maximal solution of (15) satisfies Si ∈ Ωs
i

for all t ∈ 0, tmax). As stated by the result of Bech-
lioulis and Rovithakis (2016), it follows that |ηi,j | ≤
1, j = 1, 2, . . . , n, ∀t ∈ [0,+∞). Consequently, we can
show that αi,1, . . . , αi,n−1, ui, xi,1, . . . , xi,n, M̂i,1, . . . , M̂i,n

are bounded.
Moreover, from (31), we have

t∫
0

ψi,1Hi,1,Lχ
2
i,1(s)ds ≤ Vi,1(0) + Fi,1,Uσi,1,1 (32)

By using the Barbalat lemma, we can know that limt→∞ χi,1

→ 0. Then, we can know that limt→∞ zi,1 → 0 for all i =
1, 2, . . . , N . Furthermore, using Lemma1, we can conclude
that the synchronization error ∥ye∥ converges to zero,
which means that the output asymptotic synchronization
is achieved.

4. SIMULATION RESULTS AND DISCUSSION

4.1 Simulation results

In this section, the developed control scheme will be
verified by employing it to the example in Chen et al.
(2018). Each follower is modeled as follow.

ẋi,1 = xi,2 + x2i,1 + 0.1 sin(t)xi,1 + cos(xi,1(t− τi,1))
ẋi,2 = xi,3 + xi,1x

2
i,1 + 0.1 cos(t)x2i,2+

xi,1(t− τi,2)xi,2(t− τi,2)
ẋi,3 = ui + x2i,1xi,3 + 0.05 cos(πt)xi,1xi,1xi,3+

xi,1(t− τi,3)xi,3(t− τi,3)
yi(t) = xi,1(t), i = 1, . . . , N.

The considered MASs consists of a leader and five follow-
ers, the communication topology depicting their relation-
ship is given in Fig.1.
The trajectory of the leader is yr(t) = 0.5(sin(t) +
sin(0.5t)). The control objective is to achieve that the
outputs yi(t) = xi,1(t) of all the followers can track the
desired trajectory yr(t), asymptotically. In this simulation,

0 1 2 3

45

Leader

Agents

Fig. 1. Communication topology for the MASs

the state initials are set as: τi,1 = 0.1, τi,2 = 0.15, τi,3 =
0.2. The state initials are set as: x01,1 = x01,2 = x01,3 =

0.1, x02,1 = x02,2 = x02,3 = 0.2, x03,1 = x03,2 = x03,3 =

0, x04,1 = x04,2 = x04,3 = 0.3, x05,1 = x05,2 = x05,3 = 0.4.
The initial values of other coefficients are set as: M̂i,1(0) =

0.5, M̂i,2(0) = 1.5, M̂i,3(0) = 12 for 1 ≤ i ≤ 5. The other
control coefficients are set as: ιi,1 = 3, ιi,2 = 2, ιi,3 =
2, ψi,1 = 40, ψi,2 = 40, ψi,3 = 80, βi,1 = βi,2 = βi,3 =
5, σi,1(t) = σi,2(t) = σi,3(t) = 1

t2+0.1 for 1 ≤ i ≤ 5. Con-
strained functions are set as: ρ0,i,1 = 5, ρ0,i,2 = 5, ρ0,i,3 =
20, ρ∞,i,1 = 0.1, ρ∞,i,2 = 0.5, ρ∞,i,3 = 15, λi,1 = λi,2 =
λi,3 = 0.8, ai,1 = ai,2 = ai,3 = 0.8; i = 1, 2, 3, 4, 5;
A = (aig)5×5, B = diag{b1, b2, . . . , bN} are set as:

A =


0 0 0 0 0
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
1 0 0 0 0

, B =


1 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0


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y
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yr y1 y2 y3 y4 y5

(a) Tracking performance of
outputs yi(t)
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(b) Output tracking error
yi(t)− yr(t)
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(c) Control input ui
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(d) State errors zi,1

Fig. 2. The simulation results using the control scheme
developed in this paper:(a) Tracking performance of
outputs yi(t); (b) Output tracking error yi(t)− yr(t);
(c) Control input ui; (d) State errors zi,1

The simulation results are shown in Fig.2. Fig.2(a) shows
the tracking performance curves of the yi(t). The output
of the each agent tracks the desired trajectory asymptot-
ically. Fig.2(b) shows the output tracking error of each
agent, and the output tracking error converges to zero
eventually. Fig.2(c) shows the control input of each agent.
Fig.2(d) shows the state error of each agent, it is clear that
the state error zi,1 of each agent is limited in the defined
PPF, which means |zi,1| ≤ ki,1. All shown signals in Fig.2
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are guaranteed to be bounded. Obviously, the simulation
performance confirms our theoretical result.

5. CONCLUSION

This paper developed a novel adaptive controller for a class
of high-order nonlinear multiagent state time-delay sys-
tems. The unknown system nonlinearities and state time-
delay terms were regarded as “disturbance-like” terms,
which were guaranteed to be bounded by using the barrier
functions. A novel compensator was designed to eliminate
the “disturbance-like” terms, which leads to the asymp-
totic synchronization. The synchronization errors are lim-
ited in the prescribed tracking functions. Some simulations
were considered to illustrate the effectiveness of the devel-
oped controller.
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