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Abstract: In identifying a stochastic system possessing zeros close to the unit circle, the effect of
the initial state appears in the estimates. This paper derives a stochastic subspace identification
algorithm for such a system. A new stochastic realization algorithm is developed based on
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realization algorithm to a finite string of data. Numerical simulation results show that the
proposed algorithm provides favorable results compared with the conventional ones.
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1. INTRODUCTION

Stochastic subspace identification algorithms identify lin-
ear stochastic systems directly from a finite string of
time-series data (Van Overschee and De Moor, 1993,
1996). Stochastic realization algorithms (e.g. Faurre, 1976;
Akaike, 1975) have formed a theoretical basis for stochastic
subspace identification algorithms. Stochastic realization
theory is constructed based on stochastic variables or the
exact covariance data, whereas stochastic subspace identi-
fication is on the finite string of data.

Positive realness is one of important problems in stochas-
tic systems identification (Vaccaro and Vukina, 1993;
Lindquist and Picci, 1996; Dahlén et al., 1998), and the
problem stems from inexact covariance matrices based
on a finite string of data. Although the stochastic sub-
space identification algorithm given by Van Overschee and
De Moor (1993) did not guarantee positive realness, they
(1996) developed an algorithm for ensuring the property
based on the residual of the state estimate. Mari et al.
(2000) and Goethals et al. (2003) moreover developed algo-
rithms via semi-definite programming and regularization,
respectively. Akçay and Türkay (2015) proposed a regular-
ized and reweighted nuclear norm minimization approach.

Subspace methods have often ignored the presence of the
initial effect due to a finite string of data. However, Bauer
(2005) pointed out that the effect might be problematic,
if careful modeling of initial conditions is crucial. The
effect of the initial state becomes large, if the stochastic
part of the system has zeros close to the unit circle. We
have studied subspace identification, deleting effects of the
initial state and using the observability matrix (Ikeda,
2015; Ikeda and Tanaka, 2017; Tanaka and Ikeda, 2018),
though the settins are different from this paper.

The main purpose of this paper is to develop a numer-
ically sound algorithm for identifying stochastic systems
equipped with zeros close to the unit circle. We therefore
develop a stochastic realization algorithm in order to take
the initial state and positive realness into account, by
using the observability matrix. We then derive a stochastic
subspace identification algorithm.

2. PROBLEM SETTING AND POSITIVE REALNESS

We state the problem setting, reviewing positive realness.

2.1 Stochastic system

Consider a linear-time-invariant stochastic system:

xt+1 = Axt + wt, (1a)

yt = Cxt + vt, (1b)

where xt ∈ R
n and yt ∈ R

p are respectively the state and
output of the system, and A is stable. The signals wt ∈ R

n

and vt ∈ R
p are white noises with zero mean satisfying

E

{

[

ws

vs

] [

wt

vt

]⊤
}

=

[

Q S
S⊤ R

]

δst ≥ 0, (2)

where δij is the Kronecker delta satisfying δii = 1 and
δij = 0 (i 6= j), and where we suppose that R > 0 holds.
Let us describe the covariance matrix of yt as

Λk = E {yt+ky
⊤
t }

and express the covariance between xt+1 and yt by G =
E {xt+1y

⊤
t }. We then have a decomposition

Λk = CAk−1G (k ≥ 1) (3)

and suppose that (A, G, C) is a minimal realization. The
spectral density function of yt is given by

Φ(z) =

∞
∑

k=−∞

Λkz
−k
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and satisfies the following equations from (1) and (2):

Φ(z) =
[

(C(zI − A)−1)⊤

Ip

]

⊤
[

Q S

S⊤ R

][

(C(z−1I − A)−1)⊤

Ip

]

(4)

= Ψ(z) + Ψ⊤(z−1),

where Ψ(z) := C(zIn −A)−1G+ 1
2Λ0 is the causal part of

Φ(z). We suppose that Ψ(z) is positive real, i.e. Φ(z) > 0
for |z| = 1. Consider the following Riccati equation:

P = APA⊤ + (G−APC⊤)

(Λ0 − CPC⊤)−1(G−APC⊤)⊤. (5)

Using the stabilizing solution P̂ to (5), we define

K̂ = (G−AP̂C⊤)(Λ0 − CP̂C⊤)−1, (6a)

Ω̂ = Λ0 − CP̂C⊤, (6b)

where A− K̂C is stable, and we call K̂ and Ω̂ respectively
the Kalman gain and the innovation covariance. The
innovation form of yt is as follows:

x̂t+1 = Ax̂t + K̂et, (7a)

yt = Cx̂t + et, (7b)

E {ese⊤t } = Ω̂δst, (7c)

where et is the innovation of yt and is a white noise. The
spectral density function of Φ(z) has the factorization

Φ(z) = Ŵ (z)Ŵ⊤(z−1), (8)

where Ŵ (z) is given by

Ŵ (z) =
(

C(zIn −A)−1K̂ + Ip

)

Ω̂
1

2 . (9)

The spectral function Ψ(z) should be positive real to have

the spectral factor Ŵ (z), and positive realness stems from
the positive semi-definiteness of the covariance matrix in
(2) because of (4).

Subspace identification algorithms have often ignored the
effect of the initial state in estimating the state, and the
effect might be problematic (Bauer, 2005). Let us explain
this fact using stochastic system (7). Defining a matrix

F := A− K̂C, (10)

we have x̂t+1 = F x̂t + K̂yt from (7) and (10), and we
obtain the following equation:

x̂τ = F τ x̂0 +
[

F τ−1K̂ F τ−2K̂ · · · K̂
]

Y0:τ−1,

where Yi:j is defined as

Yi:j :=
[

y⊤i y⊤i+1 · · · y⊤j
]⊤

.

If F τ ≈ 0, we have an approximation to the state x̂τ

by means of a finite number of the linear combination
of y0, y1, . . ., yτ−1. However, if F τ ≈ 0 does not hold,

or if Ŵ (z) has zeros close to the unit circle, F τ x̂0 does
not disappear and leads to biased estimates. This type
of approximation has been made by Van Overschee and
De Moor (1993, 1994); Jansson (2003); Chiuso and Picci
(2005) in developing subspace identification algorithms.

Given a finite string of yt, we will derive a numerically
sound algorithm for identifying the system (7) that has
a property F τ 6≈ 0. We newly develop a stochastic
realization algorithm to this end, given a finite interval
of data {Λ0, . . ., Λ2τ−1}, and supposing that the following
matrices are of full rank for k = τ − 1:

Ok :=
[

C⊤ (CA)⊤ · · · (CAk−1)⊤
]⊤ ∈ R

kp×n,

Ck :=
[

Ak−1G Ak−2G · · · G
]

∈ R
n×kp,

where Oτ and Cτ are respectively the observability and
reachabilty matrices. We also take positive realness into
account to derive a stochastic subspace identification
method. In the rest of section 2, we will explain the differ-
ences between conventional algorithms and our approach,
by reviewing the positive real problem.

2.2 Review of positive real problem

We review stochastic realization (Faurre, 1976), stochastic
subspace identification (Van Overschee and De Moor,
1993), and the positive real problem (Lindquist and Picci,
1996); interested readers may see Katayama (2005) for
stochastic realization. Let us describe

Θk := E {Y0:k−1Y
⊤
0:k−1},

Hτ := E {Yτ :2τ−1Y
⊤
0:τ−1}.

In case of stochastic realization, we have the exact covari-
ance data Λk and obtain the decomposition from (3):

Hτ = OτCτ ∈ R
τp×τp (11)

for large enough τ > n and the realization (A, G, C, Λ0)
from Oτ and Cτ (Ho and Kalman, 1966). Defining

X = E {xtx
⊤
t } (12)

for (1), we have X > 0 satisfying

X = AXA⊤ +Q, (13a)

G = AXC⊤ + S, (13b)

Λ0 = CXC⊤ +R, (13c)

and hence the LMI (Linear Matrix Inequality) from (2):
[

X −AXA⊤ G−AXC⊤

(G−AXC⊤)⊤ Λ0 − CXC⊤

]

≥ 0, (14)

where R = Λ0 −CXC⊤ > 0. It is well known that Ψ(z) is
positive real, if and only if there exists a solution to (14)
and that the stabilizing solution to (5) is the minimum

solution to (14): P̂ ≤ X. In case of stochastic subspace
identification (Van Overschee and De Moor, 1993), we have

only approximations Λ̃k and (Ã, G̃, C̃, Λ̃0) respectively
to the covariance matrices Λk and the realization (A, G,
C, Λ0), because only a finite string of yt is available. The
approximation does not necessarily ensure existence of the
solution to the LMI:

[

X − ÃXÃ⊤ G̃− ÃXC̃⊤

(G̃− ÃXC̃⊤)⊤ Λ̃0 − C̃XC̃⊤

]

≥ 0, (15)

meaning that Ψ̃(z) := C̃(zI − Ã)−1G̃ + 1
2 Λ̃0 may not be

positive real and that the Riccati equation

P = ÃP Ã⊤ + (G̃− ÃP C̃⊤)

(Λ̃0 − C̃P C̃⊤)−1(G̃− ÃP C̃⊤)⊤

may not have the stabilizing solution. The statistical prob-
lem of stochastic modeling from estimated covarianced is
phrased in Lindquist and Picci (1996).

Van Overschee and De Moor (1996) proposed an algo-
rithm for ensuring positive realness based on positive semi-
definiteness of the residual of the estimated state. The
stochastic subspace identification algorithm (Van Over-
schee and De Moor, 1996) estimates the state x̃τ ∈ R

ñ×N

via the orthogonal projection and solves the set of linear
equations for A and C:

[

x̃τ+1

yτ

]

=

[

A
C

]

x̃τ +

[

ρw

ρv

]

, (16)
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where yt = [ yt · · · yt+N−1 ] ∈ R
p×N . The covariance

matrices of the residuals ρw ∈ R
ñ×N and ρv ∈ R

p×N

are then estimated as follows:
[

Q̃ S̃

S̃⊤ R̃

]

:=
1

N

[

ρw

ρv

] [

ρw

ρv

]⊤

≥ 0. (17)

Describing the solutions A and C to (16) respectively as Ã

and C̃, we solve the Lyapunov equation (18a) and estimate
G and Λ0 respectively as (18b) and (18c) based on (13):

X = ÃXÃ⊤ + Q̃, (18a)

G̃ := AXC⊤ + S̃, (18b)

Λ̃0 := C̃XC̃⊤ + R̃. (18c)

Since Q̃, S̃, and R̃ satisfy positive semi-definiteness (17),X
satisfies the LMI (15). The stochastic subspace identifica-
tion algorithm developed by Van Overschee and De Moor
(1996) carries out numerically stable computations in es-
timating the spectral factor. Unfortunately, it gives biased
estimates in identifying the stochastic system for F τ 6≈ 0,
because the estimates Q̃, S̃ and R̃ are biased due to the
approximation error of the state x̃τ .

Conventional algorithms ensure positive realness by mod-
ifying matrices (Ã, G̃, C̃, Λ̃0). Vaccaro and Vukina (1993)
showed how to modify the covariance model to guarantee
positive realness. Mari et al. (2000) developed a convex
optimization algorithm for guaranteeing positive realness.
Mari (2000) proposed an algorithm for obtaining a stable

model for Ψ(z) by modifying Ã, and summarized three
types of LMI algorithms for guaranteeing positive realness.
Goethals et al. (2003) presented an algorithm for imposing
positive realness by adding a regularization term. Akçay
and Türkay (2015) proposed a method for transforming a
non-positive real transfer function matrix into a positive
real one. The algorithms (Mari, 2000; Mari et al., 2000;
Goethals et al., 2003) for modifying rational transfer ma-

trices (Ã, G̃, C̃, Λ̃0) do not suffer from the approximation
error due to F τ 6≈ 0, since they do not need to make
the approximation F τ ≈ 0 in estimating (Ã, G̃, C̃). How-
ever, the algorithms for modifying rational transfer ma-
trices possibly demand numerically severe computations,
because they seek modification of the matrices of Ψ̃(z) by
checking whether it is positive real or not.

In this paper, we develop a stochastic realization algorithm
avoiding explicit use of the LMI (14) to guarantee positive
realness. We rather find (Q, S, R) satisfying the posi-
tive semi-definite condition in (2), using the observability
matrix Oτ and the covariance data {Λ0, . . ., Λ2τ−1}. We
thus derive a numerically sound algorithm for stochastic
realization without making the approximation F τ ≈ 0. By
applying the realization algorithm to a finite string of data
yt, we moreover derive a stochastic subspace identification
algorithm guaranteeing positive realness.

3. STOCHASTIC REALIZATION

Suppose that a finite interval of the exact covariance
matrices {Λ0, . . ., Λ2τ−1} or Θ2τ is given. We introduce
stochastic balancing (e.g. Desai and Pal, 1984) and the
Kalman filter as preliminaries. We then derive a new
stochastic realization algorithm.

3.1 Preliminaries

We introduce stochastic balancing or the CCA (Canonical
Correlation Analysis) weighting, since it leads optimal
accuracy in the asymptotic variance (Bauer and Ljung,
2002). We partition Θ2τ ∈ R

2τp×2τp as follows:

Θ2τ =

[

Θτ H⊤
τ

Hτ Θτ

]

.

Compute the Choleskey factorization:
[

Θτ H⊤
τ

Hτ Θτ

]

=

[

Lpp 0
Lfp Lff

] [

Lpp 0
Lfp Lff

]⊤

. (19)

We then have Θ
− 1

2

τ HτΘ
− 1

2

τ = Θ
− 1

2

τ LfpL
⊤
ppΘ

− 1

2

τ and calcu-
late the singular value decomposition (SVD):

Θ
− 1

2

τ LfpL
⊤
ppΘ

− 1

2

τ = [U1 U2 ]

[

Σ1 0
0 0

] [

V ⊤
1

V ⊤
2

]

= U1Σ1V
⊤
1 (Σ1 ∈ R

n×n). (20)

From (11), we thus have Cτ = Σ
1

2

1 V
⊤
1 Θ

1

2

τ ,

Oτ = Θ
1

2

τ U1Σ
1

2

1 ∈ R
τp×n, (21)

and hence (A, C) via shift invariance. It should be noted
that (20) leads to a finite-interval stochastically bal-
anced realization (Lindquist and Picci, 1996) and that the
stochastic balancing (Desai and Pal, 1984) is obtained for
τ → ∞.

Given the system (1) with (A, C) and (Q, S, R), we
can construct the Kalman filter. Compute the stabilizing
solution Ŷ to the following Riccati equation:

Y = AY A⊤ − (AY C⊤ + S)

(CY C⊤ +R)−1(AY C⊤ + S)⊤ +Q. (22)

Determine the Kalman gain and the innovation covariance
as follows:

K̂ = (AŶ C⊤ + S)(CŶ C⊤ +R)−1, (23a)

Ω̂ = CŶ C⊤ +R, (23b)

where K̂ and Ω̂ in (23) are respectively the same as (6),
from (5), (13), (22), and P = X − Y . The Kalman filter

x̂t+1 = Ax̂t + K̂(yt − Cx̂t)

minimizes Trace (E(xt − x̂t)(xt − x̂t)
⊤) and gives the

innovation et = yt − Cx̂t. We thus have the innovation
form (7), if we can compute (A, C) and (Q, S, R).

3.2 Derivation of new stochastic realization algorithm

We derive a new stochastic realization algorithm by com-
puting (Q, S, R). Let us define the followings:

[

Γ
H

]

=

[

In 0
0 Ip

]

, ξt =

[

wt

vt

]

. (24)

Describing Π := E{ξtξ⊤t }, we have

Π =

[

Q S
S⊤ R

]

=

[

Γ
H

]

Π

[

Γ
H

]⊤

≥ 0 (25)

from (2) and (24). We define a matrix-valued function
Tτ (A, Γ , C, H) that has the block-Toeplitz structure

Tτ (A, Γ, C, H) :=









H 0
CΓ H
...

. . .
. . .

CAτ−2Γ · · · CΓ H









(26)
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and the following matrix for a simple notation:

T̄τ := Tτ (A, Γ, C, H) ∈ R
τp×τ(n+p).

We have the following equation from (1), (24), and (26):

Yτ :2τ−1 = Oτxτ + T̄τΞτ :2τ−1, (27)

where Ξi:j :=
[

ξ⊤i ξ⊤i+1 · · · ξ⊤j
]⊤

. Define moreover a

matrix-valued function for M ∈ R
(n+p)×(n+p) as

Dτ (M) := block-diag(M, . . . , M) ∈ R
τ(n+p)×τ(n+p).

We then have the following equations for Ξτ :2τ−1:

E {xτΞ
⊤
τ :2τ−1} = 0, (28a)

E {Ξτ :2τ−1Ξ
⊤
τ :2τ−1} = Dτ (Π). (28b)

We obtain the following Theorem.

Theorem 1. The covariance matrices Θτ , X, and Π satisfy

Θτ = OτXO⊤
τ + T̄τDτ (Π)T̄ ⊤

τ . (29)

Proof . We have (29) from (12), (27), and (28).

We compute Π by solving (29). To this end, we minimize
γ ∈ R under the following LMI constraints:

γΘτ ≥ Θτ −
(

OτXO⊤
τ + T̄τDτ (Π)T̄ ⊤

τ

)

≥ 0 (30a)

X ≥ 0, Π ≥ 0, (30b)

where variables are γ, X ∈ R
n×n, and Π ∈ R

(n+p)×(n+p).

We propose a stochastic realization algorithm as follows.

Stochastic realization algorithm:
Step 1: Calculate the SVD (20) and Oτ in (21).
Step 2: Obtain A and C using Oτ and shift invariance

and construct T̄τ = Tτ (A, Γ , C, H) in (26).
Step 3: Compute Π in (30) by minimizing γ.
Step 4: Obtain (Q, S, R) from (25). Find the stabilizing

solution Ŷ to (22) and obtain K̂ and Ω̂ in (23).

The traditional stochastic realization algorithm computes
(A, G, C, Λ0) and solves (5), where Ψ(z) should be positive
real or there should exist solutions X to (14). On the other
hand, the proposed algorithm finds Π in (29) and solves
(22) subject to X ≥ 0 and Π ≥ 0. It should be noted that
Π is computed from Oτ and {Λ0, . . ., Λ2τ−1} and that
there exists the Kalman filter because of Π ≥ 0.

4. STOCHASTIC SUBSPACE IDENTIFICATION

Suppose that a finite string of time-series data {y0, y1,
. . ., y2τ+N−1} is given. We apply the proposed stochastic
realization algorithm to the data and derive a stochastic
subspace identification method. Let us construct the block-
Hankel matrix:

[

Yp

Yf

]

=



















y0 · · · yN−1

...
...

yτ−1 · · · yτ+N−2

yτ · · · yτ+N−1

...
...

y2τ−1 · · · y2τ+N−2



















∈ R
2τp×N (31)

and define Ya :=
[

Y
⊤
p Y

⊤

f

]⊤

. We suppose that an estimate

Θ̃2τ := 1
N
YaY

⊤
a of Θ2τ satisfies Θ̃2τ > 0. We moreover

calculate Θ̃τ(p) = 1
N
YpY

⊤
p and Θ̃τ(f) = 1

N
YfY

⊤
f for

estimating Θτ . We then compute the LQ decomposition

1√
N

[

Yp

Yf

]

=

[

L̃pp 0

L̃fp L̃ff

] [

Q̃⊤
p

Q̃⊤
f

]

, (32)

where L̃pp, L̃fp, and L̃ff are estimates of Lpp, Lfp, and Lff

respectively from (19). According to (20), we compute

Θ̃
− 1

2

τ(f)L̃fpL̃
⊤
ppΘ̃

− 1

2

τ(p) =
[

Ũ1 Ũ2

]

[

Σ̃1 0

0 Σ̃2

] [

Ṽ ⊤
1

Ṽ ⊤
2

]

≈ Ũ1Σ̃1Ṽ
⊤
1 (Σ̃1 ∈ R

ñ×ñ), (33)

where the size of Σ̃1 may not be n×n, different from (20).
Based on (21), we estimate the observability matrix Oτ :

Õτ = Θ̃
1

2

τ(f)Ũ1Σ̃
1

2

1 ∈ R
τp×ñ. (34)

Being aware that T̄τ has the structure

T̄τ =











H 0 · · · 0

H
. . .

...

Oτ−1Γ Oτ−2Γ
. . . 0
· · · H











, (35)

we have an estimate T̃τ for the block-Toeplitz matrix T̄τ .
We minimize γ under the constraints of LMIs

γΘ̃τ(f) ≥ Θ̃τ(f) −
(

ÕτXÕ⊤
τ + T̃τDτ (Π)T̃ ⊤

τ

)

≥ 0, (36a)

X ≥ 0, Π ≥ 0, (36b)

where the variables of the LMI constraints are γ ∈ R,
X ∈ R

ñ×ñ and Π ∈ R
(ñ+p)×(ñ+p). Partition Π as follows

Π =

[

Q̃ S̃

S̃⊤ R̃

]

, (Q̃ ∈ R
ñ×ñ, R̃ ∈ R

p×p). (37)

We estimate A and C from the following calculation:

Ã = (Õ↓
τ )

†Õτ (1 + p : τp, :), (38a)

C̃ = Õτ (1 : p, :), (38b)

where (·)† is the pseudo-inverse and Õ↓
τ := Õτ (1 : (τ −

1)p, :). We thus have (Ã, C̃, Q̃, S̃, R̃) for an estimate of
(A, C, Q, S, R). According to (22) and (23), we obtain

estimates K̃ and Ω̃ respectively for K̂ and Ω̂. If Ã is stable,

W̃ (z) := (C̃(zIñ − Ã)−1K̃ + Ip)Ω̃
1

2 , (39a)

Φ̃(z) = W̃ (z)W̃⊤(z−1) (39b)

are respectively estimates of W (z) and Φ(z) based on (9)

and (8), and W̃ (z) is of minimum phase.

The spectral factor W̃ (z) may not be stable, or Ã may
be unstable. We then consider spectral factororization of
Φ̃−1(z−1) for |z| = 1 (Tanaka and Katayama, 2005):

Φ̃−1(z−1) = Ẃ−⊤(z)Ẃ−1(z−1). (40)

Defining F̃ = Ã− K̃C̃, we have

W̃−⊤(z) =
(

−K̃⊤(zIñ − F̃⊤)−1C̃⊤ + Ip

)

Ω̃−⊤

2 .

We thus determine the following matrices
[

Q́ Ś

Ś⊤ Ŕ

]

=

[

C̃⊤

Ip

]

Ω̃−1

[

C̃⊤

Ip

]⊤

.

We find the stailizing solution Ź to the Riccati equation

Z = F̃⊤ZF̃ − (−F̃⊤ZK̃ + Ś)

(K̃⊤ZK̃ + Ŕ)−1(−F̃⊤ZK̃ + Ś)⊤ + Q́

and then define

Ć :=
(

(−F̃⊤ŹK̃ + Ś)(K̃⊤ŹK̃ + Ŕ)−1
)⊤

,

Ώ := (K̃⊤ŹK̃ + Ŕ)−1,
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and Á := F̃ + K̃Ć. We then have an estimate of W (z):

Ẃ (z) =
(

Ć(zIñ − Á)−1K̃ + Ip

)

Ώ
1

2 .

Since Á is stable, we have a stable Ẃ (z) satisfying (40).
We summarize a subspace identification algorithm.

Stochastic subspace identification algorithm:
Step 1: Construct the block-Hankel matrices Yp and Yf

as (31). Compute the LQ decomposition (32).

Step 2: Calculate the SVD (33) and Õτ in (34). Based

on (35), construct T̃τ using Õτ .
Step 3: Obtain Π in (36) by minimizing γ.

Step 4: Obtain (Q̃, S̃, R̃) in (37) and Ã and C̃ in

(38). According to (23), obtain estimates K̃ and Ω̃

respectively for K̂ and Ω̂. If W̃ (z) in (39a) is stable,
it is an estimate of W (z).

Step 5: If Ã is unstable, compute the spectral factor in
(40) and obtain stable Ẃ (z) for an estimate of W (z).

One of major differences between the conventional algo-
rithms (e.g. Mari, 2000; Mari et al., 2000; Goethals et al.,

2003) for modifying the rational transfer matrices of Ψ̃(z)
and the proposed one appears in Step 3 of the proposed
algorithm. They use the LMI in (15) for guaranteeing
positive realness, whereas we use the LMIs in (36). In other

words, they seek (Q̃, R̃, S̃) from the system Ψ̃(z) under the

constraint that the modified Ψ̃(z) is positive real. On the

other hand, we compute (Q̃, R̃, S̃) from the finite number

of covariance matrices Λ̃k and the observability matrix Õτ

under the constraints X ≥ 0 and Π ≥ 0. We hence avoid
explicit use of the LMI (14).

The proposed algorithm does not suffer from the approx-
imation error caused by F τ 6≈ 0, because we do not have
to make the approximation F τ ≈ 0 in estimating Θ̃2τ and
Õτ used in Step 3. We can therefore use the proposed
algorithm for identifying the stochastic system equipped
with zeros close to the unit circle.

5. NUMERICAL SIMULATION RESULTS

In this section, we show numerical simulation results.
Suppose that Ŵ (z) is given by (n = 6):

Ŵ (z) =
1

D(z)

[

N11(z) N12(z)
N21(z) N22(z)

]

,

where the numerator Nij(z) (i, j=1, 2) and the denom-
inator D(z) are as follows: N11(z) = z6 − 2.8900z5 +
3.9111z4−3.1190z3+1.2580z2−0.2267z+0.0136, N12(z) =
0.1000z4−0.0619z3+0.0083z2+0.0003z−0.0001, N21(z) =
−2.7028z5 + 7.2763z4 − 9.3407z3 + 6.9248z2 − 2.3914z +
0.2940, N22(z) = z6 − 2.6996z5 + 3.1487z4 − 2.1931z3 +
0.7857z2 − 0.1212z + 0.0061, D(z) = z6 − 3.6000z5 +
5.3799z4−4.2719z3+1.9008z2−0.4494z+0.0441. It should
be noted that Ŵ (z) is stable and of minimum phase and
that the eigen-values of the matrix F in (10) are {0.0961,
0.2034, 0.2999, 0.4001, 0.4950± 0.8574j} and the absolute
value of 0.4950 + 0.8574j is 0.9901.

We estimate the system, using the algorithm of Van Over-
schee and De Moor (1996) (τ = 10, ñ = 5) and simulating
the system for different 30 realizations and supposing that
ν = 2τ + N − 1 = 5, 000 of data are given. Fig. 1 shows

estimates of Ŵij(z) := Nij/D(z) (i, j = 1, 2), indicating

that estimates of Ŵ11(z) and Ŵ21(z) do not capture the
valleys at the frequency around 1.
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Fig. 1. Gain plots of systems estimated by the algorithm
of Van Overschee and De Moor (1996) for τ = 10
and ñ = 5, where the solid blue lines are true. The
plots at the top left, top right, bottom left and bottom
right respectively show estimates of Ŵ11(z), Ŵ12(z),

Ŵ21(z) and Ŵ22(z).

We estimate the system by using the algorithm of Mari
(2000). For unstable Ã ∈ R

ñ×ñ, we compute

[

T−1 0
0 Ip

] [

Ã G̃

C̃ 0

] [

T 0
0 Ip

]

=





Ãu 0 G̃u

0 Ãs G̃s

C̃u C̃s 0



 ,

where T ∈ R
ñ×ñ, and Ãu and Ãs are respectively anti-

stable and stable. We then have

Ψ̃(z) = Ψ̃u(z) + Ψ̃s(z) +
1

2
Λ̃0,

Ψ̃u(z) := C̃u(zI − Ãu)
−1G̃u,

Ψ̃s(z) := C̃s(zI − Ãs)
−1G̃s.

Mari (2000) proposed to use

Ψ̆(z) = Ψ̃⊤
u (z−1) + Ψ̃z(z) +

1

2
Λ̃0,

instead of Ψ̃(z) for unstable Ã, since the ultimate goal
of stochastic system identification is producing a spectral
factor for Φ(z) = Ψ(z)+Ψ⊤(z−1). We have indeed Ψ̃(z)+

Ψ̃⊤(z−1) = Ψ̆(z) + Ψ̆⊤(z−1). We therefore use

Ψ̃⊤
u (z−1) ≈ −G̃⊤

u (zI − Ã−⊤
u )−1Ã−⊤

u C̃⊤
u

− 1

2

(

(G̃⊤
u Ã

−⊤
u C̃⊤

u ) + (G̃⊤
u Ã

−⊤
u C̃⊤

u )⊤
)

.

We modify both G̃ and Λ̃0 for not satisfying the positive
real constraint (15). We show the gain plots of estimates
in Fig. 2. Comparing Figs. 1 and 2, we observe that the
algorithm of Mari (2000) captures the valleys around the
frequency 1, though the gain plots are scattered around
the true system.

We finally show estimates given by the proposed algorithm
(τ = 10, ñ = 5) in Fig. 3. We see that it captures the
valleys and that the gain plots are less scattered.

6. CONCLUSIONS

In this paper, we have developed a subspace identification
algorithm for stochastic systems equipped with zeros close
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Fig. 2. Gain plots of systems estimated by the algorithm
by Mari (2000) for τ = 10 and ñ = 5.
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Fig. 3. Gain plots of the systems estimated by the proposed
algorithm (τ = 10, ñ = 5).

to the unit circle. By reviewing the methods for ensur-
ing positive realness in the conventional algorithms, we
developed a new stochastic realization algorithm. Con-
ventional algorithms have ensured positive realness of the
causal part of the spectral density function by modifying
rational transfer matrices. On the other hand, we have
derived an equation for the observability matrix and the
covariance matrices of the output, state, and white noise,
and we guaranteed positive realness by means of positive
semi-definiteness of the covariance of the white noise. We
derived a stochastic subspace identification algorithm by
applying the realization algorithm to a finite string of data.
Numerical simulation results indicated that the present
algorithm successfully estimates the system. It is a future
problem to make consistency analysis and to study unique-
ness of the solution.
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