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Abstract: In this paper, the estimation problem is studied for a class of linear discrete
time-varying system with packet dropout in the framework of anisotropy-based theory. The
extended vector of fragment of the disturbance sequence is from the set of random vectors with
bounded anisotropy. The packet dropout effect is considered to be random and described by a
binary switching sequence with Bernoulli distribution. The input-to-error dynamics is obtained
for multiplicative noise system with mutually independent noises and input disturbance. By
using anisotropy-based approach, the estimation problem is reduced to optimization one with
convex constraints. The developed method provides the (sub)optimal estimator ensuring the
boundedness of anisotropic norm for input-to-output error system. Numerical example is
provided to demonstrate efficiency of proposed approach.
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1. INTRODUCTION

Widely used H2 and H∞ approaches to disturbance rejec-
tion is based on fulfilment some assumptions for stochastic
properties of disturbances. From this, H2 estimation pro-
vides the best performance only for certain class of input
disturbances (Gaussian disturbances with zero mean and
given covariance matrix), but doesn’t guarantee robust-
ness with respect to changes in input distribution. And
H∞ estimation as well as H∞ theory contains excessive
conservatism since it operates with the so called the worst
case disturbance, so that’s a pure idealization. The more
real case of disturbance is connected with disturbance
having uncertainty in stochastic properties. The set of
possible (or valid) disturbances are usually chosen within
some class defined by certain properties. In anisotropy-
based theory, such property is related to boundedness of
anisotropy of a random vector. The definition was intro-
duced by Igor Vladimirov in Vladimirov et al. (1995),
and it is based on concepts of information and proba-
bility theory (its deepest meaning, however, is far be-
yond these two theories). The anisotropy of a random
vector quantitatively measures the difference between the
disturbance of one and of Gaussian distributed vector.
The advantage of using the anisotropy appears when one
deals with uncertain disturbance, and has, for example,
no tools for specify it. As well as H∞ theory, anisotropy-
based theory implies the induced norm as a cost function
– the anisotropic norm. The remarkable property of this
consists of achieving the values of scaled H2 and H∞
norms as limiting cases when specific parameter goes to
zero and infinity, correspondingly. In the first researches
within anisotropy-based theory, Igor Vladimirov and co-
authors set out many problems: analysis of linear discrete
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time-invariant and time-varying systems Vladimirov et al.
(1996a, 2001), control design including both time invari-
ant and time varying cases Vladimirov et al. (1996b);
Tchaikovsky et al. (2017), and others. Some problems were
considered and solved for non-centered disturbances Kus-
tov et al. (2017); Yurchekov (2018a). All existing methods
and approaches of anisotropy-based theory were applied
to linear discrete nonrandom systems. In contrary, mul-
tiplicative noise systems description differs from standard
linear systems description in known way, hence some mod-
ification of anisotropic norm calculation has to appear.
Anisotropy-based analysis for time-varying multiplicative
noise systems was considered in Belov et al. (2019), where
boundedness condition of anisotropic norm was derived.
This result has important practical application. For sensor
networks, the estimation problem in finite time horizon
can be solved in terms of convex optimization problem.
Although the first attempt of control design was con-
sidered in Yurchekov (2018b), the precise computation
of anisotropic norm for time-varying multiplicative noise
systems was described in Belov et al. (2019). The impor-
tant contribution of anisotropy-based theory is applying
the information criterion of disturbances. For this reason,
anisotropy-based estimation provides better performance
in comparison with H∞, and less conservatism than H2

estimation.

2. PRELIMINARIES

Let us consider the Hilbert space Lm2 and appropriate
inner product 〈x, y〉 = E[x>y] for arbitrary vectors x
and y ∈ Lm2 , where E[·] denotes the expectation. Denote

by ‖x‖ =
√
〈x, x〉 the norm of m-dimensional random

vector x. For any real-valued random p×m-matrices X,Y
from the Hilbert space Lp×m2 , define the inner product as
follows: 〈X,Y 〉 = tr

(
E[X>Y ]

)
, where tr(·) stands for the
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trace of the square matrix. Likewise, the norm in Lp×m2 be

as follows: ‖X‖ =
√
〈X,X〉.

For any random matrix F ∈ Lp×m2 and some input
vector W from Hilbert space Lm2 let us define the root-
mean square (RMS) gain as Q(F,W ) = ‖FW‖/‖W‖,
where FW ∈ Lp2. When F and W are considered to be
mutually independent, one can rewrite the RMS gain in
the following manner:

Q(F,W ) =

√
tr(ΛΣ)

tr(Σ)
, (1)

where Λ = E[F>F ] ∈ Rm×m, Σ = E[WW>] ∈ Rm×m.

The upper bound of (1) is associated with stochastic
version of the maximum singular value of F , i.e.

max
W∈Lm

2

Q(F,W ) = ‖F‖∞,

where stochastic norm ‖F‖∞ is equal to square root of
maximum eigenvalue of E[FTF ]. On the other hand, when
vector W is such that |W |−1W has uniform distribution
on unit (m−1)-dimensional sphere Sm = {x ∈ Rm : |x| =
1} (for example, if W is Gaussian with zero mean and
scalar covariance matrix), the RMS gain becomes equal to

‖F‖2/
√
m, where ‖F‖2 =

√
trΛ.

Initially, the definition of anisotropy for a random vector
W ∈ Lm2 was suggested in Vladimirov et al. (1995) but
later modified in Vladimirov et al. (2001) as follows:

A(W ) = min
λ>0

D(f‖pm,λ) =
m

2
ln

(
2πe

m
‖W‖2

)
− h(W )

where h(W ) = −
∫
Rm

f(w) ln f(w)dw presents the differen-

tial entropy of W . Here, f(w) is the probability density
function (pdf) of W , pm,λ(w) is the pdf of the Gaussian
m-dimensional random vector of the form

pm,λ(w) = (2πλ)−m/2 exp

(
−|w|

2

2λ

)
, w ∈ Rm.

The mean value of such vectors is equal to zero and
covariance matrix is of the form λIm, λ > 0. The functional
D(f‖pm,λ) denotes the Kullback-Leibler divergence (or
relative entropy) of random vector W with pdf f w.r.t.
another one with pdf pm,λ.

The set of random vectors with bounded anisotropy is
denoted as

Wa = {W ∈ Lm2 : A(W ) 6 a},
and anisotropic norm of F ∈ Lp×m2 is a partial case of
stochastic norm and introduced as

|||F |||a = sup
W∈Wa

Q(F,W ). (2)

For nonround systems (i.e. systems associated with non-
round operator), the following property holds true:

‖F‖2/
√
m = lim

a→+0
|||F |||a 6 |||F |||a 6 lim

a→+∞
|||F |||a = ‖F‖∞.

Out of this, results of anisotropy-based theory is always
“between” ones of H2 and H∞ theories.

In Kustov (2018), the case of anisotropy-based analysis for
linear discrete time-varying (LDTV) systems with random
matrices is considered. It is shown that the covariance
matrix of input that ensures maximum of RMS gain for

system F is of the form Σ(q) = (Im − qΛ)−1, where q
is a certain parameter, and Λ = E[F>F ]. The scalar
parameter q ∈ [0; ‖F‖−2

∞ ) is the unique solution of the
special-type equation

−1

2
ln det

mΣ(q)

trΣ(q)
= a.

Given the relation between worst case covariance matrix
and parameter q, it is possible to rewire (1) as

|||F |||a =

√
tr(ΛΣ(q))

tr(Σ(q))
. (3)

The partial case of anisotropic norm calculation for LDTV
multiplicative noise system is considered in Belov et al.
(2019). The systems considered are of the following form:

x(k + 1) =

M∑
i=0

ξ1,i(k)Ai(k)x(k) +

M∑
i=0

ξ2,i(k)Bi(k)w(k),

z(k) =

M∑
i=0

ξ3,i(k)Ci(k)x(k) +

M∑
i=0

ξ4,i(k)Di(k)w(k),

(4)
where x(k), w(k), z(k) denote the state, input and output,
respectively. Matrices Ai(k) ∈ Rnx×nx , Bi(k) ∈ Rnx×mw ,
Ci(k) ∈ Rpz×nx , Di(k) ∈ Rpz×mw are time-depended, and
set of random scalar variables ξj,i(k) are mutually inde-
pendent in all j, i, k. The additional condition ξj,0(k) = 1,
j = 1, 4, together with E[ξj,i(k)] = 0 for i > 0 corresponds
to the case that mean values of matrices in (4) equal
to A0(k), B0(k), C0(k), D0(k). It is shown in Belov et al.
(2019) that if there exist solutions of coupled difference
Riccati equations

R1(k) =

M∑
i=0

(
A>i (k)R1(k + 1)Ai(k) + qC>i (k)Ci(k)

)
,

R2(k) = A>0 (k)R2(k + 1)A0(k) + L>(k)S−1(k)L(k),

where

S(k) =
(
Imw
−B>0 (k)R2(k + 1)B0(k)

−
M∑
i=0

(
qD>i (k)Di(k) +B>i (k)R1(k + 1)Bi(k)

) )−1
,

L(k) = S(k)
(
B>0 (k)R1(k + 1)A0(k)

+B>0 (k)R2(k + 1)A0(k) + qD>0 (k)C0(k)
)
,

with bounded conditions R1(N + 1) = 0, R2(N + 1) = 0,
then anisotropic norm of system (4) is expressed by means
of special functions N (q) and A(q) as |||F |||a = N (A−1(a)),
where anisotropy of extended vector of input sequence does
not exceed given a > 0. Here,

N (q) =

√
Φ(q)− 1

qΦ(q)
, A(q) =

lw
2

(ln Φ(q)−Ψ(q)) , (5)

and A(q) = a holds true for unique q ∈ [0; ‖F‖−2
∞ ). Func-

tions Φ(q),Ψ(q) in (5) are defined in terms of solutions of
Riccati equations and Lyapunov-type equation

Υ(k+1)=B0(k)S(k)B>0 (k)

+(A0(k)+B0(k)L(k))Υ(k)(A0(k)+B0(k)L(k))>

with initial condition Υ(0) = 0, as following:
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Φ(q) =
1

lw

N∑
k=0

tr
(
S(k) + L(k)Υ(k)L>(k)

)
,

Ψ(q) =
1

lw

N∑
k=0

ln detS(k), lw = mw(N + 1).

Based on this result, the boundedness condition of
anisotropic norm was obtained, and then suboptimal prob-
lem was proposed and solved.

3. PROBLEM STATEMENT

Consider the linear discrete time-varying system

x(t+ 1) = A(t)x(t) +B(t)w(t), x(0) = 0,
z(t) = M(t)x(t) +N(t)w(t),
y(t) = λ(t)C(t)x(t) +D(t)w(t)

+(1− λ(t))y(t− 1),

(6)

on finite time interval t = 0, N . Matrices A(t) ∈ Rnx×nx ,
B(t) ∈ Rnx×mw , M(t) ∈ Rpz×nx , N(t) ∈ Rpz×mw , C(t) ∈
Rpy×nx and D(t) ∈ Rpy×mw are nonrandom matrices-
function of time. Vectors x(t), w(t), z(t) and y(t) denote
the state, the input, the output to be estimated, and
the measurement, respectively. Extended vector W0:N =
(wT

0 , . . . , w
T
N )T belongs to the set Wa, i.e. A(W0:N ) 6 a.

Random variable λ(t) has the Bernoulli distribution with
known probabilities P (λ(t) = 1) = p and P (λ(t) =
0) = 1 − p corresponding to normal operation and case
when measurement failure occurs. The additional term
(1 − λ(t))y(t − 1) in measurement output describes the
correction when failure at time instant t occurs.

The problem of this paper is to design estimator for
(6) (i.e. to obtain estimation ẑ(t) of output z(t)) such
that anisotropic norm of closed input-to-error system is
bounded by parameter γ > 0 chosen as small as possible.

4. MAIN RESULTS

The system (6) contains vectors from three different time
instants t−1, t, t+1. It is possible to avoid this after system
modification so it will contain time instances t + 1 and t
only. For that, define the extended state as follows:

x(t) =

(
x(t)

y(t− 1)

)
∈ Rnx+py .

Then, the system (6) can be rewritten in standard form

x(t+ 1) = A
λ
(t)x(t) +B(t)w(t), x(0) = 0,

z(t) = M(t)x(t) +N(t)w(t),

y(t) = C
λ
(t)x(t) +D(t)w(t),

(7)

where

A
λ
(t) =

[
A(t) 0

λ(t)C(t) (1− λ(t))Ipy

]
, B(t) =

[
B(t)
D(t)

]
,

M(t) = [M(t) 0], N(t) = N(t),

C
λ
(t) =

[
λ(t)C(t) (1− λ(t))Ipy

]
, D(t) = D(t).

One can note that A
λ
(t) and C

λ
(t) are matrices linear in

the scalar random variable λ(t).

To obtain the estimation of output z(t) and state vector
x(t), let us choose the estimation model as

x̂(t+ 1) = W (t)x̂(t) +H(t)(y(t)− ŷ(t)), x̂(0) = 0,

ẑ(t) = M(t)x̂(t),

where ŷ(t) is chosen as

ŷ(t) = E
[
C
λ
(t)
]
x̂(t) = C

p
(t)x̂(t) (8)

according to expectation of matrix C
λ
(t). Here, we use

C
p
(t) to denote the following matrix:

C
p
(t) = E

[
C
λ
(t)
]

=
[
pC(t) (1− p)Ipy

]
.

Similar to the notation above, let us introduce the matrix

A
p
(t) = E

[
A
λ
(t)
]

=

[
A(t) 0
pC(t) (1− p)Ipy

]
.

Then, the state error e(t) = x(t) − x̂(t) has the following
dynamics:

e(t+ 1) = A
λ
(t)x(t)−W (t)x(t)

−H(t)
(
C
λ
(t)− Cp(t)

)
x(t)

+
(
W (t)−H(t)C

p
(t)
)
e(t)

+
(
B(t)−H(t)D(t)

)
w(t).

So that, the input-to-error system can be presented as:

e(t+ 1) =
(
A
λ
(t)−Ap(t) +A

p
(t)−W (t)

)
x(t)

−H(t)
(
C
λ
(t)− Cp(t)

)
x(t)

+
(
W (t)−H(t)C

p
(t)
)
e(t)

+
(
B(t)−H(t)D(t)

)
w(t),

z̃(t) = M(t)e(t) +N(t)w(t),

where z̃(t) = z(t)− ẑ(t).

Now we also introduce the following matrices A
◦

and C
◦
:

A
◦
(t) = A

λ
(t)−Ap(t)

= (λ(t)− p)
[

0 0
C(t) −Ipy

]
= (λ(t)− p)Ã(t),

C
◦
(t) = C

λ
(t)− Cp(t)

= (λ(t)− p)
[
C(t) −Ipy

]
= (λ(t)− p)C̃(t),

and provide the following type of error system dynamics:

e(t+ 1) =
(
A
p
(t)−W (t)

)
x(t)

+
(
A
◦
(t)−H(t)C

◦
(t)
)
x(t)

+
(
W (t)−H(t)C

p
(t)
)
e(t)

+
(
B(t)−H(t)D(t)

)
w(t).

Then, we complete the dynamics of error with one for the
extended state:

x(t+ 1) =
(
A
p
(t) +A

◦
(t)
)
x(t) +B(t)w(t).

To assemble two types of dynamics in one, define the
extended vector

ζ(t) =

(
x(t)
e(t)

)
.

The combined dynamics of the input-to-output error sys-
tem is of the form:
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ζ(t+ 1) =

[
A
p
(t) 0

A
p
(t)−W (t) W (t)−H(t)C

p
(t)

]
ζ(t)

+

[
A
◦
(t) 0

A
◦
(t)−H(t)C

◦
(t) 0

]
ζ(t)

+

[
B(t)

B(t)−H(t)D(t)

]
w(t),

z̃(t) =
[
0 M(t)

]
ζ(t) +N(t)w(t).

Before implement the result of Belov et al. (2019), let
us change the notations of matrices in the state-space
realisation above according to the following:

ζ(t+ 1) = (A0(t) + ξ(t)A1(t))ζ(t) + B(t)w(t),
z̃(t) =M(t)ζ(t) +N (t)w(t),

(9)

where

A0(t) =

[
A
p
(t) 0

A
p
(t)−W (t) W (t)−H(t)C

p
(t)

]
,

A1(t) =

[
Ã(t) 0

Ã(t)−H(t)C̃(t) 0

]
,

B(t) =

[
B(t)

B(t)−H(t)D(t)

]
,

M(t) =
[
0 M(t)

]
, N (t) = N(t),

and ξ(t) = λ(t) − p is the scalar random variable with
Bernoulli distribution.

Let us introduce the set of backward-time difference Ric-
cati inequalities

R(t) � AT
0 (t)R(t+ 1)A0(t) + σ2AT

1 (t)R(t+ 1)A1(t)

+ qMT (t)M(t) + LT(t)S−1(t)L(t) (10)

with boundary condition R(N + 1) = 0. If this series of
inequalities is solvable with respect to q andR(t), t = 0, N ,
together with the inequality

N∑
t=0

ln detS−1(t) > 2a+mw(N + 1) ln(1− qγ2), (11)

then anisotropic norm of system (9) is bounded by γ,
see Belov et al. (2019) for details. Here, we use σ2 = p(1−
p), and matrices S(t), L(t) are the following:

S(t) = (Imw − BT(t)R(t+ 1)B(t)− qN(t)TN (t))−1,

L(t) = S(t)(BT(t)R(t+ 1)A0(t) + qN(t)TM(t)),

where scalar parameter q ∈
[
0; ‖F‖−2

∞
)
. All matrices

R(t),S(t) are positive definite for t = 0, N .

Next step is concerned with the change of variables. Let us
denote η2 = q−1 and R(t) = q−1R(t), then (10) and (11)
have to change too. In new variables, these inequalities
become as follows:

R(t) � AT
0 (t)R(t+ 1)A0(t) + σ2AT

1 (t)R(t+ 1)A1(t)

+MT (t)M(t) + LT(t)S−1(t)L(t), (12)

N∑
t=0

ln detS−1(t) > 2a+mw(N + 1) ln(η2 − γ2), (13)

where

S(t) =
(
η2Imw

− BT(t)R(t+ 1)B(t)−N(t)TN (t)
)−1

,

L(t) = S(t)
(
BT(t)R(t+ 1)A0(t) +N(t)TM(t)

)
.

The more convenient method to solve inequalities (12) is to
perform transformation to linear matrix inequalities. Us-
ing Schur complement formula, one can get the following: R(t)−MT(t)M(t) ∗ ∗ ∗

NT(t)M η2Imw −NT(t)N (t) ∗ ∗
R(t+ 1)A0(t) −R(t+ 1)B(t) R(t+ 1) ∗
σR(t+ 1)A1(t) 0 0 R(t+ 1)

 � 0

(14)

for all t = 0, N − 1. Note that (14) contains R(t+ 1) mul-
tiplied by A0(t),A1(t) and B(t), which are depended on
unknown matrices W (t) and H(t). To avoid nonlinearity,
let us introduce new matrix variables

U(t) =

[
0nx×nx

0nx×py
W (t) H(t)

]
, X(t) = R(t+ 1)U(t).

Applying variables X(t), t = 0, N , the inequalities (14)
can be converted to R−MTM ∗ ∗ ∗

NTM η2Imw
−NTN ∗ ∗

R+A00+XA01 −R+B0−XB1 R+ ∗
R+A10+XA11 0 0 R+

 � 0, (15)

where for sake of simplicity, R = R(t), R+ = R(t + 1),
N = N (t), M =M(t), X = X(t),

A00 =

[
A
p
(t) 0

A
p
(t) 0

]
, A01 =

[
−Inx+py Inx+py

0 −Cp(t)

]
,

A10 =

[
σÃ(t) 0

σÃ(t) 0

]
, A11 =

[
0 0(nx+py)×(nx+py)

−σC̃(t) 0

]
,

B0 =

[
B(t)
B(t)

]
, B1 =

[
0(nx+py)×mw

−D(t)

]
.

Thus, we additionally add the following constraint on
matrices R(t):

R(t) =

[
R1(t) 0

0 R2(t)

]
,

and the following constraint on matrices X(t):

X(t) =

[
0 0

X1(t) X2(t)

]
.

So, if both series of matrices R(t) and X(t) are successfully
found then, according to[

0 0
W (t) H(t)

]
= R−1(t+ 1)X(t),

one has

W (t) = R−1
2 (t+1)X1(t), H(t) = R−1

2 (t+1)X2(t). (16)

To fulfil the positive definiteness condition on matrix S(t)
in (12) and (13), we introduce matrix Φ(t) such that
0 ≺ Φ(t) ≺ S−1(t), and matrix Ψ(t) = η2Φ(t). Doing this,
the inequality for matrix S(t) transforms to the following
inequality for matrix Ψ(t):[

η2Imw
−Ψ−NTN ∗

R+B00 +XB01 R+

]
� 0, (17)

where time dependence of Ψ = Ψ(t) is omitted as in (15).
The inequality (17) holds true for every time instant t =
0, N − 1. Special-type inequality (13) should be modified
as follows:

N∑
t=0

ln det Ψ(t) > 2a+mw(N + 1) ln(η2 − γ2). (18)
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Fig. 1. Output z(t) and its estimation ẑ(t) for two cases:
with and without correction when failure occurs. The
time instances when failure occurs on some sensor
shown as circles on the corresponding curve.

To satisfy the boundary condition R(N + 1) = 0, we need
to fulfil the following inequalities:[

R(N)−MT(N)M(N) ∗
NT(N)M(N) η2Imw

−NT(N)N (N)

]
� 0,

(19)

η2Imw −Ψ(N)−NT(N)N (N) � 0. (20)

It is important to note that inequalities (15)–(20) are
linear in variables R, X, Ψ, η2, γ2, so it is possible to
use MATLAB software for solving optimization problem

γ2 → min
R,X,Ψ,η2,γ2

subject to convex constraints (15), (17)–(20). After solving
the problem above, one can get the matrix of the estimator
by inverse change of variables (16), provided that convex
optimization problem is feasible.

5. ILLUSTRATIVE EXAMPLES

Let us demonstrate the method proposed with some simple
example. Consider system (6) with matrices

A =

[
0.95 1

0 0.95

]
, B =

[
0 0
1 0

]
,

M =

[
1 0
0 1

]
, N =

[
0 0
0 0

]
,

C =
[
0 1

]
, D =

[
0 0.1

]
,

and failure probability P (λ(t) = 0) = 1 − p = 0.05.
The system is supposed to operate on time interval k =
0, . . . , N with N = 200, and anisotropy of input distur-
bance is chosen as a = 1. The optimization problem was
solved in Matlab using Yalmip (Löfberg (2004)) and Se-
DuMi (Sturm (1999)). The upper bound γ for anisotropic
norm for the case where correction has been considered
is found to be equal γ ' 1.77. Additionally, the same
has been done for this system but without correction, the
computed upper bound of anisotropic norm is equal to
γ ' 17.18. The simulation results are presented in the
Fig. 1.

6. CONCLUSION

For linear discrete time-varying system with randomly oc-
curring packet dropouts and their correction, the anisotropic
estimation problem was solved. The method proposed is

based on the results analysis for systems with multiplica-
tive noises. Solving final optimization problem with convex
constraints gives the matrices of the desired estimator. To
demonstrate the method efficiency, the illustrative exam-
ple is presented.
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