
Fast motion planning for a laboratory 3D
gantry crane in the presence of obstacles

M.N. Vu ∗ P. Zips ∗∗ A. Lobe ∗∗ F. Beck ∗ W. Kemmetmüller ∗

A. Kugi ∗,∗∗

∗ Automation and Control Institute (ACIN), TU Wien, Vienna,
Austria (e-mail: {vu,beck,kemmetmueller,kugi}@acin.tuwien.ac.at).

∗∗ Center for Vision, Automation & Control, AIT Austrian Institute of
Technology Vienna, Austria (e-mail:
{amadeus.lobe,patrik.zips}@ait.ac.at)

Abstract: In this paper, a concept is presented for the fast motion planning of a 3D laboratory
crane in a static environment with obstacles taking into account the dynamic constraints on
the state variables and control inputs. The focus is set on the possibility of a fast (re)planning
if the starting and/or target state is changing. The proposed concept consists of two parts: an
offline trajectory planner to set up a database of collision-free, time optimal trajectories from
the starting to the target space, with an average computing time of 0.17 s for one trajectory, and
an online planner based on a constrained quadratic program, with an average computing time
of 7 ms for one trajectory. Simulation results for a validated mathematical model demonstrate
the feasibility of the proposed approach.

Keywords: fast optimal trajectory planning, online re-planning, direct collocation method,
constrained quadratic optimization, collision avoidance, 3D gantry crane.

1. INTRODUCTION

Motion planning is an important task in robotics. There
are a number of different concepts in the literature, which
can be essentially divided into two groups. In the first
group, a feasible path is searched for and then the re-
dundant and jerky motion are removed by trajectory opti-
mization. For this, the continuous state space is discretized
into grids for graph-based search methods or randomly
sampled for sampling-based search strategies, see, e.g.,
Kavraki et al. (1996), Karaman and Frazzoli (2011). Grid-
based methods such as A* and D*, see, e.g., Hart et al.
(1968); Ferguson and Stentz (2005), respectively, are called
resolution complete path planners because they split the
configuration space into implicit grids. While these ap-
proaches are successfully used in many applications such as
manipulation planning and kino-dynamics planning, see,
e.g., Kondo (1991), and Cherif (1999), their computational
effort significantly increases if a higher quality solution is
requested. On the other hand, sampling-based methods
such as RRT*, see, e.g., Karaman et al. (2011), and In-
formed RRT*, see, e.g., Gammell et al. (2014), provide
the guarantee for the asymptotic optimality of the solu-
tion. However, sampling-based methods do not take into
account the dynamical constraints, which are nonlinear in
general. Therefore, and in order to smooth the trajectory,
further post processing is required.

In the second group, optimization is directly applied to
find a locally optimal, collision-free trajectory which ac-
counts for all dynamical constraints of the system, see,
e.g., Betts (1998), Rao (2009). Covariant Hamiltonian
Optimization for Motion Planning (CHOMP), developed
by Zucker et al. (2013), turns out to be one of the most

successful algorithms. The following key features are taken
into account by CHOMP. Firstly, the trajectory costs
are formulated to be invariant with respect to the time
parametrization. Secondly, the precalculated signed dis-
tance field (SDF), which relies on the Euclidean distance
transform (EDT), see, e.g., Maurer et al. (2003), provides
the global distance and its gradient to obstacle surfaces.
The numerical optimization solver uses a preconditioned
gradient to find the locally optimal trajectory. CHOMP
has proven its effectiveness in several applications includ-
ing the Little-Dog quadruped, PR2 robot, and the HERB
mobile manipulation platform, see, e.g., Zucker et al.
(2013). More recently, Schulman et al. (2014) introduced
the TrajOpt optimization package which is motivated by
CHOMP. There are differences between CHOMP and Tra-
jOpt such as the approach for collision detection and the
numerical optimization scheme. Instead of formulating the
costs to be invariant with respect to time, TrajOpt uses
the time parametrization for the cost functions. Sequential
Quadratic Programming (SQP) is used as the numerical
optimization scheme implemented in TrajOpt. Moreover,
the obstacle avoidance relies on the convex-convex colli-
sion checking approach, which takes two shapes (e.g. the
robot’s link and the obstacle) and computes the minimal
translation between them by the Gilbert-Johnson-Keerthi
(GJK) algorithm, see, Gilbert et al. (1988). The TrajOpt
package can be straightforwardly used for both kinematic
and dynamic constraints. While these algorithms are quite
powerful and already exhibit decent computational effi-
ciency, they do not exploit the knowledge of the previously
planned trajectories if only the starting and/or the tar-
get state are slightly changed. Thus, several approaches
solve the replanning task by creating an offline library

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

Copyright lies with the authors 9643

for the trajectories and for instance generate the new tra-
jectories based on dynamic movement primitives (DMP)
or Gaussian Mixture Models (GMM), see, e.g., Ijspeert
et al. (2002), Khansari-Zadeh and Billard (2011). However,
this strategy becomes computationally inefficient when the
state space grows and these algorithms normally do not
take into account the dynamical feasibility of the gener-
ated motion. Pekarovskiy et al. (2017) used the Laplacian
trajectory editing method to preserve the local trajectory
properties through the least-squares method by fixing a set
of positional constraints. The local trajectory properties
can be velocity deviation, acceleration deviation or jerk
deviation.

In this work, we consider the following scenario. A 3D
gantry crane has to move goods or material from one ded-
icated place (starting space XS) to another place (target
space XT) in a static environment with known obstacles.
The main objective of this paper is the fast planning of a
time-optimal trajectory from a given starting point to a
given target point which systematically accounts for both
the obstacles and the dynamic constraints on the state
variables and control inputs. The offline planner provides
a database of time-optimal and collision-free trajectories
which connect the grid points of the starting space with
those of the target space and respect the dynamic con-
straints. The online planner is able to calculate a new
trajectory in a computationally very efficient way if the
starting and/or target point do not conform to a grid
point in the database. The main contribution of this paper
is the design of this fast planning framework and the
investigation of how the number of grid points in the
starting and target space influence the computing speed
and success rate of the online planner.

The paper is organized as follows: Section 2 shortly intro-
duces the 3D laboratory gantry crane under consideration
and provides the equations of motion. An offline planner
based on the direct transcription method is presented in
Section 3. The static obstacles are taken into account by
potential functions based on the LogSumExp function and
dynamic constraints enter the optimization problem as
box constraints. Section 4 is concerned with the design
of an online planner which selects the closest trajectory in
the database and calculates the required deviation based
on the solution of a constrained quadratic program. Sim-
ulation results for a validated mathematical model are
presented in Section 5. The last section, Section 6, finally
gives some conclusions.

2. EQUATIONS OF MOTION

The setup of the considered laboratory gantry crane is
illustrated in Fig. 1. It is used to simulate the handling
of coils in the steel industry. The hook is mounted on
two ropes which are assumed to be identical, see Fig. 2.
Thus, the gantry crane is able to operate in the three
dimensional (3D) space. The position in x-direction sx
is controlled by the bridge belt motor, while movements
in y-direction sy are generated by the trolley motor. For
lifting and lowering the hook, the hoisting drum performs
the movement sz in z-direction. According to Fig. 2, the
orientation of the hook in 3D space is described by the two
angles α and β in the (zy) and the (zx) plane, respectively.

sy
sx

Hook’s CoM

Fig. 1. Schematic of the considered gantry crane.

These angles are assumed to be identical for both ropes.
Thus, the 3D gantry crane exhibits five degrees of freedom
q = [sx, sy, sz, α, β]T .

Fig. 2. The hook with the corresponding rope angles.

We assume that the massless ropes are always under
tension. Hence, the gantry crane can be treated as a rigid-
body system. The equations of motion of the gantry crane
are derived by using the Euler-Lagrange equations, for
more detail, see Lobe et al. (2018)

D(q)q̈ + C(q, q̇)q̇ + g(q) = Bu, (1)

where D(q) denotes the symmetric and positive definite
mass matrix, C(q, q̇) comprises Coriolis and centrifugal
terms, g(q) are the forces related to the potential energy,
and u = [u1, u2, u3]T is the vector of driving torques at
the x-, y-, and z-axis, respectively. Since the mass matrix
D(q) is invertible, (1) can be rewritten in a more compact
state-space form

ż = f(z,u), (2)

with zT = [qT , q̇T].

3. OFFLINE TRAJECTORY PLANNING

In this section, a time-optimal trajectory is planned from
a starting state zS to a target state zT taking into

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

9644

account the constraints on the system dynamics as well
as obstacles in the 3D space. Essentially, the approaches
know from the literature can be classified into direct and
indirect methods. In the following, the direct transcription
method, see, e.g., Betts (2010), Kelly (2017), is applied
by discretizing the trajectory into N + 1 grid points,
also named collocation points, and solving the discrete
optimization problem

min
ξ
J = tF +

1

2
h

N−1∑
k=0

m∑
i=1

ϕi,k (3a)

s.t. zk+1 − zk =
1

2
h(fk + fk+1) (3b)

z0 = zS , zN = zT (3c)

z ≤ zk ≤ z, k = 0, ..., N (3d)

u ≤ uk ≤ u, k = 0, ..., N, (3e)

with zTk = [qTk , q̇
T
k], the optimization variables

ξT = [tF , z
T
0 , ..., z

T
N ,u

T
0 , ...,u

T
N], (4)

and the time step h = tF /N . In (3a), ϕi,k refers to the
potential function ϕi(qk) of the ith obstacle, i = 1, ...,m,
evaluated at the collocation points qk, k = 0, ..., N − 1
and tF is the time it takes to bring the system from the
starting state zS to the target state zT . Moreover, the
system dynamics (2) is approximated using the trapezoidal
rule with fk = f(zk,uk), and z, z, u, and u denote the
lower and upper bounds of the state and control input,
respectively.

To solve the optimization problem (3a), we use the Inte-
rior Point OPTimize (IPOPT), an open source package
based on the interior point method (IPM) for large scale
nonlinear programming, see, e.g., Wächter and Biegler
(2006). It is worth noting that the gradient of (3a) can be
computed analytically in a straightforward way. After the
optimal values have been found at the collocation points
by solving (2), these values are interpolated in the interval
t ∈ [kh, (k + 1)h]

z(t) ≈ zk + (t− kh)fk +
(t− kh)2

2h
(fk+1 − fk),

u(t) ≈ uk +
t− kh
h

(uk+1 − uk),

(5)

for k = 0, ..., N − 1.

Next, we will derive the potential function ϕi, i = 1, ...,m
of the obstacles in the working space. For this, let us
consider that the obstacles can be embedded by boxes with
the parameter vector Oipi = [wi, hi, di]

T containing the
width wi, the height hi, and the depth di of the box along
the x-, y-, and z-axis in the box frame {Oi} of the ith box,
i = 1, ...,m, see Fig. 3 for m = 2. Moreover, we assume
that the location of the obstacles is known with Oi

I Ri

and Oi

I Ti denoting the rotation matrix and the translation
vector from the box frame {Oi} to the inertial frame {I}.
Thus, the position in the 3D workspace Ir = [Irx,

I ry,
I rz]

T

associated to a point q on the trajectory can be expressed
in the ith box frame {Oi} in the form

Oir =
(

Oi

I Ri

)
Ir +Oi

I Ti. (6)

The point is considered as obstacle-free if and only if the
following condition

S̄i(q) = min(∆pi,j)j=1,2,3 < 0 (7)

2.5
20

1.51

0.5

1

1

0.5 0.5
0 0

{Oi}

{Oi+1}

Ti+1

Ti

{I}

Fig. 3. Illustration of the obstacles in the working space
and their coordinate frames.

is satisfied, where ∆pi,j(q) is the jth component of the
vector

∆pi =
(

Oir
)
◦
(

Oipi −Oi r
)
. (8)

The operator ◦ refers to the element-wise product. Based
on (7), the potential function ϕi for the ith obstacle can
be defined as

ϕ̄i(q) = max(γiS̄i(q), 0), (9)

where γi > 0, i = 1, ...,m, is a user-defined scaling
parameter. In order to render the potential function (9)
and (7) sufficiently smooth, the LogSumExp function is
employed, see, e.g., An et al. (2016), to obtain

Si(q) =
1

η1
log

(3∑
j=1

eη1∆pi,j

)
ϕi(q) =

1

η2
log
(

1 + eη2γiSi(q)
)
,

(10)

with the so-called softness coefficients η1 < 0 and η2 > 0.
This allows to calculate the analytic gradient

∂ϕi(q)

∂q
= γi

eγiη2Si(q)

1 + eγiη2Si(q)

∂Si(q)

∂q
(11)

with

∂Si(q)

∂q
=

3∑
j=1

eη1∆pi,j(q)∑3
j=1 eη1∆pi,j(q)

∂∆pi,j(q)

∂q
. (12)

In order to create a safety margin around the obstacles, the
margin δ = [δx, δy, δz]

T is added in the form Oipi = [wi +
δx/2, hi+δy/2, di+δz/2]T and Ti is replaced by Ti−δ/2.

4. ONLINE TRAJECTORY PLANNING

As already discussed in the introduction, we consider that
the gantry crane operates in a static environment with
m obstacles and the starting and target state, zS and
zT , lie within predefined subspaces of the 3D working
space. For each subspace, an equally spaced grid is defined.
Then, from every grid point of the starting subspace XS to
every grid point in the target subspace XT , a time-optimal
trajectory is planned offline with the direct transcription
method presented in Section 3 and stored in a database.
This section deals with the design of an online trajectory

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

9645

planning algorithm if the starting state z̄S and/or the
target state z̄T do not conform to a grid point of the
corresponding subspaces in the database.

In a first step, a computationally efficient algorithm was
implemented to determine the closest grid points to z̄S
and z̄T . This algorithm starts with identifying those hy-
percubes which contain z̄S and z̄T , respectively, and trans-
form them to a unit hypercube with one corner at [0, 0, 0]T

and the diagonally opposite one at [1, 1, 1]T . Then a sorting
algorithm is employed to discover the tetrahedron accord-
ing to Fig. 4 in which the points z̄S and z̄T lie, see, e.g.,
Moore (1992). By transforming z̄S and z̄T to barycentric
coordinates with respect to the coordinates of the four
corner points of the tetrahedron, see, e.g., Davies (1996), it
can be directly seen which of the four corners is the closest
point. This procedure is computationally more efficient
than computing the distances to the eight corners of the
corresponding hypercubes.

[1, 1, 1]T

[0, 0, 0]T

Fig. 4. Kuhn triangulation of a cube by Davies (1996).

Once selected the closest grid points with respect to z̄S and
z̄T , the time-optimal trajectory connecting these points in
the database is selected with

(ξ∗)T = [(t∗F)T , (z∗0)T , ..., (z∗N)T , (u∗
0)T , ..., (u∗

N)T]. (13)

In a second step, we utilize ξ∗ to calculate the tra-
jectory which connects z̄S with z̄T . If the grid in
the starting and target subspace is sufficiently dense,
it can be expected that only small deviations δξ =
[δtF , δz0, ..., δzN , δu0, ..., δuN]T are required to calculate
the new trajectory. Therefore, the discrete-time system
dynamics (3b) can be linearized around ξ∗ in the form

δzk+1 = δzk +
t∗F
2N

(
Γz
kδzk + Γu

kδuk+

Γz
k+1δzk+1 + Γu

k+1δuk+1

)
+
δtF
2N

(f∗k + f∗k+1),

(14)

with δzk = zk − z∗k, δuk = uk − u∗
k, δtF = tF − t∗F , and

Γz
k =

∂f

∂z

∣∣∣
z∗
k,u

∗
k

, Γu
k =

∂f

∂u

∣∣∣
z∗
k,u

∗
k

for k = 0, ..., N − 1. Note that

δz0 = z̄S − z∗0 and δzN = z̄T − z∗N (15)

are fixed due to the given starting and target state z̄S
and z̄T . The deviation δξ is obtained as the solution of a
constrained quadratic program (QP) of the form

min
δξ

Jξ =
1

2
δξTQδξ (16a)

s.t. Aδξ = b (16b)

δξ ≤ δξ ≤ δξ, (16c)

with the positive definite weighting matrix

Q = diag(QtF ,Qz0
, ...,QzN

,Qu0
, ...,QuN

). (17)

The linearized system dynamics (14) together with (15)
yields the equality constraints (16b) and the inequality

constraints (16c) correspond to (3d), (3e) where δξT =

[0, δzT , δuT], δξ
T

= [δtF , δz
T
, δu

T
], with δz = z − z∗,

δz = z − z∗, δu = u − u∗, δu = u − u∗, and δtF a
sufficiently large upper bound. However, it makes sense
to force the deviations δqk of the δzTk = [δqk, δq̇k] to be
small if the corresponding collocation points q∗

k are already
close to one of the obstacles. Therefore, the submatrix
Qqk

of the weighting matrix Qzk
= diag(Qqk

,Qq̇k
) is

increased if the distance of q∗
k to any obstacle is small.

This is achieved by utilizing the Hessian of the potential
function ϕi,k, i = 1, ...,m in the form

Qqk
= Qq + λ

∂2
(∑m

i=1 ϕi,k

)
∂q2

k

∣∣∣∣∣
q∗
k

, (18)

with the constant matrix Qq > 0 and the tuning parame-
ter λ > 0. Note that the concept for fast online re-planning
of trajectories proposed in this paper has some relation to
sensitivity-based methods, see, e.g., Büskens and Maurer
(2001).

To further enhance the calculating speed for the online
trajectory planner, the constrained QP of (16) is not solved
for all N grid points at once but for s sub-horizons con-
sisting of N/s grid points. Thus, for each subhorizon the
equality constraint (16b) has to be adjusted accordingly so
that the end point of the preceding subhorizon corresponds
to the starting point of the next subhorizon.

5. SIMULATION RESULT

The simulation was obtained using MATLAB(R2018b)
with 1.8 GHz Intel Core i7 and 16GB of RAM. The
Interior Point OPTimize (IPOPT) open source package,
see, e.g.,Wächter and Biegler (2006), was used to solve the
nonlinear optimization problem (3). In IPOPT, the Mul-
tifrontal Massively Parallel sparse direct Solver (MUMPS
5.2) is used as the linear solver to further enhance the com-
puting speed. The analytic gradient of the cost function is
calculated with CasADi, see, e.g., Andersson et al. (2019).
Moreover, the numerical Hessian is computed by the BFGS
approximation method, see, e.g., Liu and Nocedal (1989).
The trajectory is discretized into 51 grid points yielding
664 optimization variables. The sparsity matrix structure
is exploited to reduce the memory usage. To solve the con-
strained QP (16) with box constraints, the CVXgen pack-
age, see, e.g., Mattingley and Boyd (2012), is employed to
generate a fast C-code. For simplification, we consider that
the obstacles are on the ground plane and aligned with
the x-, y-, and z-axis of the frame. The scenario consists
of three obstacles with T1 = [0.735, 0.305, 0]T , T2 =
[0.65, 0.89, 0]T , and T3 = [1.51, 0.5, 0]T as illustrated in
Fig. 5. The state and the input of the dynamic system are
zT = [qT , q̇T],q = [sx, sy, sz, α, β]T , and u = [u1, u2, u3]T

according to (2).

Fig. 5 depicts three representative collision-free paths of
the offline-planning from a starting state zS (circle sym-
bol) to a target state zT (cross symbol). The computing

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

9646

path 1
path 2
path 3

(c)

(a)

(b)

Fig. 5. Collision-free paths for three different scenarios
from a starting state zS (circles) to a target state
zT (crosses) resulting as a solution of the offline
optimization (3). (a) Paths in the 3D space. (b) Paths
in the xy-plane. (c) Paths in the xz-plane.

time are 0.17 s, 0.17 s, and 0.21 s for the red, green, and
blue trajectory, respectively. The time evolution of the
corresponding states ṡx, ṡy, ṡz, α, and β as well as the three
control inputs u1, u2, and u3 are shown in Fig. 6. Moreover,
the state and input constraints according to (3d) and (3e)
are illustrated as black dashed lines. Note that a small
violation of the constraints is possible for points of the
trajectory different from collocation points.

The starting and target points of interest lie in the sub-
spaces XS (size 0.4 m × 0.8 m × 0.55 m) and XT (size 0.3 m
× 0.8 m × 0.4 m), illustrated as grey boxes in Fig. 7. For
both subspaces, an equally spaced grid is defined. Based
on the offline trajectory planning algorithm, a database of
collision-free trajectories is determined which connect each
grid point of XS to each grid point in XT . For this pur-
pose, different number of grid points NST are investigated
according to Table 1. Then a Monte Carlo simulation is

−0.2
0

0.2

ṡ x
(m
/s
)

−0.1
0

0.1

u
1
(N

m
)

−0.2
0

0.2

ṡ y
(m
/s
)

−0.1
0

0.1

u
2
(N

m
)

−0.1
0

0.1

ṡ z
(m
/s
)

−0.2
0

0.2

u
3
(N

m
)

0 2 4 6 8
−0.2

0

0.2

time (s)

α
(r
ad
)

0 2 4 6 8
−0.2

0

0.2

time (s)

β
(r
ad
)

Fig. 6. Time evolution of the states and control inputs for
the three different scenarios depicted in Fig. 5. The
black dashed lines illustrate the constraints on the
states and the control inputs.

XS

XT

Fig. 7. Illustration of the starting and the target subspaces,
XS and XT , in grey color.

performed by randomly selecting 105 uniformly distributed
random pairs of starting and target states z̄S and z̄T
from the two subspaces and planning a new trajectory
by the constrained QP (16). The statistics is shown in
Table 1. While the average computing time to calculate
one trajectory of the database takes approximately 0.17 s,
the computing time for the constrained QP is about 7 ms.
Clearly, if the grid for setting up the database becomes
coarser, the distance of an arbitrarily picked starting and
target state to the nearest grid points also increases on
average. Therefore, the computing time also slightly grows
with a smaller number of grid points NST in XS and XT .
Since the obstacles for the online planning are only taken
into account in an approximate way with the Hessian of
the potential functions, not all trajectories are collision
free. This is reflected in the success rate in Table 1 which,
as a matter of fact, decreases when the number of grid
points is reduced.

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

9647

Fig. 8 depicts two representative cases of an online tra-
jectory and the corresponding nearest trajectory in the
database. It can be clearly seen that if a sufficiently fine
grid is chosen NST = 100 (5 × 5 × 4) for each subspace
XS and XT , there are only small deviations required to
realize the new trajectory. In contrast, for the coarser grid
NST = 27 (3× 3× 3), largers deviations are necessary. It
can also be inferred from Fig. 8 (a) that the deviation of
the online trajectory from the trajectory in the database
becomes smaller for collocation points that are already
closer to obstacles, which is a consequence of the chosen
weighting matrices (18). Fig. 9 shows the corresponding
time evolutions of the states and control inputs. In sum-
mary, the online planner is quite fast (approximately 7 ms
on average) and exhibits a high success rate (greater than
98, 7%) even for coarse grids in the offline database.

Online traj.
Offline traj.

(a)

(b)

Fig. 8. Collision-free paths for two different scenarios
resulting from the online trajectory planning from
a starting state z̄S (circles) to a target state z̄T
(crosses). The offline and online trajectories are illus-
trated in red and blue, respectively. (a) Online trajec-
tory planning with a coarse grid (NST = 27). (b) On-
line trajectory planning with a fine grid (NST = 100).

6. CONCLUSIONS

In this work, a fast combined offline and online motion
planning strategy for a 3D laboratory gantry is proposed.
The offline planner is used to set up a database of time-
optimal trajectories which connect the grid points of a

−0.2
0

0.2

ṡ x
(m
/s
)

−0.1
0

0.1

u
1
(N

m
)

−0.2
0

0.2

ṡ y
(m
/s
)

−0.1
0

0.1

u
2
(N

m
)

−0.1
0

0.1

ṡ z
(m
/s
)

−0.2
0

0.2

u
3
(N

m
)

0 2 4 6 8
−0.2

0

0.2

time (s)

α
(r
ad
)

0 2 4 6 8
−0.2

0

0.2

time (s)

β
(r
ad
)

(a)

−0.2
0

0.2

ṡ x
(m
/s
)

−0.1
0

0.1

u
1
(N

m
)

−0.2
0

0.2
ṡ y

(m
/s
)

−0.1
0

0.1

u
2
(N

m
)

−0.1
0

0.1

ṡ z
(m
/s
)

−0.2
0

0.2

u
3
(N

m
)

0 2 4 6 8
−0.2

0

0.2

time (s)

α
(r
ad
)

0 2 4 6 8
−0.2

0

0.2

time (s)

β
(r
ad
)

(b)

Fig. 9. Time evolution of the states and control inputs
for the two different scenarios depicted in Fig. 8. The
black dashed lines illustrate the constraints on the
states and the control inputs. The online trajectory
and the offline trajectory are illustrated as red and
blue lines, respectively. (a) Online trajectory planning
with a coarse grid (NST = 27). (b) Online trajectory
planning with a fine grid (NST = 100).

Table 1. Monte Carlo simulations with 105 test
cases for different numbers NST of grid points

in the starting and target subspaces.

No. of grid points
NST

27 80 100

Average computing
time in s (offline)

0.17 0.17 0.171

Average computing
time in ms (online)

7.2 7.1 6.9

Success rate (%)
(online)

98.67 98.99 99.1

starting subspace with those of a target space in a collision-
free way and with respect to the dynamic constraints of
the 3D gantry crane. The obstacles are taken into account
in form of potential functions which are based on the Log-
SumExp function. The associated nonlinear optimization
problem is solved by the open source package IPOPT in

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

9648

combination with the parallel solver MUMPS. With this,
it is possible to calculate the optimal trajectories within
a computing time of 0.17 s on average. The online planner
has the task to determine a new trajectory if the starting
and/or target point do not conform to a grid point in
the database. In a first step, the closest trajectory in the
database is selected and then, in a second step, the devi-
ation from this trajectory is minimized by a constrained
quadratic optimization. It is demonstrated that this can be
achieved within approximately 7 ms, even if the grid in the
starting and target subspace is quite coarse. This is also
the main contribution of this paper. The high computing
speed of the online planner allows a fast (re)planning of the
trajectories and thus it is also suitable for moving targets,
which is the current research.

REFERENCES

An, N.T., Giles, D., Nam, N.M., and Rector, R.B. (2016).
The log-exponential smoothing technique and nesterov’s
accelerated gradient method for generalized sylvester
problems. Journal of Optimization Theory and Appli-
cations, 168(2), 559–583.

Andersson, J.A., Gillis, J., Horn, G., Rawlings, J.B., and
Diehl, M. (2019). Casadi: a software framework for non-
linear optimization and optimal control. Mathematical
Programming Computation, 11(1), 1–36.

Betts, J.T. (1998). Survey of numerical methods for
trajectory optimization. Journal of Guidance, Control,
and Dynamics, 21(2), 193–207.

Betts, J.T. (2010). Practical methods for optimal control
and estimation using nonlinear programming. Philadel-
phia, USA: Siam.

Büskens, C. and Maurer, H. (2001). Sensitivity analysis
and real-time optimization of parametric nonlinear pro-
gramming problems. In Online Optimization of Large
Scale Systems. Grötschel, M., Krumke, S.O., and Ram-
bau, J. (Eds.), Berlin-Heidelberg: Springer, 3-16.

Cherif, M. (1999). Kinodynamic motion planning for all-
terrain wheeled vehicles. In Proc. of the IEEE Conf. on
Robotics and Automation, 317–322.

Davies, S. (1996). Multidimensional triangulation and
interpolation for reinforcement learning. In Proc. of the
9th Conf. on Neural Information Processing Systems,
1005–1011.

Ferguson, D. and Stentz, A. (2005). The delayed D*
algorithm for efficient path replanning. In Proc. of the
IEEE Conf. on Robotics and Automation, 2045–2050.

Gammell, J.D., Srinivasa, S.S., and Barfoot, T.D. (2014).
Informed rrt*: Optimal sampling-based path planning
focused via direct sampling of an admissible ellipsoidal
heuristic. In Proc. of the IEEE Conf. on Intelligent
Robots and Systems, 2997–3004.

Gilbert, E.G., Johnson, D.W., and Keerthi, S.S. (1988).
A fast procedure for computing the distance between
complex objects in three-dimensional space. IEEE
Journal on Robotics and Automation, 4(2), 193–203.

Hart, P.E., Nilsson, N.J., and Raphael, B. (1968). A
formal basis for the heuristic determination of minimum
cost paths. IEEE Transactions on Systems Science and
Cybernetics, 4(2), 100–107.

Ijspeert, A.J., Nakanishi, J., and Schaal, S. (2002). Move-
ment imitation with nonlinear dynamical systems in hu-

manoid robots. In Proc. of the IEEE Conf. on Robotics
and Automation, 1398–1403.

Karaman, S. and Frazzoli, E. (2011). Sampling-based algo-
rithms for optimal motion planning. The International
Journal of Robotics Research, 30(7), 846–894.

Karaman, S., Walter, M.R., Perez, A., Frazzoli, E., and
Teller, S. (2011). Anytime motion planning using the
RRT. In Proc. of the IEEE Conf. on Robotics and
Automation, 1478–1483.

Kavraki, L.E., Svestka, P., Latombe, J.C., and Overmars,
M.H. (1996). Probabilistic roadmaps for path planning
in high-dimensional configuration spaces. IEEE Trans-
actions on Robotics and Automation, 12(4), 566–580.

Kelly, M. (2017). An introduction to trajectory optimiza-
tion: how to do your own direct collocation. SIAM
Review, 59(4), 849–904.

Khansari-Zadeh, S.M. and Billard, A. (2011). Learning
stable nonlinear dynamical systems with gaussian mix-
ture models. IEEE Transactions on Robotics, 27(5),
943–957.

Kondo, K. (1991). Motion planning with six degrees of
freedom by multistrategic bidirectional heuristic free-
space enumeration. IEEE Transactions on Robotics and
Automation, (3), 267–277.

Liu, D.C. and Nocedal, J. (1989). On the limited memory
bfgs method for large scale optimization. Mathematical
Programming, 45(1-3), 503–528.

Lobe, A., Ettl, A., Steinboeck, A., and Kugi, A. (2018).
Flatness-based nonlinear control of a three-dimensional
gantry crane. IFAC-PapersOnLine, 51(22), 331–336.

Mattingley, J. and Boyd, S. (2012). CVXGEN: A code gen-
erator for embedded convex optimization. Optimization
and Engineering, 13(1), 1–27.

Maurer, C.R., Qi, R., and Raghavan, V. (2003). A linear
time algorithm for computing exact euclidean distance
transforms of binary images in arbitrary dimensions.
IEEE Transactions on Pattern Analysis and Machine
Intelligence, 25(2), 265–270.

Moore, D.W. (1992). Simplical mesh generation with
applications. Technical report, Cornell University.

Pekarovskiy, A., Nierhoff, T., Hirche, S., and Buss, M.
(2017). Dynamically consistent online adaptation of fast
motions for robotic manipulators. IEEE Transactions
on Robotics, 34(1), 166–182.

Rao, A.V. (2009). A survey of numerical methods for
optimal control. Advances in the Astronautical Sciences,
135(1), 497–528.

Schulman, J., Duan, Y., Ho, J., Lee, A., Awwal, I.,
Bradlow, H., Pan, J., Patil, S., Goldberg, K., and
Abbeel, P. (2014). Motion planning with sequential
convex optimization and convex collision checking. The
International Journal of Robotics Research, 33(9), 1251–
1270.

Wächter, A. and Biegler, L.T. (2006). On the implemen-
tation of an interior-point filter line-search algorithm
for large-scale nonlinear programming. Mathematical
Programming, 106(1), 25–57.

Zucker, M., Ratliff, N., Dragan, A.D., Pivtoraiko, M., Klin-
gensmith, M., Dellin, C.M., Bagnell, J.A., and Srinivasa,
S.S. (2013). CHOMP: Covariant hamiltonian optimiza-
tion for motion planning. The International Journal of
Robotics Research, 32(9-10), 1164–1193.

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

9649

