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Abstract: Interval-based state estimation techniques represent promising approaches for the
quantification of worst-case bounds of those sets of state variables that are reachable over a
finitely long time horizon under the consideration of bounded uncertainty. In previous work, it
has been shown that such estimation techniques cannot only be employed for the class of linear
uncertain systems but also for nonlinear ones if they are reformulated in terms of quasi-linear
state-space representations. However, naive polytopic uncertainty models may lead to quite
conservative enclosures of the reachable states. Those, in turn, lead to conservative control
strategies if the aforementioned interval enclosures are combined with strategies for the design
of robust feedforward and feedback controllers. Therefore, this paper aims at the reduction of
pessimism during interval-based state estimation by means of novel uncertainty models, relying
on a parameter bounding approach that is implemented by means of a correlation analysis as well
as a suitable principle axes transformation of the parameter space. The practical applicability
of the proposed procedure is visualized for an experimentally validated thermal model of a solid
oxide fuel cell stack, for which the computed interval bounds of reachable states represent a
fundamental requirement for the design of a combined feedforward and feedback control allowing
for preventing the violation of upper temperature limits in a guaranteed way.

Keywords: Solid oxide fuel cells, Interval analysis, Robust control, Convex optimization,
Sensitivity analysis, LQR control method.

1. INTRODUCTION

Interval observers are characterized by the fact that they
allow for estimating worst-case outer enclosures for those
sets of state variables that are reachable for dynamic
system models with bounded parameter uncertainty in
the state and measurement equations. The same holds
for bounded disturbances and noise in both, process and
measurement models (Efimov et al., 2013; Chebotarev
et al., 2015; Gouzé et al., 2000). Here, especially the class
of cooperative systems (Smith, 2008) has attracted the
interest of many researchers due to the fact that lower and
upper state bounds can be computed independently after
designing a Luenberger-like observer for both respective
bounding systems (Rauh et al., 2018). Regardless whether
the system models are given by crisp parameter values
or by (in the linear case) system matrices which contain
interval entries, this independence of lower and upper
bounding systems can be ensured if the dynamics can be
reformulated into a (quasi-)linear set of state equations
in which the system matrix has a Metzler structure. Here,
Metzler matrices are characterized by strictly non-negative
entries on all off-diagonal elements (Kaczorek, 2002).

Such dynamic system models given in terms of Metzler ma-
trices can be found in a wide range of applications from the
domain of thermo-fluidic systems. As discussed, for exam-
ple, in Rauh et al. (2018) in more detail, state estimation
and temperature control for solid oxide fuel cells (SOFCs)
belong to this class of applications. Despite the fact that a
direct application of interval observer design procedures,
such as those proposed by Efimov et al. (2013); Räıssi
and Efimov (2018), leads to guaranteed outer estimates
of all reachable states after a quasi-linear reformulation
of the state equations, the classically applied polytopic
uncertainty models have the drawback of producing state
bounds that may be too pessimistic for the design of highly
efficient feedforward and feedback control procedures.

For this reason, this paper aims at deriving a novel
uncertainty description which allows for dealing with the
following aspects:

• bounded uncertainty in selected system parameters,
• (polynomial) nonlinearities in the state equations

which are overbounded by quasi-linear system mod-
els, and

• bounded external disturbances.
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Here, the novelty of the proposed uncertainty modeling
technique can be seen in a reduction of pessimism by
capturing inter-relations between individual entries of the
system matrices of the aforementioned quasi-linear models
by determining the convex hull over representative submo-
dels after a principal axes transformation of a generalized
parameter vector. This principal axes transformation is
employed to select extremal system models which result
from finding guaranteed outer enclosures for the parameter
ranges of all entries in state- and parameter-dependent
system matrices. In combination with computationally
efficient routines for finding a convex hull (Barber et al.,
1996) over all extremal system models, it becomes possi-
ble to design not only interval observers with guaranteed
cooperative error dynamics, but also feedback control pro-
cedures, stabilizing the corresponding closed-loop behavior
in a guaranteed way. Besides the guaranteed robust sta-
bilization, further goals such as minimizing the worst-case
diameter of the intervals of expected tracking errors as
well as a penalization of the required control effort can
be achieved efficiently if robust H2 design approaches are
combined with the novel uncertain system representation.

Based on an underlying robust stabilization of the system
dynamics, this paper presents an extension of the control
structure by a sensitivity-based feedforward control. It
allows for the development of an online predictive control
strategy if it is implemented in a real-time framework.

This paper is structured as follows: Sec. 2 gives an overview
of the control-oriented modeling of an SOFC stack which
serves as the benchmark scenario for which the novel
scheme for uncertainty modeling is derived in Sec. 3.
Secs. 4 and 5 focus on the design and implementation
of both, robust feedback controllers and sensitivity-based
feedforward strategies, where the latter are motivated by
a corresponding offline tracking control and learning-type
feedback design published in Rauh et al. (2012). Finally,
simulation results are given at the end of Sec. 5 before an
outlook on future work concludes this paper in Sec. 6.

2. MODELING THE THERMAL BEHAVIOR OF
SOFC STACK MODULES

The mathematical model of an SOFC can be split into
its electro-chemical and its thermal behavior (Pukrushpan
et al., 2005; Bove and Ubertini, 2008; Rauh et al., 2014),
while this paper focuses on the latter. In general, the
thermal behavior of an SOFC stack can be described by
nonlinear partial differential equations, taking into account
the non-homogeneous temperature distribution. Because
of the challenges given by solving partial differential equa-
tions, the system is transformed into sets of ordinary differ-
ential equations (ODEs) for a control-oriented description.
Assuming that the temperature distribution is piece-wise
homogeneous, the whole stack is semi-discretised into a
finite number of n = L·M ·N equally large cuboid elements
by means of an early lumping approach (cf. Fig. 1).

To describe the temperature distribution, an energy bal-
ance

ϑ̇I =
1

cImI

Q̇IHT +
∑

G∈{AG,CG}

Q̇I
G,I−

j

+ Q̇IEL + Q̇IR


(1)
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Fig. 1. Spatial semi-discretization of the fuel cell stack
module.

is formulated for each finite volume element I := (i, j, k) ∈
{(1, 1, 1), . . . , (L,M,N)} with

• Q̇IHT: heat transfer due to heat conduction and con-
vection (comprising a linearized model for heat radi-
ation),

•
∑
G∈{AG,CG} Q̇

I
G,I−

j

: enthalpy flows of the supplied

gases, where χ in Fig. 1 denotes all relevant gas
fractions at the anode and cathode side,

• Q̇IR: exothermic reaction enthalpies, and

• Q̇IEL: Ohmic losses due to electric currents II .

Eq. (1) can be transformed into a quasi-linear state space
representation

ẋ = A (x,p) · x + b (x,p) · u+ Z (x,p) · e , (2)

where the uncertainties lie in the parameter vector p.
State-dependent nonlinearities in A (x,p), b (x,p), and
Z (x,p) result from polynomial temperature dependencies
of heat capacities as well as reaction enthalpies.

For this paper, one of the simplest, practically useful
semi-discretizations is given by L = N = 1 with M =
3, whereby the SOFC stack temperature distribution is
approximated in the direction of the parallel gas mass flows
of both, the anode gas (i.e. the fuel gas mixture) and the
cathode gas (typically preheated air).

For this case of n = 3 finite volume elements, the system
matrix is defined by

A (x,p) =

[
a11 a12 0
a21 a22 a23

0 a32 a33

]
(3)

with the state vector of element temperatures

x =
[
ϑ(1,1,1) ϑ(1,2,1) ϑ(1,3,1)

]T
. (4)

For a pure temperature control for the heat-up phase,
where Q̇IR = 0 and Q̇IEL = 0, the system input

u = ϑCG,in (5)

consists of the inlet temperature of the cathode gas ϑCG,in

with the resulting input vector

b (x,p) = [b11 0 0]
T
. (6)

Previous work, cf. Rauh et al. (2014) and the references
therein, performed an initial identification of the matrices
(3) and (6) based on experimental data, whereby the
interval-valued enclosure for A (x,p) is strictly Metzler
and the vector b (x,p) is element-wise non-negative.
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The ambient temperature ϑA and the inlet temperature of
the anode gas ϑAG,in represent a measurable disturbance

e = [ϑA ϑAG,in]
T

(7)

coupled with the system dynamics in terms of the distur-
bance input matrix

Z (x,p) =

[
z11 z12

z21 0
z31 0

]
. (8)

For the reaction phase, where Q̇IR 6= 0 and Q̇IEL 6= 0,
the thermal system model has to be extended according
to Rauh et al. (2014) to account for the augmented
disturbance input vector

ẽ =

[
ϑA ϑAG,in

1

3
I

]T

(9)

under the assumption of a homogeneous current distribu-
tion in the SOFC stack which is represented by I(1,1,1) =

I(1,2,1) = I(1,3,1) = 1
3I for a semi-discretization under

investigation into three elements.

The outlet temperature ϑ(1,3,1) denotes the output as in

y(t) = [0 0 1] · x(t) . (10)

In previous work, Ifqir et al. (2017); Rauh et al. (2018);
Ifqir et al. (2019), it was considered that the individual
uncertain entries in the system matrix A (x,p) as well
as in the input vector b (x,p) are independent of each
other. This leads to a conservative solution. For this work,
a refined polytopic model is chosen, in consideration of
the dependence between the entries in these matrices.
Therefore, the state intervals are split into subboxes to
build a tight convex hull after a principal axes transforma-
tion, so that nonlinearities and uncertainties are bounded
rigorously with less overestimation. As a result, the control
design becomes easier to perform. Especially, it provides
enhanced possibilities for an optimization with respect
to state constraints such as maximum admissible stack
temperatures.

3. POLYTOPIC UNCERTAINTY REPRESENTATION
WITH PRINCIPAL AXES TRANSFORMATION

In many practical applications, it is possible to describe the
influence of uncertainty with a polytopic representation P,
where its vertex matrices yield a convex outer enclosure for
all possible system matrices. Since these matrices typically
depend on uncertain but bounded state or parameter in-
tervals, it is common to use the extremal interval bounds
to represent the polytope. As shown in Rauh and Kersten
(2020), axes-parallel representations for the uncertainty,
i.e., treating each of the matrix entries as independent,
may lead to a blow-up of the estimated state enclosures in
simulations or even to infeasible tasks of a robust controller
synthesis due to the involved overapproximation of possi-
ble system models. Therefore, it is desired to reduce this
conservatism by removing the independent consideration
of parameter intervals by capturing their physical inter-
relations. This is accomplished by subdividing the range
of possible operating conditions, which influence the terms
A (x,p), b (x,p), and Z (x,p), into NL mutually disjoint
subintervals [

x〈i,ξ〉
]
∈
[

x〈i〉; x〈i〉
]

with (11)

i ∈ {1, ..., NL}. The same is done for the parameter vector
p if the respective values are as well given by uncertain
domains. Besides an interval evaluation of the system
and input matrices, it is possible to determine accurate
(however, not necessarily fully verified) approximations
for the ranges of all matrix entries, if sampling points
x〈i,ξ〉 ∈

[
x〈i〉

]
with ξ ∈ {1, ...,Ξ} are used for the range

evaluation. This sampling guarantees to cover the full
ranges if the entries in the system and input matrices are
monotonic with respect to these values. Then, using the
respective interval endpoints is sufficient. Assuming that
a point-wise evaluation of A (x,p) and b (x,p) has been
performed to determine the possible operating conditions,
all matrix (resp., vector) entries are transformed by a
principal axes transformation for efficiently determined
axes-parallel interval boxes enclosing uncertainties that
show a dominant linear dependency.

Therefore, the entries in both A (x,p) and b (x,p) are
evaluated along the operating points ξ ∈ {1, . . . ,Ξ} for
each subinterval i and are summarized in a matrix

X〈i〉 =


a11(x〈i,1〉,p) a11(x〈i,2〉,p) ... a11(x〈i,Ξ〉,p)

: : ... :

a33(x〈i,1〉,p) a33(x〈i,2〉,p) ... a33(x〈i,Ξ〉,p)

b11(x〈i,1〉,p) b11(x〈i,2〉,p) ... b11(x〈i,Ξ〉,p)

 .

(12)
Furthermore, the matrix X〈i〉 is shifted into an offset-free
form

D〈i〉 = X〈i〉 − µ〈i〉 · [1 ... 1] (13)

by subtracting the mean values µ〈i〉 ∈ Rn2+n×1 of each
row. A transformation matrix W can then be determined
either by a singular value decomposition of D〈i〉 or by the
covariance matrix

Σ〈i〉 =
1

Ξ− 1
D〈i〉 · (D〈i〉)T . (14)

Here, the transformation matrix W is given by sorting the
eigenvectors of Σ〈i〉 according to their largest eigenvalues
and is used to transform the matrix D〈i〉 into the new
coordinates

Y〈i〉 = W−1D〈i〉 , (15)

where W−1 = WT holds if all columns of W are nor-
malized to length one with all eigenvalues being stricly
distinct. The lower and upper bounds are extracted ac-

cording to Y〈i〉l ∈
[
Y〈i〉l ; Y〈i〉l

]
with

Y〈i〉l = min
ξ∈{1,...,Ξ}

(
Y〈i〉lξ

)
and Y〈i〉l = max

ξ∈{1,...,Ξ}

(
Y〈i〉lξ

)
(16)

for each row l. To determine an axes-aligned subbox, all
possible combinations of extremal bounds for each row of

Y〈i〉 are used to define the vertices

Y〈i〉 =



Y〈i〉1

Y〈i〉2
:

Y〈i〉n2+n

 ,

Y〈i〉1

Y〈i〉2
:

Y〈i〉n2+n

 , . . . ,

Y〈i〉1

Y〈i〉2
:

Y〈i〉n2+n


 .

(17)
After a backward transformation of the extremal realiza-
tions collected in Y〈i〉 into the original coordinates accord-
ing to

X 〈i〉 = WY〈i〉 + µ , (18)
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a convex hull over all of these realizations with the result-
ing index set

P = convhulln(X 〈i〉, . . . ,X 〈NL〉) (19)

is determined using the quickhull algorithm implemented
in MATLAB (Barber et al., 1996). This leads to a poly-
topic outer enclosure containing nP vertices. Note that a
complexity-reducing merging of subdomains becomes pos-
sible, if multiple submodels X〈i〉 are transformed with the
help of an identical transformation matrix W and if they
are combined when determining the range bounds (16).

Exemplarily, Fig. 2 depicts the system matrix entries a22

and a33 for the SOFC model which exhibit a dominant
linear dependence. Consequently, more conservative enclo-
sures in terms of axes-parallel boxes as a common practice
shown in red lead an excessively wide polytope, where the
resulting number of vertices represented by green stars
is also undesirably large (nP = 19). In comparison, the
enclosure after the principal axes transformation described
above leads to the ranges highlighted in Fig. 3. They are
not only narrower but are typically also given by a smaller
number of vertices (nP = 10).

Fig. 2. Polytopic uncertainty model without principal axes
transformation for NL = 9.

Fig. 3. Polytopic uncertainty model after a principal axes
transformation for NL = 9.

4. ROBUST FEEDBACK CONTROL DESIGN

The robust control strategy developed in this paper con-
sists of a two-stage design. In the first step, an underlying
robust linear state feedback is designed for the list of all
vertex matrices j ∈ {1, .., nP} resulting from the evalua-
tion of (19) in the previous section. The respective con-
troller

u(t) = −kTx(t) + uff(t) (20)
with the vertex-independent gain kT is extended in a
second step (see Sec. 5) by a feedforward signal uff(t)

designed by using a sensitivity-based procedure to prevent
overshooting maximum admissible stack temperatures.

Stability of the underlying linear feedback controller for
the complete range of possible operating conditions is
ensured if the gain vector kT satisfies the bilinear matrix
inequality(

Aj − bjk
T
)T ·P + P ·

(
Aj − bjk

T
)
≺ 0 (21)

with the yet unknown, positive-definite matrix P = PT �
0 serving as the parameterization of a vertex-independent
Lyapunov function candidate for the closed-loop dynam-
ics. Applying the linearizing change of variables Q =
P−1 � 0 and Y = kTP−1, the inequality (21) is trans-
formed into its linear equivalent form

AjQ + QAT
j − bjY −YTbTj ≺ 0 . (22)

In addition to stability of the closed-loop dynamics, opti-
mality properties such as the minimization of the H2 norm
between disturbance inputs and system output(s) can be
included if the LMI (22) is extended according to[

AjQ + QAT
j − bjY −YTbTj Z

ZT −I

]
≺ 0 , (23)

where the matrix Z represents a point-valued representa-
tion of the disturbance input (or in case of non-negligible
uncertainty, corresponding polytope vertices which then
need to be included in (12)). Optimality of the gain kT

results from a minimization of the trace of the symmetric,
positive-definite auxiliary matrix Φ according to

min{trace{Φ}} satisfying

[
Q Qc

cTQ Φ

]
� 0 , (24)

which is further extended by a restriction that enforces
purely real eigenvalues of the closed-loop system (Scherer
and Weiland, 2011).

Using this information, the nonlinear closed-loop dynamics
are given by the differential equations

ẋ = AC(x,p) · x + b(x,p) · uff + Z(x,p) · e (25)

with AC(x,p) = A(x,p) − kT · b(x,p). Unfortunately,
the solution of the optimization problem described above
typically leads to controller gains kT which violate the
structural Metzler properties of the closed-loop system ma-
trix AC(x,p). Hence, forecasting worst-case bounds for all
possible system states is not directly possible by simulating
lower and upper bounding systems for the state trajecto-
ries as it was done, for example, in Rauh et al. (2018);
Rauh and Kersten (2020). To avoid the introduction of
structural restrictions on the ranges for the gain values
kT (typically leading to suboptimal control parameteri-
zations) a similarity transformation according to Kersten
et al. (2018) on the closed-loop state equations (25) is
performed according to Fig. 4. This transformation yields
an equivalent system representation ensured to be cooper-

ative due to the Metzler matrix
[
ÃC

]
so that lower and

upper state bounds can be forecasted independently as
shown, for example, in Efimov et al. (2013).

5. SENSITIVITY-BASED FEEDFORWORD
OPTIMIZATION AND NUMERICAL VALIDATION

OF THE ROBUST FEEDBACK CONTROLLER

As mentioned in Sec. 4, the feedforward control signal
uff(t) is computed by a sensitivity-based approach. For
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Set i := 1

While i ≤ NL with i = {1, 2, ...}

Determine [AC]
〈i〉 =

[
A
〈i〉
C ; A

〈i〉
C

]
Initialize eigenvalues λ

〈i〉
0 and eigenvector T

〈i〉
0 with

eig
(
mid
(
[AC]

〈i〉))
Determine the enclosures of the eigenvalues [λ]〈i〉 and

eigenvectors [T]〈i〉 with the INTLAB routine verifyeig()

Update
[
λ̃
]
= hull

([
λ̃
]
, [λ]〈i〉

)
;
[
T̃
]
= hull

([
T̃
]
, [T]〈i〉

)
Output

[
ÃC

]
= diag

([
λ̃
]) [

b̃
]
=
[
T̃
]−1
· [b][

Z̃
]
=
[
T̃
]−1
· [Z] [c̃]T = cT ·

[
T̃
]

Fig. 4. Similarity transformation of the state equations.

that purpose, the cost function

J =

τ+Nτ∑
k=τ

E(tk) with (26)

E(tk) =
1

2
η ·
(
yd(tk)− 1

2
·
(
ϑ(1,3,1)(tk) + ϑ(1,3,1)(tk)

))2

︸ ︷︷ ︸
E1

+
1

2
·max

(
ϑ(1,3,1)(ti)− ϑmax, 0

)2
︸ ︷︷ ︸

E2

(27)

and the reference trajectory yd(ti) for the midpoint of the
interval enclosure of the stack outlet temperature ϑ(1,3,1) is
minimized. Here, techniques for algorithmic differentiation
are employed, which relate the differential ∂J

∂ξi
of the cost

function to the differential sensitivities

si(t) :=
∂x(t)

∂ξi
∈ Rnx (28)

of the state equations ẋ = f (x(t), ξ). These sensitivities
can be computed by solving appropriate initial value
problems to the ordinary differential equations

ṡi(t) =
∂f(x(t), ξ)

∂x
· si(t) +

∂f(x(t), ξ)

∂ξi
, (29)

where the vector components ξi contain all parameters to
be adjusted during the feedforward control design.

For a pure offline solution, ξ is equal to a time-invariant
feedforward gain S according to uff(t) = S · yd(t), which
is adapted iteratively according to

Sκ = Sκ−1 + ∆Sκ (30)

with the increment

∆Sκ = −

(
∂J(Sκ−1 + ∆Sκ)

∂∆Sκ

∣∣∣∣
∆Sκ=0

)+

· J (Sκ−1) . (31)

This increment is chosen in such a way that the zero of
the linearized cost function

J (Sκ−1 + ∆Sκ) ≈ J(Sκ−1)+
∂J(Sκ−1 + ∆Sκ)

∂∆Sκ

∣∣∣∣
∆Sκ=0

·∆Sκ

(32)

is determined in each step.

Setting the weight η in the term E1 of the cost func-
tion (26) with (27) to a sufficiently small value allows for a
guaranteed prevention of overshooting a pre-defined upper
temperature bound. The result, including the feedback
gain from the previous section together with the prediction
of the output intervals after the similarity transformation
in Fig. 4 is shown in Fig. 5. In addition, Fig. 6 demon-
strates the convergence of the sensitivity-based optimiza-
tion within less than 10 iterations if Sκ=0 = 0 is chosen.

   0 2000 4000 6000 8000

 200

 400

 600

 800

1000

Fig. 5. Offline optimization with a time-invariant feedfor-
ward gain S.
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Fig. 6. Iterative optimization of the constant gain S.

A generalization — on the basis of an online optimization
of sequences of Nτ = 10 piecewise constant gains — valid
for a duration of 2 s each, from which only the first one is
applied to the system, significantly improves the tracking
accuracy of the desired output in Fig. 7. For the beginning
of each temporally moving prediction window, state esti-
mates according to Rauh et al. (2018) are required. Note,
a numerical experiment with adapting the feedforward
gains only each tenth second lead to practically identical
results, however, with a significant reduction of the compu-
tational effort. The overall structure of the robust feedback
controller including the sensitivity-based optimization is
depicted in Fig. 8 as a block diagram.

6. CONCLUSIONS AND FUTURE WORK

In this paper, a robust closed-loop control strategy was de-
rived on the basis of a novel polytopic uncertainty model,
which results from a control-oriented modeling of a high-
temperature SOFC stack. With the help of LMIs, a robust
feedback controller was designed so that an H2-motivated
cost function was minimized. However, this controller typ-
ically leads to a loss of cooperativity of the underlying
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Fig. 7. Online optimization with time-varying feedforward
gains S(tτ ), tτ ∈ {2, 4, 6, . . .} s.

plant

robust feedback controller

y(t)
uff (t )

u (t)

e (t )

x(t )

reference
trajectory

yd(t ) S (t τ)

online predictive control strategy

worst-case 
state prediction

performance 
criterion

ϑ(1,3 ,1)

ϑ(1,3 ,1)

sens.-based 
optimization

J S (t τ)

x(t )

yd(t )

Fig. 8. Block diagram of the robust control structure.

closed-loop control system. To recover the possibility for a
simple independent forecast of lower and upper bounds on
the system output, this control strategy is interfaced with
a state-space transformation. In such a way, an offline feed-
forward control synthesis as well as a sensitivity-based pre-
dictive control procedure were implemented which make
sure that neither of the worst-case state trajectories vio-
lates predefined system constraints, for example the upper
threshold on the admissible temperature.

In future work, the robust controller should be imple-
mented at a test rig for experimental validation. Fur-
thermore, the underlying robust state feedback can be
generalized to an adaptive scheme with state-dependent
gain values to improve the control accuracy while still
being compatible with hard state constraints. Although
this paper was focused purely on the heating phase of
the SOFC, the presented controller can be generalized
directly to the reaction phase. There, exothermal reaction
enthalpies lead to bounded disturbances from the temper-
ature control point of view, leading to the necessity to
firstly determine the stack segment I with the maximum
temperature y = arg maxI{ϑI(t)} for which the predictive
controller has to make sure that upper thresholds are not
violated, cf. Rauh et al. (2014).
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Gouzé, J.L., Rapaport, A., and Hadj-Sadok, M.Z. (2000).
Interval Observers for Uncertain Biological Systems.
Ecological modelling, 133(1), 45–56.

Ifqir, S., Rauh, A., Kersten, J., Ichalal, D., Ait-Oufroukh,
N., and Mammar, S. (2019). Interval Observer-Based
Controller Design for Systems with State Constraints:
Application to Solid Oxide Fuel Cells Stacks. In IEEE
Intl. Conference on Methods and Models in Automation
and Robotics MMAR 2019. Miedzyzdroje, Poland.

Ifqir, S., Ait-Oufroukh, N., Ichalal, D., and Mammar,
S. (2017). Synchronous interval observer design for
switched lpv systems using multiple quadratic iss-
lyapunov functions. In 25th Mediterranean Conference
on Control and Automation (MED), 388–393. IEEE.

Kaczorek, T. (2002). Positive 1D and 2D Systems.
Springer–Verlag, London.

Kersten, J., Rauh, A., and Aschemann, H. (2018).
State-Space Transformations of Uncertain Systems with
Purely Real and Conjugate-Complex Eigenvalues into a
Cooperative Form. In IEEE Intl. Conference on Meth-
ods and Models in Automation and Robotics MMAR
2018. Miedzyzdroje, Poland.

Pukrushpan, J., Stefanopoulou, A., and Peng, H. (2005).
Control of Fuel Cell Power Systems: Principles, Mod-
eling, Analysis and Feedback Design. Springer, Berlin,
2nd edition.
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