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Abstract: Burgers’ equation is a nonlinear scalar partial differential equation, commonly used
as a testbed for model order reduction techniques and error estimates. Model order reduction
of the parameterized Burgers’ equation is commonly done by using the reduced basis method.
In this method, an error estimate plays a crucial rule in both accelerating the offline phase and
quantifying the error induced after reduction in the online phase. In this study, we introduce
two new estimates for this reduction error. The first error estimate is based on a Lur’e-type
model formulation of the system obtained after the full-discretization of Burgers’ equation. The
second error estimate is built upon snapshots generated in the offline phase of the reduced basis
method. The second error estimate is applicable to a wider range of systems compared to the
first error estimate. Results reveal that when conditions for the error estimates are satisfied, the
error estimates are accurate and work efficiently in terms of computational effort.

Keywords: Error estimate, Reduced basis method, Model order reduction, Nonlinear systems,
Burgers’ equation.

1 Introduction

Model order reduction of high-fidelity models is a neces-
sary tool for enabling real-time simulation and controller
design. These high-fidelity models are often the result of
the discretization of Partial Differential Equations (PDEs)
governing the physical phenomena. One way to reduce
these models is the Reduced Basis (RB) method (Haas-
donk and Ohlberger [2008]), consisting of decomposed
offline and online phases. In the offline phase of the RB
method, RB functions for approximating the solution are
generated. This phase contains computations whose com-
plexity scale with the degrees of freedom of the original
system, thus it is computationally expensive. In the online
phase, the solution is approximated by a linear combi-
nation of the RB functions. The computations in this
phase scale with the number of RB functions generated
in the offline phase, which renders obtaining the solution
of the reduced model computationally efficient. However,
replacing a model with its reduced version leads to an
error between the solution of the full-order model and
the reduced one. To ensure the accuracy of the reduced
solution, an error bound or estimate should be provided. In
the RB context, the benefits of having such an error bound
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or estimate are twofold. First, an error bound (or estimate)
in the RB technique can be used to accelerate the offline
phase during the greedy algorithm (Abbasi et al. [2020]).
Second, it certifies the accuracy of the solution that is
obtained during the online phase. Therefore, developing a
sharp error bound (or an accurate error estimate) is crucial
within this approach.

To build an efficient yet accurate reduced-order model
by the RB method and decompose the offline and on-
line phases, nonlinear problems are hyper-reduced by us-
ing the Empirical Interpolation Method (EIM) (Barrault
et al. [2004]) or its discrete counterpart, the Discrete
Empirical Interpolation Method (DEIM) (Chaturantabut
and Sorensen [2010]), combined afterwards with the RB
method itself. EIM and DEIM require additional basis
functions (called collateral basis functions) to approximate
the nonlinear functions and these collateral basis functions
are usually generated in the offline phase before the gen-
eration of the RB functions, which makes the offline phase
even more expensive. To reduce the computation time,
the collateral basis functions can be generated in parallel
to the RB functions. To synchronize the RB function
generation and the collateral basis function generation,
various algorithms have been introduced; e.g. the PODEI
algorithm by Drohmann et al. [2012]. The inaccurate ap-
proximation of the nonlinear functions also plays a role
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in the final error induced by reduction, which has to
be taken into account when building error estimates. To
generate both collateral basis functions and RB functions,
the solution snapshots of the full-order system of equations
should be available.

In this paper, we focus on a hyperbolic PDE, Burgers’
equation. Hyperbolic systems are commonly solved by
Finite-Volume (FV) techniques that lead to state-space
models of high order. The work on error bounds (or
estimates) in the RB community for hyperbolic systems is
still in the evolutionary stage, see Haasdonk and Ohlberger
[2008], Zhang et al. [2015], Abbasi et al. [2020] for some
works. Methods introduced in these works are typically
tailored to linear systems and not efficient if applied to
nonlinear systems. Moreover, most of these techniques
(except the method by Abbasi et al. [2020]) utilize the
norm of the state matrix of the discretized system. If the
state matrix has a large norm (larger than one), these error
bounds (estimates) are not valid and grow exponentially
over time. The method introduced by Abbasi et al. [2020]
(which also works well if applied to systems with local
nonlinearities) circumvents this issue by using the `2-norm
of the system with respect to its inputs and outputs,
as similarly done in the balanced truncation method by
Naderi Lordejani et al. [2018], Besselink et al. [2012,
2013]. In general, theoretical error estimates for nonlinear
systems are lacking in the RB literature. In this paper,
we aim to extend the methodology introduced in Abbasi
et al. [2020] from systems with local nonlinearities to
systems with distributed nonlinearities. However, the error
estimate of Abbasi et al. [2020] cannot be efficiently
used when strong nonlinearities (nonlinearities with high
Lipschitz constant) are present in the system.

Therefore, in addition to the error estimate based on the
`2-gain notion, an empirical error estimate is also intro-
duced in this paper. This estimate is based on the snap-
shots generated in the offline phase of the RB method. This
estimate does not suffer from restrictions of the previous
error estimate. Most importantly, it does not require the
residual calculation and it is tailored in a way that its
computation is efficient, similar to the computation of the
reduced-order solution.

The structure of this paper is as follows. In Section 2,
Burgers’ equation together with its discretization, which
leads to the full-order model, is introduced. In Section 3,
the model-order reduction approach used to obtain the
reduced-order model is elaborated. In Section 4, the two
error estimates for the nonlinear reduced-order model are
discussed. In Section 5, numerical results are presented.
Finally, Section 6 concludes the paper.

2 Burgers’ equation

One of the simplest and yet fundamental nonlinear equa-
tions describing a conservative system is Burgers’ equa-
tion, which is sometimes referred to as the scalar version
of the Navier-Stokes equations (Orlandi [2000]). This equa-
tion is defined as

∂u

∂t
+

∂

∂x
(f(u)) = 0, t ∈ [0, T ], x ∈ [0, L], (1)

where u := u(t, x;µ) is the conservative variable and
f(u) = u2/2 is the flux function associated with Burgers’

equation. Here, t represents time and T is the time horizon
of the simulation. In addition, x denotes the spatial coor-
dinate and L is the length of the spatial domain. Finally,
µ ∈ D is a vector of parameters used in (1) that varies
in a multi-query analysis within the parameter domain
D ∈ RR, with R the number of varying parameters. We
assume that the initial condition and boundary condition
are represented by these varying parameters. For the initial
condition, we assume u(0, x;µ) = µ1, which is constant
over the spatial domain. For the boundary condition at
x = 0, we assume

u(t, 0;µ) =

{
µ1, t = 0,

µ2, t > 0.
(2)

Therefore, in this study, we have µ = [µ1, µ2].

Discretizing (1) with the Lax-Friedrichs scheme (see Lax
[1954], Friedrichs [1954]) leads to

Un+1 = LlinU
n +BUn0 −

∆t

4∆x
Lnl(U

n)2 +
∆t

2∆x
B(Un0 )2,

(3)

where Un := [Un1 , · · · , UnN ]T ∈ RN is the vector containing
Uni , the average of the conservative variable u over the i-
th grid cell at the time instant tn := n∆t, n = {0, · · · , Nt}
with Nt number of time steps. Here, ∆t and ∆x refer to the
temporal and spatial discretization intervals over time and
space, respectively. The spatial discretization consists of
cells (xi−1/2, xi+1/2), i = 1, · · · ,N , with the length of ∆x
centered at xi = xi−1/2 + ∆x/2 and N spatial grid cells.

Furthermore, Llin, Lnl ∈ RN×N are the operators acting
on the linear and nonlinear part of the system that emerge
after applying the full-discretization. Also, Un0 ∈ R is the
value of the conservative variable at the boundary x = 0
acting as the input into the system defined according to
(2) and B ∈ RN is the input matrix corresponding to the
boundary input. Moreover, the square operator (·)2 in (3)
is interpreted element-wise. The nonlinearity associated
with this equation is g(U) = (U)2, where g(·) is a nonlinear
operator. Then, system (3) is equivalent to the system Σ
depicted in the left side of Figure 1, which comprises a
linear subsystem Σlin and nonlinear subsystem Σnl given
by

Σlin :


Un+1 =LlinU

n +BUn0 −
∆t

4∆x
LnlU

n
nl

+
∆t

2∆x
B(Un0 )2,

yn =CyU
n,

zn =Un,
Σnl : Un

nl = g(zn) = (zn)2.

(4)

Here, y ∈ Rw is the output of interest of the system (for
instance, y can be the value of the conservative variable at
the right-end of the spatial domain with w = 1) and Cy ∈
Rw×N is the corresponding output matrix. This full-order
model has large dimension (i.e., N is large). Therefore,
real-time simulations cannot be achieved unless powerful
computational resources are at the disposal. Moreover,
control design for such a complex system is generally
infeasible. Hence, model order reduction should be applied
to (4), which is the topic of the next section. The following
assumption will be used throughout the paper.

Assumption 1. The system matrix Llin is Schur for all
µ ∈ D, i.e., Σlin in (4) is internally asymptotically stable.
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Fig. 1. Left: The schematic representation of the the inter-
connection between the linear dynamics and the static
nonlinearity. Right: The schematic representation of
the interconnection between the reduced linear sub-
system (obtained by the RB method) and the reduced
nonlinear function (number of nonlinear equations is
reduced by (D)EIM).

3 Model reduction

This section subsequently discusses the RB method,
(D)EIM, and their combination, leading to a method for
hyper-reduction of the nonlinear system (4).

3.1 Reduced basis method

A powerful method for dimension reduction of a parameter-
dependent dynamical system is the RB method. In the
RB method, the system of equations is projected into a
low dimensional space spanned by the solutions of the full-
order model for specific members of the parameter domain.

As discussed in Abbasi et al. [2020], handling time-varying
boundary conditions within the RB method is vital as
the (time-varying) control inputs commonly act at the
boundaries. Tailoring the method in Abbasi et al. [2020]
to our case study, we introduce the RB ansatz

Û
n
(µ) = Un0 (µ)1 + Φan, (5)

where Û
n
∈ RN is the solution of the reduced-order model,

and 1 ∈ RN is a vector of ones that enables the RB
solution Û

n
(µ) to satisfy the boundary condition (2) at all

time instants. Then, the RB functions Φ ∈ RN×N should
vanish at the location of the specified boundary condition
(i.e., Φ|x=0= 0,), where N is the number of RB functions.
Here, an ∈ RN is the modal coordinate associated with
the RB functions, which is the state of the reduced-
order model. To generate the RB functions Φ vanishing
at the location of the specified boundary, we modify
the snapshots during the greedy algorithm for a selected
parameter µ∗ and then apply the Proper Orthogonal
Decomposition (POD) (Hesthaven et al. [2016]) on these
modified snapshots (see Algorithm 1), defined as

Û
n,∗

(µ∗) = Û
n
(µ∗)− Un0 (µ∗)1,

Û
∗
(µ∗) = {Û

n,∗
(µ∗)}, ∀ n = {0, · · · , Nt}.

(6)

Finally, “POD(Û
∗
(µ∗), 1)” obtained from Algorithm 1

yields an RB function. For more details, we refer to Abbasi
et al. [2020].

3.2 Empirical interpolation method

To handle the nonlinearities in (4), EIM is applied as
in Barrault et al. [2004]. By using this method, a non-
linear function is replaced by a linear interpolation of

collateral basis functions (basis functions generated by
the EIM/DEIM), which are obtained during the offline
phase. In the online phase, the coefficients for the linear
interpolation of the collateral basis functions are chosen
such that this interpolation becomes exact at some pre-
selected points, the so-called interpolation points, along
the spatial domain. The effect of the nonlinear function
is then fed back into the linear system via the feedback
interconnection as shown in the right side of Figure 1.

After applying EIM, the nonlinear function in (4) is
approximated by a linear interpolation

(Un)2 ≈ qnlθnnl, (7)

where qnl ∈ RN×M is the matrix of collateral basis
functions and θnl ∈ RM are the unknown coefficients
of the collateral basis functions, to be calculated online.
The collateral basis functions qnl are obtained by applying
POD (Algorithm 1) on the snapshots of the nonlinearities
g(zn) for specific members of the parameter domain during
the offline phase. The coefficients θnl in (7) are obtained
during the online phase such that the interpolation is exact
atM pre-selected points Xm = {x1, · · ·xM} where xi ∈ R
is the grid-cell number of the interpolation point selected
at the i-th iteration (the selection procedure of such points
is introduced later in Algorithm 2). Specifically, let P =
[ex1

, · · · exM
] ∈ RN×M where ei is the i-th column of the

identity matrix (of dimension N×N ). For the points Xm,
we have

(PTUn)2 = PT qnlθ
n
nl, (8)

stating that the interpolation is exact at Xm if PT qnl
is non-singular (θnnl can then be computed from (8)).
After approximating the nonlinearities in (4) with linear
interpolation of the collateral basis functions, we can apply
a Galerkin projection (Haasdonk and Ohlberger [2008]) to
the system of equations, as explained in the next section.

3.3 RB-EIM combination

After applying EIM to the nonlinear parts of the dynamics,
all the operators involved in the full-order model become
linear and therefore the system can be efficiently projected
onto a lower-dimensional subspace spanned by Φ. Sub-
stituting the ansatz (5) and the EIM approximation (7)
in (4), applying a Galerkin projection on the resulting
system and taking into account the orthogonality of the
basis functions Φ, we obtain the reduced-order model

Algorithm 1 POD algorithm, POD(U , nPOD)

Input: Snapshots U(µ) ∈ RN×Nt , number of basis vec-
tors nPOD

Output: φ ∈ RN×nPOD

1: Perform a Singular Value Decomposition on the snap-
shots, U = USVDSV

2: φ = USVD(:, 1 : nPOD) is the first nPOD vectors of the
left singular vectors USVD.
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Algorithm 2 PODEI-Greedy algorithm

Input: Dh(discretized version of D), N,µ1 ∈ Dh
Output: Φ, qnl,Xm, Bnl
1: Set Φ = {}, qnl = {},Xm = {}, Bnl = 1,
2: for k=1 to N-1 do
3: Solve (4) for µk to obtain U = [U0, · · · ,UNt ] and

Unl = [U0
nl, · · · ,U

Nt

nl ]

4: Generate U∗ = U − [U0
0 , · · · , U

Nt
0 ]1 and Ūnl =

Unl − qnlB−1nl Unl(Xm, :)
5: Set Ū = U∗ − ΦΦTU∗

6: Φ ← orth
{

Φ ∪ POD(Ū , 1)
}

and qPOD =

POD(Ūnl, 1)

7: σM = (qnl(Xm, :))
−1
qPOD(Xm)

8: rd = qPOD − qnlσM
9: Xm ← {Xm ∪ (rd)},

10: qnl ← {qnl ∪ rd
max rd

}, Bnl = qnl(Xm, :)
11: Based on Φ and qnl, perform the error estimates to

find the worst approximated solution and find µk+1

and e(µk+1)
12: if e(µk+1) > e(µk) then
13: qnl = qnl(:, 1 : end− 1), Xm = Xm(1 : end− 1),

Bnl = qnl(Xm, :)
14: end if
15: end for

Σ̂lin :


an+1 =L̂lina

n + (B̂ + L̂BC)Un0 −
∆t

4∆x
L̂nlθ

n
nl

+
∆t

2∆x
B̂(Un0 )2 − Φ1U

n+1
0 ,

ŷn =Un0 Cy1 + CyΦan,

znm =Un0 P
T1 + PTΦan,

Σ̂nl :

{
Un
nl = g(znm) = (znm)2,

θnnl = (PT qnl)
−1Un

nl,
(9)

where ŷ is an approximation of y and L̂lin = ΦTLlinΦ,
L̂nl = ΦTLlinqnl, B̂ = ΦTB, L̂BC = ΦTLlin1, and
Φ1 = ΦT1. Finally, znm is the value of the reduced solution
at the pre-selected points Xm. None of the computations
in (9) scales with the actual degrees of freedom N and
therefore the model is in a reduced form. It should be noted
that the boundary-related terms in (9) (such as Un0 P

T1)
are due to the ansatz used in (5) and the segregation of
the boundary condition from the solution. In this work,
to synchronize the generation of the RB functions Φ and
the collateral basis functions qnl, the PODEI algorithm
in Drohmann et al. [2012] is used, which is mentioned in
Algorithm 2 together with the greedy algorithm and the
selection of the interpolation points. Now, the reduced-
order model is available and the error estimates can be
introduced.

4 Error estimates

In this section, we introduce two types of error estimates.
In the first one, we build the error dynamics and propose
an estimate based on the `2-gain notion. In the second one,
we use the solutions of the full-order model generated in
the offline phase to obtain an empirical error estimate.

4.1 Error estimate based on the `2-gain notion

As shown in (9), the interconnection of the RB method and
EIM can be represented as a Lur’e-type system as shown
in the right side of Figure 1. The error estimate introduced
here relies on the notion of small-gain condition of the error
dynamics (Besselink et al. [2012]), to be introduced here. If
this condition is not satisfied, the error estimate presented
here cannot be used. To enable cheap computation of the
residual, the following assumption is used.

Assumption 2. (Drohmann et al. [2012]). We assume the
exactness of the EIM approximation for a certain number
of collateral RB functions; i.e., there exists a positive
integer M∗ > M with the set of enriched collateral basis
functions by q∗nl and the corresponding coefficients by θ∗nl

n,
such that

(Û
n
(µ))2 = q∗nlθ

∗
nl
n(µ) ∀n = 1, · · · , Nt, and µ ∈ D.

(10)

Statement 1. Let Un be obtained from (4) and Û
n

be
obtained from (9) and (5) with n = 1, · · · , Nt under the
same initial condition and the same boundary input Un0 .
We define the residual Rn by inserting the RB solution

Û
n

into (4) as follows:

Rn =Û
n+1
−
(
LlinÛ

n
+BUn0 −

∆t

4∆x
Lnlg(Û

n
)

+
∆t

2∆x
B(Un0 )2

)
.

(11)

We assume the Lipschitz continuity Lg for the nonlinear

function eng = g(en), i.e.,
∥∥∥eng ∥∥∥ ≤ Lg ‖en‖ . An estimate

of the error bound of ‖ey‖`2 with ey := y − ŷ is given by

‖ey‖`2 ≤ κ(µ)‖R‖`2

with κ(µ) := γeyR +
γeyegLgγ

eR

1− Lgγeeg
,

(12)

with ‖(·)‖`2 :=

√
∞∑
n=0
‖(·)‖2 and γyu denoting the `2-norm

of the system from input u to the output y.

Derivation: To define the error estimate, the error dynam-
ics is defined by subtracting (11) from the full-order model
(3)

en+1 = Lline
n − ∆t

4∆x
Lnl((U

n)2 − (Û
n
)2)−Rn, (13)

with e := U − Û . By denoting (Un)2 − (Û
n
)2 as eng

and rewriting the dynamics in the feedback interconnected
form, we obtain the error system Σe with its linear and
nonlinear subsystems given as follows:

Σelin :


en+1 = Lline

n +
∆t

4∆x
Lnle

n
g −Rn,

eny = Cye
n,

enz = en,

Σenl : eng = f(Û , ez) = g(ez + Û)− g(Û).

(14)

This feedback interconnection is depicted in Figure 2.
Notably, the relation in Σenl holds regardless of using
EIM as we have already lifted the solution to the full-
order space. The effect of inaccurate approximation of the
nonlinearities plays a role in the residual calculation, which
is explained later in this section.
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Fig. 2. The schematic representation of the feedback
interconnection for the error dynamics.

In the online phase, however, we do not have access
to the values for (Un)2 since the actual solution is not
known. Therefore, an estimation of the output should be
defined as we cannot simulate these error dynamics in a
computationally efficient manner.

Following the idea introduced by Abbasi et al. [2020] for
linear systems and assuming Σlin is asymptotically stable
(Assumption 1), an error bound on the `2-norm of the
error signal can be computed as follows:

‖ey‖`2 ≤ γ
eyR‖R‖`2 + γeyeg‖eg‖`2 . (15)

This `2-norm is equal to the H∞-norm of the linear system
(14) with respect to the same input and output (Khalil
[2001]). Apart from the gains, in order to compute this
error bound, both ‖Rn‖ and ‖egn‖ should be computed
in a computationally efficient manner.
To compute the norm of the residual, we decompose the
residual into a linear and a nonlinear part as below:

Rn = Rnlin +Rnnl, (16)

where

Rnlin = Û
n+1
−
(
LlinÛ

n
+BUn0 −

∆t

4∆x
Lnlqnlθ

n
nl

+
∆t

2∆x
B(Un0 )2

)
,

Rnnl = − ∆t

4∆x
Lnl(qnlθ

n
nl − (Û

n
)2).

(17)

In computing the two-norm of the residual Rn, it is
necessary to compute Rnnl, which is time-consuming due

to the presence of the nonlinear term (Û
n
)2. To avoid

this computational issue, following the idea presented by
Drohmann et al. [2012], this term is calculated empirically
by using Assumption 2. This assumption requires the
reduced-order problem to be solved once more with an
enriched set of collateral basis functions. Employing this
assumption in the equation governing Rnnl leads to

Rnnl = − ∆t

4∆x
Lnl(qnlθ

n
nl − q∗nlθ∗nl

n). (18)

The other required quantity for calculating the error
estimate via (15) is ‖eg‖`2 . As eng := en represents the
error in approximating the nonlinear function, we have∥∥∥eng ∥∥∥ ≤ Lg ‖en‖ , (19)

where Lg is an approximation of the local Lipschitz con-
stant of the nonlinear operator g. The inequality (19)
implies

‖eg‖`2 ≤ Lg ‖e‖`2 . (20)

Similar to (15), we have

‖e‖`2 ≤ γ
eR‖R‖`2 + γeeg‖eg‖`2 . (21)

Combining (20) and (21), and assuming that the small-
gain condition Lgγ

eeg < 1 holds, leads to

‖e‖`2 ≤
γeR

1− Lgγeeg
‖R‖`2 . (22)

Finally, the use of this result in (15) gives (12). �

Remark 1. Exact satisfaction of Assumption 2 requires
M∗ = N , which renders the error estimate expensive. In
the results presented in this paper, we set M∗ = M + 1.
Therefore, ‖Rn‖ is computed cheaply and the `2-norm can
be calculated.

Remark 2. To compute RnTRn, some operators such as
ΦTLlinLnlqnl ∈ RN×M should be pre-computed during
the offline phase and stored for usage during the online
phase. Now, the two-norms of Rn can be computed with
computations that scale at most with the dimension of
q∗nl or Φ, which is still much lower than the number of
actual degrees of freedom of the high-fidelity scheme. For
the details of residual calculation, we refer to Abbasi et al.
[2020]. Using Remark 1 instead of M∗ = N renders the
bound (12) to be an error estimate, not an actual error
bound.

Remark 3. As the nonlinear operator for Burgers’ equa-
tion g(U) = (U)2 is not globally Lipschitz, we have to
restrict the solution domain to be able to define a finite
Lg. Note that the inequality (19) holds only locally as the
value of Lg depends on the magnitude ofU , which restricts
the range of U in the simulations. Assuming enz := en

to be small and estimating the Lipschitz constant by the
derivative of the nonlinear function Lg = 2 max

i,n
Uni reveals

that

max
i,n

Uni <
1

2γeeg
, (23)

ensures that the small-gain condition in (14) is satisfied.

To enlarge and shift the applicability region, a loop trans-
formation can be pursued as follows.

4.1.1 Loop transformation The range of the applicabil-
ity of the small-gain condition can be enlarged by using
a so-called loop transformation (see Khalil [2001]). In
this section, we aim to apply this transformation to the
feedback interconnection in (14) induced by the EIM and
RB methods.

The loop transformation changes the interconnection in
Figure 2 to Figure 3. The error dynamics after the loop
transformation can be written as

Σe,εlin :


en+1 = (Llin − ε

∆t

4∆x
Lnl)e

n +
∆t

4∆x
Lnle

n
g −Rn,

eny = Cye
n,

enz = en,

Σe,εnl : eng = g(ez + Û)− g(Û) + εez.

(24)

It should be noted that Σe in (14) and (24) are exactly
the same. The constant ε should be defined such that it
minimizes the product Lgγ

eeg and therefore enlarges the
applicability region while also reducing the conservatism
in the small-gain condition and the estimate (12). For
the parameterized system (24), the following minimization
problem is solved to obtain ε,
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Fig. 3. The schematic representation of the feedback
interconnection within the error dynamics after loop
transformation.

ε = arg min
ε

(∑
i

(
max

(
|2U(µi) + ε|

)
× γezeg (µi)

))

s.t. ∀µi ∈ Dh

 ρ(Llin − ε
∆t

4∆x
Lnl) < 1

max(|2U(µi) + ε|)× γezeg (µi) < 1
(25)

where ρ(·) is the spectral radius of a matrix and Dh
is the discrete version of the varying parameter domain
D. For the test case under study, we have designed the
experiments such that

min(µ1, µ2) ≤ Un(µi) ≤ max(µ1, µ2). (26)

The constraints in the minimization problem (25) ensure
that for each parameter setting, first, the linear part of
the error dynamics Σe,εlin is stable, and second, the inter-
connection of the linear subsystem Σe,εlin and the nonlinear
subsystem Σe,εnl is also stable. In order to render the compu-
tations tractable, we terminate the minimization problem
as soon as the constraints are satisfied.

Due to the fact that the nonlinear part of the system is
not globally Lipschitz, a restriction on the region of the
solution still holds after determining ε. In other words,
to satisfy the small-gain condition, for all members of
the parameter domain, we require (based on the second
constraint in (25))

− 1

2γezeg (µ)
− 1

2
ε < u(x, t;µ) <

1

2γezeg (µ)
− 1

2
ε. (27)

Therefore, the parameters, boundary conditions and initial
conditions should be chosen in a way that the satisfaction
of (27) would be possible. Based on the knowledge of the
dependence of the `2-gains on ε and the variation of initial
and boundary conditions, one can a priori have an insight
whether this condition can be satisfied or not.

However, the error estimate (12), even with this loop trans-
formation, can lead to conservative results. To alleviate the
conservativeness, we tighten (sharpen) the error estimate
as below.

4.1.2 Sharpening the error estimate To resolve the
problems of expensive calculation of the `2-gain of the
system and conservativeness of the error estimate, we
follow Abbasi et al. [2020]. The main idea is that in the
offline phase, the average of the conservatism of the error
estimate is known and we can sharpen the error estimate in
the online phase according to the experience in the offline

phase. To do so, the error gain κ in (12) is multiplied by
a reduction factor to obtain

κey (µ) = ρ̄κ(µ), (28)

where κey‖R‖`2 is an estimate of ‖ey‖l2 , which is calcu-

lated based on κ in (12). To define ρ̄, we first introduce

the variable ρ̄fi as a measure of the conservatism

ρ̄fi =

∥∥ey(µ∗,i)
∥∥
`2(

γeyR +
γeyegLgγeR

1−Lgγ
eeg

)
‖R(µ∗,i)‖`2

, (29)

where ey is the actual error computed in the offline phase
for a parameter set µ∗,i selected at the i-th stage of the
greedy algorithm in the offline phase. The denominator of
(29) is motivated by (12). Then, ρ̄ is defined as

ρ̄ = max
i

(ρ̄fi ). (30)

In Section 5, the performance of the error estimate is
investigated numerically. For the detailed algorithm of this
error estimate, we refer to Abbasi et al. [2020], where it is
limited to systems without distributed nonlinearities.

4.2 Empirical error estimate

The underlying idea for the empirical error estimate is
similar to the idea used for finding the contributed error
from EIM (Drohmann et al. [2012]) and the idea presented
by Hain et al. [2019].

Statement 2. In the offline phase, we enrich RB functions
from dimension N to dimension N ′ and the collateral basis
functions from dimension M to dimension M ′ such that,
based on the snapshots of previously selected parameters
during the greedy algorithm, the following relation holds

with ηN
′,M ′

N,M < 1:

‖y − ŷN ′,M ′‖`2 ≤ η
N ′,M ′

N,M ‖y − ŷN,M‖`2 , (31)

where y is the actual output computed from (4) and ŷN,M
is obtained from (9) with N RB functions and M collateral
basis functions. An output error estimate can be defined
as

‖y − ŷN,M‖`2 ≤
ζN

′,M ′

N,M

1− ηN ′,M ′

N,M

, (32)

with

ζN
′,M ′

N,M = ‖ŷN ′,M ′ − ŷN,M‖`2 . (33)

Derivation: To increase the accuracy in the offline phase,
based on the snapshots of the current selected parameter
µ∗,i in the i-th iteration of the greedy algorithm, we enrich
Φ and qnl step by step. During the greedy algorithm,

we increase N ′ and M ′ until ηN
′,M ′

N,M in (31) becomes
smaller than 1 for all parameters whose corresponding full-
solution is available. Therefore, for any (N,M), we can

find (N ′,M ′) such that ηN
′,M ′

N,M < 1. This condition bears
similarities with the small-gain condition introduced in the
first error estimate in this paper. Now, in the offline phase,
corresponding to each (N,M), a pair of (N ′,M ′) and the

value of ηN
′,M ′

N,M are known.

In the online phase, two reduced solutions with (N,M) and
(N ′,M ′) basis functions should be solved. After obtaining
these two computationally cheap solutions, we set
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Algorithm 3 Empirical error estimate

Input: qnl,Φ,Xm, parameters selected in the previous
greedy iteration µ∗ and their corresponding full
solutions

Output: N ′,M ′, ηN
′,M ′

N,M

1: Set N ′ = N and M ′ = M ,
2: Based on the recently selected parameters, enrich

Φ(N ′ = N ′ + 1) and qnl,Xm(M ′ = M ′ + 1)

3: compute ηN
′,M ′

= ‖y − ŷN ′,M ′‖`2 and ηN,M =

‖y − ŷN,M‖`2 for all members of µ∗,

4: Set η = max
(
ηN

′,M′

ηN,M

)
5: if η < 1 then

6: ηN
′,M ′

N,M = η
7: else

Go back to step 2
8: end if

Table 1. Test case parameter range for Burgers’
equation.

parameter L [m] µ1 µ2
minimum 100 4 6

maximum 110 5 7

Online µo 105 4.5 6.5

ζN
′,M ′

N,M = ‖ŷN ′,M ′ − ŷN,M‖`2 . (34)

Then, based on the following inequality

‖y − ŷN,M‖`2 ≤ ‖y − ŷN ′,M ′‖`2 + ‖ŷN ′,M ′ − ŷN,M‖`2 ,
(35)

and taking into consideration from the offline phase that

‖y − ŷN ′,M ′‖`2 ≤ η
N ′,M ′

N,M ‖y − ŷN,M‖`2 , we finally obtain

‖y − ŷN,M‖`2 ≤
ζN

′,M ′

N,M

1− ηN ′,M ′

N,M

. (36)

The reason for having ηN
′,M ′

N,M < 1 shows itself here to have
finite and positive error estimate. �

For the implementation of this error estimate, refer to
Algorithm 3.

5 Numerical results

The simulation parameters in the online phase µo for
Burgers’ equation along with the parameter domain are
listed in Table 1, where the minimum and maximum value
for each parameter are specified. The discrete parameter
domain is composed of 8 equidistant members in the
parameter domain. In the last row of Table 1, the set
of parameters selected for the online simulation µo is
reported, which does not lie in the discrete parameter
domain. This kind of parameter setting ensures that 4 ≤
u(t, x;µ) ≤ 7 for all (t, x) ∈ [0, T ]× [0, L]. The number of
spatial grid cells is N = 250, the time horizon T is 50 s
and time step is ∆t = 0.01 s. The output is the value of
the conservative variable at x = L.

The effect of using the actual error, the error estimates
based on the `2-gain notion (with and without the reduc-
tion factor ρ̄ in (30)) and the empirical error estimate in
the greedy algorithm of PODEI algorithm (Algorithm 2)
as in Drohmann et al. [2012] is shown in Figure 4. Clearly,
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10
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10
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10
3

Fig. 4. Maximum error in the discrete parameter domain
during the greedy algorithm.

the error estimates accurately approximate the maximum
error in the parameter domain. The “estimation before ρ̄”
is the most conservative error estimate, which is due the
high conservativeness in the `2-gain notion. In the eighth
iteration, using the `2-based error estimate, the collateral
basis function is inconsistent with the RB basis functions,
which reduces the accuracy of the RB solution and in-
creases the residual values. Discarding the collateral basis
functions, as in PODEI algorithm, resolves the problem
for the next iteration. In general, the accuracy of the RB
solution increases by enriching the RB and collateral basis
functions.

In the online phase by using 20 RB functions and 20
collateral basis functions, the time-wise evolution of the
solution is shown in Figure 5 at four different time instants
in comparison with the FV solution. The speedup factor is
reported in Table 2 (without including the error estimate
computational time). The moderate speedup is due to
the hyperbolic, nonlinear and 1D nature of the original
problem. The effect of the number of RB functions in the
induced error due to the reduction for the parameters used
in the online phase is shown in Figure 6.

The results of this section verify that both error estimates
perform successfully in estimating the maximum error
during the greedy algorithm in the offline phase and also
estimating the error for a new parameter setting during the
online phase. However, the estimate based on the `2-gain
notion suffers from restricted applicability to satisfy the
small-gain condition. This becomes even more restricted
in the case of stronger nonlinearities (nonlinearities with
higher local Lipschitz constant). On the other hand, in the
empirical error estimate, we only need to find (N ′,M ′) to

be sufficiently large to satisfy the condition on ηN
′,M ′

N,M < 1.
Apart from this condition that should be resolved in the
offline phase, there is no restriction on the applicability of
the method in the online phase.

Table 2. Speedup factors for the reduced basis
method for Burgers’ equation.

N =M 1 5 10 15 20

Speedup 17.4 4.2 4 3.4 3
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Fig. 5. Comparison of the full-order and low-order solu-
tions over time using 20 RB functions and 20 collat-
eral basis functions.
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Fig. 6. Error evolution by increasing the number of basis
functions.

6 Conclusion

In this paper, a new perspective on the interaction between
EIM and RB methods is introduced. First, a new error
estimate based on a Lur’e type formulation of nonlinear
Burgers’ equation is defined. This estimate is rigorous,
accurate and effective, but has limited applicability due to
satisfying a small-gain condition. Furthermore, it requires
another reduced-order model to be solved to approximate
the residual. To circumvent the small-gain condition issue,
hinged on the snapshots generated in the offline phase, an
empirical error estimate is introduced that does not suffer
from the restrictions of the first error estimate. Both error
estimates work efficiently in terms of computational effort
and accuracy. The empirical error estimate is faster and
also applicable on a wider range of problems than the error
estimate proposed on the basis of `2-gain notion.
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