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Abstract:
This paper addresses the problem of modeling and scheduling the transmissions generated
by multiple event-triggered control (ETC) loops sharing a network. We present a method to
build a finite-state similar model of the traffic generated by periodic ETC (PETC), which
by construction mitigates the combinatorial explosion that is typical of symbolic models. The
model is augmented with early triggering actions that can be used by a scheduler. The complete
networked control system is then modeled as a network of timed game automata, for which
existing tools can generate strategies that avoids communication conflicts, while keeping early
triggers to a minimum. Our proposed model is relatively fast to build and is the first to constitute
an exact simulation. Finally, we demonstrate modeling and scheduling for a numerical example.

Keywords: Control systems, digital control, linear systems, event-triggered control, networked
control systems, formal methods, scheduling.

1. INTRODUCTION

Networks have become prevalent as the communication
media for control devices. Despite the cost and imple-
mentability benefits brought by such Networked Control
Systems (NCSs), the lack of dedicated communication
lines has introduced a challenge for practitioners: manag-
ing the transmissions generated by each control loop with-
out compromising control performance itself. In this con-
text, aperiodic sampling methods such as Event-Triggered
Control (ETC, Tabuada, 2007) and Self-Triggered Control
(Anta and Tabuada, 2008, STC,) have been proposed.
These methods significantly decrease network usage when
compared to standard periodic sampling. ETC communi-
cations are triggered by state-dependent events, while STC
communication times are determined by the controller
after every new data acquisition, generally by predicting
when an ETC would trigger. 1 Since then, many studies
have focused on designing sampling strategies to reduce
communication even further (see, e.g., Wang and Lem-
mon, 2008; Girard, 2015; Dolk et al., 2017), among which
there is periodic event-triggered control (PETC, Heemels
et al., 2013), which provides more practical implementa-
tions. Other researchers have proposed co-designing the
controller and triggering mechanism to achieve the desired
control performance (e.g., Peng and Yang, 2013; Donkers
et al., 2014). We do not consider co-design in this work in
order to separate the concerns of control design from those
of its digital implementation.

Despite the communication savings achieved by ETC and
STC, little research has addressed the coordination of
data transfers from multiple controllers in a single net-
work; scheduling is particularly difficult for ETC, since
its triggering times vary immensely. Few exceptions are

1 For an introduction on ETC and STC, see Heemels et al. (2012).

Kolarijani and Mazo Jr (2016); Mazo Jr et al. (2018);
Fu and Mazo Jr. (2018), who propose conflict-avoiding
scheduler design by means of symbolic abstractions of
the ETC traffic. Using timed game automata (TGA) for
approximately simulating ETC traffic, they demonstrate
that a scheduling strategy can be computed by composing
multiple traffic TGAs with a network TGA and solving
a safety game. The major drawback of the abstractions
presented in Kolarijani and Mazo Jr (2016) is the curse
of dimensionality: their proposed isotropic partitioning
creates a model with the number of locations that depend
exponentially on the state-space dimension of the plant.
For PETC, a traffic model was also proposed in Fu and
Mazo Jr. (2018), but it also suffers from the same dimen-
sionality issue due to the use of isotropic partitioning.

In this paper, we follow the same philosophy of Mazo Jr
et al. (2018) for scheduling, but propose a different way of
creating the traffic models: instead of partitioning space,
we partition time, and determine the states associated
with a given triggering time a posteriori. For PETC this
allows to construct a quotient model (Tabuada, 2009),
which provides an exact simulation relation with the actual
traffic generated. The resulting regions are intersections
of quadratic non-convex cones that, despite being easy to
check membership online, make the problem of computing
transitions a non-convex quadratic constrain satisfaction
problem, which is in general NP-hard (Park and Boyd,
2017). We propose using semidefinite relaxations (Boyd
and Vandenberghe, 2004; Park and Boyd, 2017), which
are fast and reliable, but add extra conservativeness to
the resulting abstraction. After having constructed the
traffic model, we augment it to allow for controllable early
triggers, which can be used by the scheduler to avoid
conflicts. Finally, we follow the steps in Mazo Jr et al.
(2018) to compose the scheduling problem, with some
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minor modifications to keep the number and earliness of
scheduling interventions small. For testing it, we generate
strategies using UPPAAL Tiga (Behrmann et al., 2007)
and provide simulation results for an NCS with two ETC
loops. This demonstrates the usage of our method, which
can support implementation of PETC in real NCSs, while
helping realize the full potential of event-triggered control.

1.1 Notation

We denote N0 the set of natural numbers including zero,
N := N0 \ {0}, and R+ the set of non-negative reals. For
a square matrix A ∈ Rn×n, we write Tr(A) to denote
its trace, and A � 0 (A � 0) if A is positive definite
(semi-definite). The sets S,S+ and S++ are the sets of
symmetric, positive definite, and positive semi-definite
matrices, respectively. For a set X , we denote by X̄ its
complement; when R ⊆ X × X is an equivalence relation
on X , we denote by X/R the set of all equivalent classes.

2. PRELIMINARIES

2.1 Transition systems

For formally establish a relation between (finite and infi-
nite) systems, we use the framework of Tabuada (2009):

Definition 1. (Transition System (Tabuada, 2009)). A sys-
tem S is a tuple (X ,X0,U , E ,Y, H) where:

• X is the set of states,
• X0 ⊆ X is the set of initial states,
• U is the set of inputs,
• E ⊆ X × U × X is the set of edges (or transitions),
• Y is the set of outputs, and
• H : X → Y is the output map.

A system is called finite (infinite) state if the cardinality
of X is finite (infinite). A system is called autonomous if
U = ∅, in which case a transition is denoted by a pair
(x, x′) ∈ X × X instead of a triplet.

We aim at constructing an Automaton model of the timing
of an ETC by using the notion of simulation relation:

Definition 2. (Simulation Relation (Tabuada, 2009)).
Consider two systems Sa and Sb with Ya = Yb. A relation
R ⊆ Xa × Xb is a simulation relation from Sa to Sb if the
following conditions are satisfied:

• for every xa0 ∈ Xa0, there exists xb0 ∈ Xb0 with
(xa0, xb0) ∈ R;
• for every (xa, xb) ∈ R, Ha(xa) = Hb(xb);
• for every (xa, xb) ∈ R, we have that (xa, ua, x

′
a) ∈ Ea

implies the existence of (xb, ub, x
′
b) ∈ Eb satisfying

(x′a, x
′
b) ∈ R.

A simulation relation from Sa to Sb is denoted by Sa ⊆ Sb.
Essentially, a simulation relation R ⊆ Xa × Xb captures
which states of Sa are simulated by which states of Sb:
for the right state selection, their outputs are the same;
and every transition in Sa leads to a state whose output
can also be attained in Sb after a single transition. It
is important to notice, however, that there might be
transitions in Sb that lead to states that are not related to
the ones attained in Sa. When using simulation relations

to model the behavior of a system, these transitions are
called spurious transitions.

Finally, we introduce the notion of quotient system:

Definition 3. (Quotient System (Tabuada, 2009)). Con-
sider a system S = (X ,X0,U , E ,Y, H) and let R be an
equivalence relation on X such that (x, x′) ∈ R =⇒
H(x) = H(x′). The quotient of S by R, denoted by S/R,
is the system (X/R, X/R0, U , E/R, Y, H/R) consisting of

• X/R = X/R;
• X/R0 = {x/R ∈ X/R : x/R ∩ X0 6= ∅};
• (x/R, u, x

′
/R) ∈ E/R if there exists (x, u, x′) ∈ E with

x ∈ x/R and x′ ∈ x′/R;

• H/R(x/R) = H(x) for some x ∈ x/R.

Building a quotient system is fundamentally aggregating
states of the original system that produce the same output,
and then determining the transitions so that every possible
transition of the original system is reproduced in the
quotient (symbolic) system. By construction, S ⊆ S/R.

2.2 Timed automata

Timed Automata are regular Automata that make use of
clocks, which are resettable real-valued variables measur-
ing the passage of time. Let C be a finite set of said clocks,
and consider ./∈{<,≤,=,≥, >}. A clock constraint g is a
conjunctive formula of atomic constraints c ./ k, c ∈ C, k ∈
N. We denote by B(C) the set of all clock constraints.

Definition 4. (Timed Safety Automaton, (Bengtsson and
Yi, 2004)). A Timed Safety Automaton is a tuple A =
(L,L0,U , C, E , I) where:

• L is the finite set of locations (or discrete states),
• L0 ⊆ L is the set of initial locations,
• U is the finite set of actions,
• C is the finite set of clocks,
• E ⊆ L × B(C) × U × 2C × L is the set of edges (or

transitions), and
• I : L → B(C) assigns invariants to locations.

A TSA is a system with both discrete (the locations) and
continuous states (the clocks). All clocks increase value at
the same rate, but transitions can reset the value of certain
clocks. The system can change locations through edges,
depending on the action taken and the clocks’ values. We

denote by l
g,a,r−−−→ l′ the transition from l ∈ L to l′ ∈ L

under action a ∈ U , with r ⊆ C as the set of clocks reset
when this transition is taken, and g over C as the guards
that enabled the transition. Invariants of a location are
the sufficient clock conditions for a transition to happen;
in other words, the system is forced to leave the place l if a
clock c violates any invariant I(l). Symmetrically, a guard
is a necessary condition for a transition to occur.

TGA extend TSA by partitioning the set of actions into
controllable and uncontrollable. Controllable actions are
decisions that the system operator can choose, while
uncontrollable actions are taken independently of the
system operator (e.g., by the environment or an opponent).

Definition 5. (Timed Game Automaton, (Bengtsson and
Yi, 2004)). A Timed Game Automaton is a tuple A =
(L,L0,Uc,Uu, C, E , I) where:
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• (L,L0,Uc ∪ Uu, C, E , I) is a TSA,
• Uc is the set of controllable actions,
• Uu is the set of uncontrollable actions, and
• Uc ∩ Uu = ∅.

The distinction between controllable and uncontrollable is
paramount in our case. The scheduler can control when to
sample, but not how the system will react to this choice.

To define a strategy, let A be a TGA, and Lc ⊆ L be its
set of locations, for which a controllable action exists. A
strategy S : Lc × C → 2Uc determines which actions can
be taken depending on the TGA states. A deterministic
strategy outputs a single action.

Finally, TGAs can be combined into a network of timed
game automata (NTGA), which allows for modularity
(Bengtsson and Yi, 2004). An NTGA consists of n TGAs
Ai = (Li,Li0,Uc,Uu, C, Ei, Ii), where 1) uncontrollable
actions take precedence over controllable actions, and 2)
a location of the network, denoted as l̄ := (l1, ..., ln),
has its invariant I(l̄) = ∧iIi(li). Most importantly, TGAs
within an NTGA can have transitions influence each other
through synchronization channels: for a channel a, the
initiating transition is labeled a! and, when fired, all
transitions labeled a? have to fire simultaneously.

2.3 Periodic event-triggered control

Consider the plant with a sample-and-hold state-feedback
control below:

ξ̇(t) = Aξ(t) +BKξ̂(t), (1)

ξ(0) = ξ̂(0) = ξ0,

where ξ(t) ∈ Rnx is the state with initial value ξ0,

ξ̂(t) ∈ Rnx is the available measurement of the state,

Kξ̂(t) ∈ Rnu is the control input, nx and nu are the state-
and input-space dimensions, respectively, andA,B,K are
matrices of appropriate dimensions. The controller is of
zero-order hold type; i.e., consider a sequence of sampling
times ti ∈ R+, with t0 = 0 and ti+1 − ti > ε for some

ε > 0. Then ξ̂(t) = ξ(ti),∀t ∈ [ti, ti+1).

In event-triggered control, the sequence of times ti is
generated by a triggering condition, which is generally a
function of the states of the system. In periodic ETC, such
a condition is checked periodically, with a fundamental
checking period h:

ti+1 = inf

t = kh > ti, k ∈ N

∣∣∣∣∣∣∣
[
ξ(t)
x

]T
Q

[
ξ(t)
x

]
> 0

∨ t− ti ≤ k̄h

, (2)

where x = ξ(ti), Q ∈ S2nx is the designed triggering
matrix, and k̄ is a chosen maximum inter-event time. Many
of the triggering conditions available in the literature can
be written as in Eq. (2). We kindly refer the interested
reader to Heemels et al. (2013) for the list of conditions
and their formulations.

In-between ti and ti+1, the value of ξ(kh) is

ξx(kh) = M(k)x, M(k) := eAkh+

∫ kh

0

eAτdτBK, (3)

where ξx(t) is used to denote the value of ξ at t when

ξ(0) = ξ̂(t) = x. One can determine the discrete inter-
event κ := (ti+1− ti)/h time as a function of the currently
held state by combining Equations (2) and (3):

κ(x) = min
{
k ∈ {1, 2, ...k̄}

∣∣xTN(k)x > 0 ∨ k = k̄
}

N(k) :=

[
M(k)

I

]T
Q

[
M(k)

I

]
,

(4)

where I denotes the identity matrix.

3. PROBLEM FORMULATION

The starting point for scheduling ETC traffic is modeling
it, for which we use symbolic abstractions as in Kolarijani
and Mazo Jr (2015); Mazo Jr et al. (2018); however, we aim
to build a quotient model, obtaining an exact simulation
relation. More than that, we want to mitigate the curse of
dimensionality that is typical of such abstractions:

Problem 6. Build a quotient model S/R for the traffic
generated by system (1) using triggering condition (2) such
that the cardinality of X/R does not directly depend on nx.

A traffic model alone is not sufficient for scheduling.
System (1) is autonomous, and a scheduler needs to be
able to alter the traffic pattern in some way to avoid
communication conflicts. We choose to allow the scheduler
to request data before the ETC triggers. Thus, we need
to enrich the traffic model with controllable actions that
represent this early triggering:

Problem 7. Enhance S/R with transitions that capture the
evolution of system (1) when inter-event times smaller
than κ(x) are chosen.

Finally, we need to pose the scheduling problem:

Problem 8. Design an NTGA that forms the scheduling
problem, for which a strategy serves as a scheduler for the
NCS with multiple event-triggered loops. In doing so, try
to keep the number of communications to a small level.

4. PETC TRAFFIC MODEL

Constructing a similar model of the traffic generated by
(1)–(2) requires two steps: 1) gathering the states that
share the same output in a single quotient state, and 2)
computing the transition relations between them. First,
we must define the actual, infinite-state, traffic model: it
is the system S = (X ,X0, ∅, E ,Y, H) where

X = X0 = Rnx ;

E = {(x,x′) ∈ X × X|x′ = ξx(hκ(x))};
Y = {1, 2, ..., k̄};
H = κ.

(5)

4.1 Quotient state set

Gathering states that share the same output is in a sense
straightforward in PETC. From Eq. (4), we can determine
the set Kk ⊆ Rnx of states that will certainly have
triggered by time k:

Kk =

{
{x ∈ Rnx |xTN(k)x > 0}, k < k̄,

Rnx , k = k̄.
(6)
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To determine the state set whose output k is the minimum
that satisfies xTN(k)x > 0, one must remove from Kk all
states that could have triggered before, i.e., that belong to
some Kj with j < k. This is expressed as

Qk = Kk ∩
k−1⋂
j=1

K̄j . (7)

By construction, Qk, k ∈ {1, 2, ..., k̄} constitutes a par-
tition of Rnx ; also, H(x) = k, ∀x ∈ Qk. Therefore,
X/R = {Q1,Q2, ...} is a good candidate for a quotient
state set of the system S. Finally, different from Kolarijani
and Mazo Jr (2016), we have that |X/R| = k̄, i.e., the
cardinality of the quotient state space does not depend
explicitly on nx. This in part accomplishes solving Problem
6; however, for completing the model, we need to establish
the transitions between these quotient states.

Remark 9. MatricesN(k) can be computed offline. Online
determination of which region the current state x belongs
to requires at most k̄ quadratic operations.

Remark 10. Unperturbed state-feedback ETC has an in-
trinsic positive minimum inter-event time (MIET), which,
in the case of PETC, can be bigger than k = 1. In this case,
for all k < k, where k is such MIET, all N(k) � 0. This
can be checked offline, and the corresponding matrices may
be discarded. Likewise, a maximum inter-event time k̄ can
naturally show up if, for some k∗, N(k∗) � 0, which can
also be checked offline. In this case, take k̄ = k∗.

4.2 Quotient transition relations

The problem of determining the transition relation be-
tween two quotient states Qi and Qj is, from Eq. (5),

∃x ∈ Rnx : x ∈ Qi, ξx(ih) = M(i)x ∈ Qj , (8)

where the last equality uses Eq. (3). Expanding Qi,Qj
with Eqs. (7) and (6) arrives in the following non-convex
quadratic constraint satisfaction problem:

∃ x ∈ Rnx

s.t. xTN(i)x > 0,

xTN(i′)x ≤ 0,∀i′ ∈ {1, ..., i− 1},
xTM(i)TN(j)M(i)x > 0,

xTM(i)TN(j′)M(i)x ≤ 0,∀j′ ∈ {1, ..., j − 1}.

(9)

The non-convexity of this problem can be easily checked
using the facts that both > and ≤ inequalities are present,
and that the matrices N(i) are non-definite. 2 We solve
it by means of semi-definite relaxations (SDR, Boyd and
Vandenberghe, 2004), 3 which take the form

∃ X ∈ Snx
+

s.t. Tr(XTN(i)) ≥ 0,

Tr(XN(i′)) ≤ 0,∀i′ ∈ {1, ..., i− 1},
Tr(XM(i)TN(j)M(i)) ≥ 0,

Tr(XM(i)TN(j′)M(i)) ≤ 0,∀j′ ∈ {1, ..., j − 1},
Tr(X) = 1,

(10)

2 See Remark 10: the definite cases are discarded.
3 Additionally, we relaxi the strict inequalities with non-strict ones,
so that it can fit the semi-definite programming formulation.

where the last equation was added to avoid the trivial
solution X = 0; the value 1 was chosen arbitrarily, since
Eq. (9) is homogeneous. To determine (offline) the com-
plete transition set E/R, one requires solving k̄2 semidefi-
nite problems. The final model follows:

Model 11. (PETC Traffic Model). The model is the sys-
tem S/R = (X/R,X/R0, ∅, E/R,Y, H/R) with

• X/R = X/R0 = {Q1,Q2, ...,Qk̄};
• E/R = {(Qi,Qj)|Eq. (10) is satisfied};
• H/R(Qk) = k.

By construction, we obtain the following result:

Theorem 12. Model 11 is a quotient system of S from
Eq. (5), and, therefore, S/R simulates S.

In other words, all sequences of triggering times generated
by system (1)–(4) can be generated by our model S/R.
This solves Problem 6.

Remark 13. A relaxation generally provides conservative
solutions. In our case, it may generate spurious transitions.
If such transitions do occur, this does not change the fact
that the constructed symbolic model simulates S.

5. SCHEDULING OF PETC SYSTEMS

5.1 Early triggering and TGA

As stated earlier, for the traffic model to be applicable
for scheduling, we need to augment it with controllable
transitions that correspond to early triggering. From a
quotient state Qi, one can allow early triggers for any
k ∈ N : k < i; for simplicity we choose to label
the corresponding actions by k. It remains necessary to
verify which transitions exist for such actions. Obviously,
this can be done by solving the SDR problem (10) as
before, replacing j by k. We denote the set of early
triggering transitions by E∗ and the resulting system as
S∗/R. Computing all of its transitions requires solving k̄ +

2k̄ + ...+ k̄(k̄ − 1) = k̄2(k̄ − 1)/2 semidefinite problems.

Finally, we transform the quotient system into a TGA. For
the game part, we set the early triggering actions in S∗/R
as controllable, and the event triggers as uncontrollable.
All that is left is defining the clock set, the guards, and
the invariants, resulting in the following TGA:

Model 14. (PETC Traffic Timed Game). The model is the
TGA A = (X/R,X/R0,Uc,Uu, C, Ec ∪ Eu, I) where

• Uc = {early};
• Uu = {trigger};
• C = {c};
• Ec = {(Qi, c = k, early, {c},Qj) : (Qi, k,Qj) ∈ E∗};
• Eu = {(Qi, c = i, trigger, {c},Qj) : (Qi,Qj) ∈ E/R};
• I(Qi) = (c ≤ i).

Model 14 uses one clock, that is reset at every transition.
The invariant of a quotient state Qi is c ≤ i, because i is
the time that a trigger is sure to occur; hence c = i is the
clock constraint associated with this uncontrolled action.
For the controlled, early triggering actions, the transition
is enabled at discrete instants satisfying c = k, for k < i.
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Idle InUse Bad

cN ≤ ∆

comm
cN := 0

done

comm

comm

Fig. 1. TGA of a shared network.

5.2 Network and NCS models

For scheduling, we follow the same strategy as described
in Mazo Jr et al. (2018), using the same network model as
theirs, with a minor technical change 4 :

Model 15. (Network TGA, adapted from Mazo Jr et al.
(2018)). The model is the TGA N = (L, l0,UcN, ∅, CN, EN,
IN) where

• L = {Idle, InUse, Bad};
• UcN = {comm, done};
• C = {cN};
• EN = {(Idle, true, comm, {cN}, InUse),

(InUse, cN = ∆, done, ∅, Idle),
(InUse, true, comm, ∅, Bad),
(Bad, true, comm, ∅, Bad)};
• IN(InUse) = (cN ≤ ∆),

where ∆ is the maximum channel occupancy time.

Model 15 is represented in Fig. 1. The state Bad is reached
if a second communication happens while the channel is
still occupied by the first.

To model the NCS, we build an NTGA of the two or
more traffic models Ai with the network model N . What
remains to be done is synchronizing the correct actions.
For this, we add a synchronization channel called up, which
is used as follows:

• every early and trigger actions of each traffic model
Ai fires the synchronizing action up!;
• every comm action of the network model N takes the

synchronizing action up?.

While avoiding the Bad state is necessary, we also want
that the number of early triggers is small, so as to benefit
from the communication savings of ETC. For that, we
introduce an integer variable e, 0 ≤ e ≤ E, representing
an accumulated “earliness” of communications, with E as
the maximum allowed earliness. It is essentially a bounded
integrator that increases every time an early trigger is done
and decreases when a natural trigger happens. It starts at
zero and is updated as

e← max(0,min(E, e+ r(k − i)− ē)) (11)

for every trigger or early transition from any traffic
model, from quotient stateQi when c = k. The parameters
r ∈ N+ and ē ∈ N+ represent the cost of a time unit
and a reference value for e, respectively. The earlier the

4 The difference of this model with respect to Mazo Jr et al.
(2018) is that, here, all actions are controlled. We do this because
of how NTGA are composed in UPPAAL Tiga: if an uncontrolled
edge is synchronized with a controlled edge, the composed edge is
uncontrolled. When we compose the traffic models with the network
model, we want the early communications to be controlled, and the
trigger ones not to.

trigger is, the higher the cost incurred. Parameter ē is
necessarily positive so that natural triggers discount e.
Like any arithmetic on bounded integers, the evolution
of e can be represented as an automaton itself. 5

As a final note, remember that the time in model A is
normalized w.r.t. the check time h. When composing the
NTGA, one needs to put the clocks and their constraints
in the same time scale.

5.3 Strategies for schedulers

In UPPAAL Tiga, strategies can be generated so as to
guarantee certain specifications. We refer the reader to
the manual of UPPAAL Tiga (Behrmann et al., 2007)
for the complete list. In our case, we want that the
NTGA never enters state Bad of N , while keeping the
earliness below a certain threshold E. This can be achieved
by setting the specification strategy safe = control:
A[] not network.Bad and e < E. The resulting strat-
egy maps the locations of each automaton and their clock
valuations into the decision of whether to trigger early or
not. Therefore, a scheduler that implements such strategy
needs to determine online the regions Qi that the state of
each system belongs to, and keep track of how much time
elapsed since the last communication of each plant.

6. NUMERICAL RESULTS

Consider two copies of a linearized batch reactor, taken
from Donkers (2011), of the form (1) with

Ai =

 1.38 −0.208 6.715 −5.676
−0.581 −4.29 0 0.675
1.067 4.273 −6.654 5.893
0.048 4.273 1.343 −2.104

 ,

Bi =

 0 0
5.679 0
1.136 −3.146
1.136 0

 , i ∈ {1, 2}.

(12)

Two different controllers Ki were designed for this plant
using LQR with matrices QLQR,1 = QLQR,2 = I and
R1 = 0.2I,R2 = 0.1I. The Lyapunov function chosen was
the LQ cost, that is, setting Qlyap,i = QLQR,i +KT

iRiKi

and solving the continuous-time Lyapunov equation for
Pi. We used a triggering condition based on the Lyapunov
function, so as to guarantee that

V̇i(t) ≤ −ρiξi(t)TPiξi(t),
for some 0 < ρi < 1. We set ρ1 = ρ2 = 0.8. This triggering
condition can be expressed in quadratic form (2) with

Qi =

[
AT
iPi + PiAi + ρiQlyap,i PiBiKi

KT
iB

T
iPi 0

]
.

In both cases, h1 = h2 = h = 0.01; following Remark
10, we obtained natural maximum inter-event times at
k̄1 = 19 and k̄2 = 16 by imposing that N(k) have its
largest eigenvalue bigger than 10−3. Likewise, both have
MIETs greater than 1: k1 = 6, k2 = 4.

To build Model 14 for each control loop, we used Python
with Numpy, Scipy and control packages, and CVXPY

5 UPPAAL Tiga allows one to use integer variables, and it performs
the necessary operations automatically.
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Fig. 2. Transition relations of S∗/R of loop 1, for trigger

actions (x) and early actions (o) with k = 1.

(Diamond and Boyd, 2016) with solver SCS (O’Donoghue
et al., 2017) to solve the semidefinite problems involved.
The whole process of computing matrices N(k) and solv-
ing the semidefinite problems took 46.64 seconds for loop
1 and 31.51 seconds for loop 2. The computer used is a
MacBook Pro with a 3.1 GHz Intel Core i5 CPU and
memory of 8 GB, 2133 MHz LPDDR3. The resulting
transition relation for closed-loop system 1 is represented
in Figure 2. As one can see, there is a significant amount
of nondeterminism introduced by this model, especially for
high triggering times.

A series of scripts was used to generate the XML files that
are used for TGA models in UPPAAL Tiga. We used all
times in the NTGA relative to h, and set ∆ = 1. The
earliness parameters for Eq. 11 were r = 2, ē = 1, E = 2.
These parameters allow the scheduler to trigger one step
earlier at every two communications.

The strategy was solved in UPPAAL STRATEGO (David
et al., 2015) version 4.1.20-5, which includes all function-
alities of UPPAAL Tiga. It took 0.864 s to find a solution.
The generated strategy is too long to be reproduced in
this paper, but we give below one example of when an
early trigger has to occur:

If System 1 is in Q6, System 2 is in Q4, and e = 0,

when c1 = 5 and c2 ∈ {1, 2, 3}, do early on System 1;

when c2 = 3 and c1 ∈ {3, 4, 5}, do early on System 2,

where ci represents the clock valuation of system i. As one
can see, the strategy is not deterministic. In the example
above, the early trigger can be executed on any of the
loops when (c1, c2) = (5, 3). In such case, the scheduler
must arbitrate who triggers.

Figures 3 and 4 show the results of a simulation of the two
control loops executing in parallel with the communication
managed by the synthesized scheduler. The initial condi-

tions are ξ1(0) = [1 −1 1 −1]
T

and ξ2(0) = [1 2 3 4]
T
. The

first pair of communications were arbitrated on a round-
robin fashion. Figure 5 shows the communication pattern
of the NCS. As we can see, both systems’ states converge
to zero, while there is no conflict in communications. As
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Fig. 3. Trajectories of ξ1(t) (top) and K1ξ̂1(t) (bottom).
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Fig. 4. Trajectories of ξ2(t) (top) and K2ξ̂2(t) (bottom).
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Fig. 5. Communication pattern of the simulated NCS:
‘x’ marks represent event triggers, while ‘o’ marks
represent early triggers.

designed through the earliness mechanism, about half of
the communications are early triggers, and half are natu-
ral, event triggers.

7. CONCLUSIONS

In this paper, we presented a method to build a quotient
model of the traffic generated by PETC, and how to
augment it and use it for scheduling of multiple PETC
loops. The quotient model has many advantages with
respect to related work: first, it is a (exact) simulation
instead of an approximate simulation; and second, it
avoids the combinatorial explosion created by isotropic
partitioning of the state space. The state space and output
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map of the quotient model can be easily created straight
from the PETC and system matrices, requiring no solution
of LMIs or other optimization problems. The transition
relations do require semidefinite problems to be solved,
but only one per transition, with no reachability tools
required. It is relatively fast to compute, and the models
generated are reasonably small. The use of TGA models
for scheduling of ETC had already been demonstrated in
Mazo Jr et al. (2018); here, we demonstrate that they can
also be done for PETC, and argue that it is in fact simpler
to do so.

Among the disadvantages of our solution is the high
nondeterminism of the generated models. The state-space
partitions are based solely on the output function, and
each region seems to be large enough that, after some time,
many regions can be reached. A highly nondeterministic
traffic model can hamper the generation of strategies, as
the predictability of the model after multiple steps gets
smaller. One solution we are exploring is partitioning the
regions further using backwards reachability. A second
disadvantage of this approach, shared with Mazo Jr et al.
(2018), is that the size of the NTGA state space grows
exponentially with the number of control loops. This can
make solving the scheduling problem impracticable. Solv-
ing strategies for TGA is EXPTIME-complete (Asarin
et al., 1998), so controlling the size of the (N)TGA is
paramount. Methods to do so are subject of future re-
search. A third point of attention is addressing optimality
of these schedulers. Parameterizing the earliness function
(11) is not always trivial. Even so, finding a scheduler
that minimizes the interventions is still an open problem.
Priced TGA could be used, but their undecidability for
games with three clocks has been proven by Bouyer et al.
(2006), putting a roadblock in that direction. Approximate
solutions using stochastic priced TGA (David et al., 2015)
are currently being explored.
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