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Abstract: In this paper, a new switched control strategy for three-phase AC-DC power
converters, also known as controlled rectifiers, is proposed. More specifically, a switching
function is determined to command the converter switches at each instant of time assuring
global asymptotic tracking of a desired reference trajectory, which is related to a constant
output voltage and sinusoidal phase currents. This is generally a desired situation for AC-DC
power converters as it can ensure unitary power factor and rectified steady-state DC voltage
simultaneously. The proposed switching function must also assure a guaranteed performance
cost. The design conditions are based on a Lyapunov function, which is dependent on the
electrical angle, and are expressed in terms of linear matrix inequalities (LMIs). Simulation
results put in evidence the effectiveness of the proposed methodology and motivate future related
works.
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1. INTRODUCTION

Switched control strategies in the power electronics do-
main constitute a topic that is drawing attention from
scientists and engineers in the last years. The ability to
address switching events directly instead of adopting an
averaged model (and pulse-width modulation) allows to
tackle the stability problem from a more rigorous theoret-
ical perspective, as well as, to better study the dynamic
behaviour in low switching-frequency operation. The clas-
sical DC-DC power converters can be modelled as switched
affine systems, which are characterized by presenting sev-
eral equilibrium points composing a region of great interest
in the state space. For this class of systems the literature
presents some results regarding global asymptotic stabil-
ity and guaranteed performance, see Bolzern and Spinelli
(2004); Patino et al. (2009); Deaecto et al. (2010); Egidio
et al. (2017). In these references, control strategies govern
the system state trajectories towards a chosen equilibrium
point by adequately designing a switching function that
selects one of the available affine subsystems (often called
system modes) to be activated at each instant of time. For
general switched systems theory, the reader can refer to
the books Liberzon (2003) and Sun and Ge (2011).

Besides the DC-DC power converters, systems composed
of alternating current circuits are equally important. How-
ever, their analysis and control design in the context of
switched systems theory have received less investigation
to date. The difficulty comes from the fact that the time-
varying nature of AC currents leads to a new class of
? This research was supported by the “National Council for Scientific
and Technological Development (CNPq)”, under grant 303499/2018-
4, by the “São Paulo Research Foundation (FAPESP)”, under grant
2017/20343-0.

switched affine systems, characterized by the presence of
sinusoidal functions in its dynamic model, which make
the problem more difficult to be handled. In this context,
the authors in Scharlau et al. (2013) have proposed a
state-dependent switching rule to command the switches
of a three-phase inverter feeding a squirrel-cage induction
motor in order to regulate the shaft rotational velocity
using an approach based on auxiliary reference frames.
More recently, authors in Egidio et al. (2019) have treated
the same problem, but controlling a three-phase perma-
nent magnet synchronous machine from a novel methodol-
ogy, which considers directly the nonlinear system model,
without using any auxiliary reference frame. This control
methodology assures asymptotic stability of an equilib-
rium point of interest composed of phase currents and
a constant rotational velocity in a single control loop.
Dealing with DC-AC power converter, reference Sanchez
et al. (2019) has proposed a control law based on the
hybrid dynamic system theory, where the main goal is to
track a sinusoidal reference trajectory assuring a minimum
dwell time and guaranteeing practical stability. For AC-
DC power converters there are only few results using
techniques based on the switched control theory. See for
instance the recent reference Hadjeras et al. (2019), where
a hybrid control law is proposed for a three-level Neutral
Point Clamped (NPC) converter, working as a rectifier, in
order to regulate the output DC voltage.

In this paper, our main contribution is to design a state-
dependent switching function able to control the output
DC voltage of a three-phase bidirectional AC-DC power
converter, also known as a controlled rectifier, without us-
ing any auxiliary reference frame or modulation strategies
and in a single control loop. The switching function must
command the inverter switches in order to assure global
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asymptotic tracking of a desired reference composed of
sinusoidal phase currents and a constant output voltage.
The conditions are based on a Lyapunov function depen-
dent on the input voltage electrical angle and take into
account the minimization of a guaranteed performance
cost. Moreover, they are described in terms of linear matrix
inequalities (LMIs) and can be solved without difficulty
using off-the-shelf optimization tools. The theory is vali-
dated by means of simulation results concerning an AC-
DC converter borrowed from Bouafia et al. (2009) and a
theoretical comparison with averaged model techniques is
carried out.

The notation is standard. For real vectors or matrices,
(′) refers to their transpose. For symmetric matrices, (•)
denotes each of their symmetric blocks. The symbols R and
N denote the sets of real and natural numbers, respectively.
For a symmetric matrix, X > (<) 0 denotes a positive
(negative) definite matrix. The unit simplex Λ is composed
of all nonnegative vectors λ ∈ RN , such that

∑
j∈K λj =

1. The convex combination of matrices {X1, · · · , XN} is

denoted by Xλ =
∑N
i=1 λiXi, λ ∈ Λ. The Hermitian

operator is given as He{X} = X +X ′ for any real square
matrix X.

2. PROBLEM FORMULATION

Consider the three-phase AC-DC power converter, given
in Figure 1, which is based on a three-phase controlled
rectifier with an inductive input filter and an output
capacitor feeding a resistive load. By means of Kirchoff’s
voltage and current laws, its dynamic model is described
by the following switched nonlinear system

ẋ(t) = Aσ(t)x(t) + b(θ(t)), x(0) = x0 (1)

where x(t) = [iφ(t)′ vo(t)]
′ ∈ R4 is the state vector,

iφ(t) = [ia(t) ib(t) ic(t)]
′ ∈ R3 are input phase currents

and vo(t) ∈ R is the output voltage. The switching signal
σ(t) ∈ K = {1, · · · , 7} is responsible for selecting one of the
seven possible subsystems at each instant of time. System
matrices are given by

Aσ =

[
−(RL/L)I −(1/L)Sσ
(1/C)S′σ −1/(RoC)

]
, b(θ) =

[
(1/L)vφ

0

]
(2)

where RL and L are the resistance and inductance of each
coupling inductor, C is the dc-link capacitance, Ro is the
load resistance, vφ = vmf(θ) is the input voltage, vm is
the peak phase-to-neutral voltage and the vector function
f(θ) = [fa(θ) fb(θ) fc(θ)]

′ ∈ R3 is defined by

fa(θ) = sin(θ) (3)

fb(θ) = sin(θ − 2π/3) (4)

fc(θ) = sin(θ − 4π/3) (5)

Vectors Si ∈ R3, i ∈ K, take values according to Table
1. In this table, the converter switch si, i = {1, 2, 3} is 1

vφ s4

s1

s5

s2

s6

s3
+

−

vo Ro

ia
ib

ic

Fig. 1. Three-phase AC-DC power converter

Table 1. Switching function σ, switches state
and vector Si

σ s1 s2 s3 S′σ

1 0 0 1 [ -1/3 -1/3 2/3]

2 0 1 0 [ -1/3 2/3 -1/3]

3 0 1 1 [ -2/3 1/3 1/3]

4 1 0 0 [ 2/3 -1/3 -1/3]

5 1 0 1 [ 1/3 -2/3 1/3]

6 1 1 0 [1/3 1/3 -2/3]

7
1 1 1

[0 0 0]
0 0 0

i∗

vo∗

R

E

Fig. 2. Representation of Xe (in red) as E ∩ R.

when it is closed and 0 when it is open. Moreover, each pair
(s1, s4), (s2, s5) and (s3, s6) is alternately commanded,
as for instance, when s1 = 1, s4 = 0 and vice-versa.
A time-varying angular parameter θ(t) represents the
input voltage electrical angle and is assumed to respect
θ(t) = ωt+ θ0 with constant angular frequency ω. In this
paper, this parameter is considered to be measurable or
adequately estimated.

Our main goal is to design a state dependent switching
function σ(t) = u(x(t), θ(t)) with u(x, θ) : R4 × R →
K capable of orchestrating the switching events of this
system, bringing vo(t) to a reference value vo∗ chosen by
the designer. In order to operate in an unitary power factor
situation, phase currents iφ(t) must track a sinusoidal
reference iφ∗(θ(t)) = i∗f(θ(t)), synchronized with the
source phase voltages. The control problem also allows for
the minimization of an upper bound for the quadratic cost

J =

∫ ∞
0

r‖iφ(t)− iφ∗(t)‖2 + (vo(t)− vo∗)2dt (6)

with the weight r ≥ 0 chosen by the designer.

Adopting the auxiliary state variable ξ(t) = x(t)−xe(θ(t))
with the equilibrium trajectory xe(θ(t)) = [iφ∗(θ(t))

′ vo∗]
′,

we can write the equivalent switched nonlinear system

ξ̇(t) = Aσ(t)ξ(t) + `σ(t)(θ(t)), ξ(0) = ξ0 (7)

with `i(θ) = Aixe(θ) + b(θ) − ẋe(θ), i ∈ K, and ξ0 =
x0−xe(θ0). This permits to tackle the trajectory tracking
problem

lim
t→∞

‖x(t)− xe(θ(t))‖ = 0 (8)

for the original system (1) by assuring global asymptotic
stability of the origin ξ = 0 for the equivalent system (7).

As it will be clear afterwards, the set of equilibrium pairs
(i∗, vo∗) defining the trajectories xe(θ) is given by

Xe = E ∩ R (9)
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with the ellipse E and the region R given, respectively, as
follows

E = {(i∗, vo∗) ∈ R2 : RLi
2
∗−vmi∗+2v2

o∗/(3Ro) = 0} (10)

R ={(i∗, vo∗)∈ R2 : (vm−RLi∗)2+(Lωi∗)
2≤ v2

o∗/3} (11)

An illustration of one possible set Xe is depicted in Figure
2. From the definition of E it can be concluded that
a necessary condition on vo∗ for the existence of an i∗

such that (i∗, vo∗) ∈ Xe is that |vo∗| ≤ vm

√
3Ro

8RL
= v̄o∗,

which has been determined by considering a non-negative
discriminant for the second order equation of i∗ presented
in (10). Hence, a pair (i∗, vo∗) ∈ Xe can be obtained
by providing the desired vo∗ to solve the second order
equation in (10) for i∗, providing up to two candidate
pairs (i∗, vo∗) each of which can be tested to (i∗, vo∗) ∈
R. At this point some trigonometric properties must be
presented and discussed.

2.1 Trigonometric properties

Consider the vector function f(θ) defined by identities
(3)-(5). Trigonometric relations allow us to conclude that
e′f(θ) = 0, ∀θ ∈ R, with e = [1 1 1]′. Hence, the vector
function f(θ) belongs to a plane in R3 perpendicular to
the vector e, formally defined as

Π = {v ∈ R3 : v′e = 0} (12)

Consequently, along a trajectory of θ(t), the time deriva-
tive of f(θ) also belongs to the same plane Π and is given

by ḟ(θ) = ωg(θ) with g(θ) = [ga(θ) gb(θ) gc(θ)]
′ ∈ R3 and

ga(θ) = cos(θ) (13)

gb(θ) = cos(θ − 2π/3) (14)

gc(θ) = cos(θ − 4π/3) (15)

where e′g(θ) = 0. Moreover, it also follows that

f(θ)′f(θ) = 3/2, f(θ)′g(θ) = 0, g(θ)′g(θ) = 3/2 (16)

The matrix

R(θ) =

[
f(θ) g(θ) 0

0 0
√

3/2

]
(17)

will be extensively adopted throughout this paper and
some of its properties have to be highlighted. Firstly, from
(16), we have that

R(θ)′R(θ) = (3/2)I (18)

Additionally, it is also true that ġ(θ) = −ωf(θ) for all
θ ∈ R, allowing to demonstrate that

Ṙ(θ(t)) = R(θ(t))Ω (19)

with the skew-symmetric matrix

Ω =

[
0 −ω 0
ω 0 0
0 0 0

]
(20)

Even though these properties resemble those from rotation
matrices, notice that R(θ) is not a square matrix. Finally,
for an arbitrary diagonal matrix D = diag(d1I, d2) we also
have that

DR(θ) = R(θ)V ′DV (21)

with the full rank matrix

V =

1 0 0
0 1 0
0 0 0
0 0 1

 (22)

3. MAIN RESULTS

The next lemma is of great importance to obtain the design
conditions based on LMIs, which assure global asymptotic
stability of the origin ξ = 0 of system (7).

Lemma 1. Let scalars (κ, η, α, β, γ, µ, ν, ρ) of the struc-
tured positive definite matrices

TI =

[
κI 0
0 η

]
, TR =

[
α β µ
β γ ν
µ ν ρ

]
(23)

be given. The inequality

TI −R(θ)TRR(θ)′ > 0 (24)

holds for every θ ∈ R if and only if

J ′TIJ − TR > 0 (25)

holds for J =
√

2/3V .

Proof: Firstly, notice that performing the Schur Comple-
ment Lemma in (24) with respect to TR and multiplying
both sides of the result by diag(I, TR), we obtain

κI • • • •
0 η • • •

αf(θ)′ + βg(θ)′
√

3/2µ α • •
βf(θ)′ + γg(θ)′

√
3/2ν β γ •

µf(θ)′ + νg(θ)′
√

3/2ρ µ ν ρ

 > 0 (26)

Now, multiplying the second row and column by
√

2/3
and applying once more the Schur Complement Lemma,
but now with respect to κ, we obtain2η/3 • • •

µ α • •
ν β γ •
ρ µ ν ρ

−κ−1

 0
αf(θ)′+βg(θ)′

βf(θ)′+γg(θ)′

µf(θ)′+νg(θ)′


 0
αf(θ)′+βg(θ)′

βf(θ)′+γg(θ)′

µf(θ)′+νg(θ)′


′

=

=

2η/3 • • •
µ α • •
ν β γ •
ρ µ ν ρ

− 3

2
κ−1

0 0
α β
β γ
µ ν


0 0
α β
β γ
µ ν


′

> 0 (27)

where the equality follows from the identities (16). Finally,
performing the Schur Complement Lemma in (27) with
respect to κ, rearranging rows and columns and applying
once more the Schur Complement Lemma with respect to
TR we have (25), concluding the proof. 2

This lemma provides a tool to efficiently verify that a
matrix function as given in (24) is positive definite for
all θ ∈ R by evaluating the LMI (25). Its importance will
be clear in the proof of our main theorem.

To present globally asymptotically stabilizing design con-
ditions, let us adopt a parameter dependent Lyapunov
function

v(ξ, θ) = ξ′P (θ)ξ (28)

with the positive definite matrix

P (θ) = PI −R(θ)PRR(θ)′ (29)

where

PI =

[
pI 0
0 q

]
> 0 (30)

and PR > 0 are to be determined.

Evaluating the time derivative of v(ξ, θ) along trajectories
ξ(t) and θ(t), we obtain

v̇(ξ, θ) = ξ′Wσ(θ)ξ + 2ξ′P (θ)`σ(θ) (31)
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with
Wσ(θ) = A′σP (θ) + P (θ)Aσ + Ṗ (θ) (32)

The next theorem presents sufficient conditions for guar-
anteeing that v̇(ξ, θ) < 0 for all ξ 6= 0.

Theorem 1. Consider system (7) evolving from ξ(0) = ξ0,
a non-negative scalar r composing Q = diag(rI, 1) and a
desired pair (i∗, vo∗) ∈ Xe be given. If there exist positive
scalars p, q of PI = diag(pI, q) and a positive definite
matrix PR satisfying the following LMIs

J ′PIJ − PR > 0 (33)

J ′(−Q− 2PIAI)J −Ψ > 0, Ψ > 0 (34)

with

Ψ = He
{
PR
(
(3/2)AR − V ′AIV −Ω′

)
− V ′PIV AR

}
(35)

AI =

[
−(RL/L)I 0

0 −1/(RoC)

]
(36)

AR =

√
6

3vo∗

[
0 0 −vd/L
0 0 −ωi∗

vd/C Lωi∗/C 0

]
(37)

and vd = RLi∗ − vm, then the switching function σ(t) =
u(ξ(t), θ(t)) with

u(ξ, θ) = arg min
i∈K

ξ′(Wi(θ)ξ + 2P (θ)`i(θ)) (38)

assures that the origin of (7) is a globally asymptotically
stable equilibrium point and that

J <v(ξ0, θ0) (39)

Proof: The proof follows from (31), which evaluated along
an arbitrary trajectory of system (7), under the switching
function σ(t) = u(ξ(t), θ(t)), yields

v̇(ξ, θ) = min
i∈K

ξ′Wi(θ)ξ + 2ξ′P (θ)`i(θ)

= min
λ∈Λ

ξ′Wλ(θ)ξ + 2ξ′P (θ)`λ(θ)

≤ ξ′Wλ∗(θ)(θ)ξ + 2ξ′P (θ)`λ∗(θ)(θ) (40)

where λ∗(θ) is an arbitrary vector inside Λ. Note that if
for each θ there exists λ∗(θ) ∈ Λ such that the inequality
Wλ∗(θ)(θ) < −Q is satisfied and `λ∗(θ)(θ) = 0, then
we have v̇(ξ, θ) < 0 and the origin ξ = 0 is globally
asymptotically stable. In order to verify that `λ∗(θ)(θ) = 0,
let us write

`λ∗(θ)(θ)=

[
L−1

(
(vm−RLi∗)f(θ)−Lωi∗g(θ)−vo∗Sλ∗(θ)

)
C−1(i∗S

′
λ∗(θ)f(θ)− vo∗/Ro)

]
(41)

Now, observe that the polytope P formed by vertices
(S1, · · · , S7) is a regular hexagon perpendicular to the
vector e = [1 1 1]′, whose inscribed circumference has

radius 1/
√

2, as shown in Figure 3. Hence, Sλ∗(θ) ∈ Π
can be chosen as any linear combination of f(θ) and g(θ)

as long as its length does not exceed 1/
√

2, given that both
f(θ), g(θ) ∈ Π for all θ ∈ R. Indeed, choosing

Sλ∗(θ) =
vm −RLi∗

vo∗
f(θ)− Lωi∗

vo∗
g(θ) (42)

that makes null the first term of (41), the constraint
S′λ∗(θ)Sλ∗(θ) ≤ 1/2 yields the region R, as defined in (11).

Moreover, replacing Sλ∗(θ) in the second term of (41), it is
simple to verify that this element becomes null whenever
the pair (i∗, vo∗) is chosen as a point of the ellipse E . Hence,
choosing (i∗, vo∗) ∈ Xe assures that for each θ ∈ R there
exists λ∗(θ) such that `λ∗(θ)(θ) = 0. For the same λ∗(θ),

Π

•

•

•

•

•

•

1
√
2

s1

s2

s3

•

Fig. 3. Graphical representation of polytope P and in-
scribed circumference.

let us now show that inequality Wλ∗(θ)(θ) < −Q holds
for all θ ∈ R whenever inequalities in (34) are satisfied.
Firstly, let us rewrite Aλ∗(θ) = AI − R(θ)ARR(θ)′ and
evaluate Wλ∗(θ)(θ) as

Wλ∗(θ)(θ) = 2PIAI +R(θ)ΨR(θ)′ (43)

with Ψ defined in (35) obtained after applying (18), (19),
(21) adequately. Now, by applying Lemma 1 in (34) for
TI = −Q−2PIAI and TR = Ψ, and observing that TR > 0,
we have that

−Q− 2PIAI > R(θ)ΨR(θ)′ (44)

showing that Wλ∗(θ)(θ) < −Q. The positive definiteness
of P (θ) is guaranteed by (33) together with Lemma 1,
but now with TI = PI and TR = PR. Finally, from (40),
we obtain v̇(ξ, θ) < −ξ′Qξ for all ξ 6= 0, assuring global
asymptotic stability of the origin. At last, integrating this
last inequality from t = 0 up to infinity allows us to
determine the upper bound (39), concluding the proof. 2

This theorem provides sufficient conditions for the design
of a switching function capable of assuring global asymp-
totic tracking of xe(θ(t)), bringing the AC-DC converter
to a desired output voltage vo∗ and controlling the input
currents to assure unitary power factor operation. It is
important to notice that the design conditions are given in
terms of LMIs being, therefore, easy-to-solve with readily
available tools.

Moreover, a parameter dependent Lyapunov function
showed to be well adapted to deal with this class of systems
characterized by a dependency on θ(t). An alternative
approach, based on a simple quadratic Lyapunov function
v̂(ξ) = ξ′Pξ with a constant P > 0 could be considered
instead. However, this requires to satisfy the condition

A′λ∗(θ)P + PAλ∗(θ) < −Q (45)

for all θ ∈ [0, 2π) by imposing this inequality over a
sufficiently fine grid of points. This alternative strategy
is not only less computationally efficient but also provides
more conservative results in our tests, in spite of the fact
that it takes into account more optimization variables.
This will be illustrated in Section 4. Finally, notice that
the stability conditions in Theorem 1 require only that
Aλ∗(θ) be Hurwitz stable, making no imposition regarding
stability of matrices Ai, i ∈ K, isolatedly considered, al-
though all of them are also stable. In the sequel, we present
some theoretical comparisons with techniques based on an
averaged system response and also discussions regarding
computational issues.
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3.1 Averaged model comparison

Averaged model techniques are extensively used in switched
systems such as the proposed converter. Indeed, these tech-
niques rely upon the fact that sufficiently fast switching
among subsystems creates an averaged dynamics which
governs the state evolution. Surely, this takes into account
Fillipov solutions ξ(t) for the system (7) that must satisfy
the differential inclusion

ξ̇(t) ∈ {Aλξ(t) + `λ(θ(t)) : λ ∈ Λ} (46)

Notice that the origin ξ = 0 of this system (7) is an
equilibrium point if and only if there exists for each θ ∈ R
a λ(θ) ∈ Λ such that `λ(θ)(θ) = 0, assuring ξ̇(t) = 0.
Given the discussions presented in the proof of Theorem
1, we can conclude that, for this particular system, this
requirement is fulfilled if and only if (i∗, vo∗) ∈ Xe, with
Xe given in (9). Hence, the proposed set Xe contains all
pairs (i∗, vo∗) defining a steady-state response xe(θ(t)) for
(1) attainable by an averaged model strategy.

3.2 Computational issues

From a computational point of view, the evaluation of the
proposed switching function (38) is of low complexity, since
it can be recast in a simpler equivalent form, that is given
in this subsection. Indeed, we have that

hi(ξ, θ) = ξ′
(
Wi(θ)ξ + 2P (θ)`i(θ)

)
= ξ′

(
2P (θ)

(
Ai(ξ+xe(θ))+b(θ)−ẋe(θ)

)
+Ṗ (θ)ξ

)
Notice that the dependency on index i ∈ K is present
only in the term 2ξ′P (θ)Ai(ξ + xe(θ)), indicating that it
is unnecessary to evaluate the remaining ones. Moreover,
employing trigonometric identities, we can decompose

R(θ) = GR̄(θ) (47)

with

G=
1

2


2 0 0

−1 −
√

3 0

−1
√

3 0

0 0
√

6

, R̄(θ)=

[
sin(θ) cos(θ) 0
cos(θ) − sin(θ) 0

0 0 1

]
(48)

Consider now the matrix G# = (2/3)G′. Notice that
GG# = I − (1/3)ẽẽ′ with ẽ = [1 1 1 0]′ and that
ẽ′ξ = ẽ′xe(θ) = 0, assuring the identities

GG#ξ = ξ, GG#xe(θ) = xe(θ) (49)

Defining h̄i(ξ, θ) = ξ′P (θ)Ai(ξ + xe(θ)), due to the previ-
ous discussion, we have that

h̄i(ξ, θ)=ξ′G#′G′(PIAi−R(θ)PRR(θ)′Ai)GG
#(ξ+xe(θ))

= ξ′G#′ (Pi − T (θ)Ai)G#(ξ + xe(θ))

with Pi = G′PIAiG, T (θ) = (3/2)R̄(θ)PRR̄(θ)′ and Ai =
G′AiG. Observe that matrices Pi and Ai can be calculated
a priori. Finally, taking into account that ic = −ia−ib, the
vectors x̄ = G#x and x̄e(θ) = G#xe(θ) can be calculated
as being

x̄ =

 ia
−(
√

3/3)(ia + 2ib)

(
√

6/3)vo

 , x̄e(θ) =

 i∗ sin(θ)
i∗ cos(θ)

(
√

6/3)vo∗

 (50)

leading to an equivalent switching function

u(x̄, θ) = arg min
i∈K

(x̄− x̄e(θ))′ (Pi − T (θ)Ai) x̄ (51)

Table 2. System parameters adopted in simu-
lations.

Ro 175 Ω
RL 0.56 Ω
L 19.5 mH
ω 2π × 50 rad/s
C 2.35 mF
vM 40.825 V

0 0.05 0.1 0.15 0.2
Time (s)

-10

-5

0

5

10

P
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a
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Fig. 4. Phase currents ia(t) (blue) and ib(t) (red) and
correspondent steady-state references (dashed lines).

which is more adapted for implementation in microcon-
trollers. Indeed, at each control update the most demand-
ing operations are two trigonometric function evaluation
(i.e. sin(θ) and cos(θ)), two 3x3 matrix products for deter-
mining T (θ) and then 7 evaluations of the expression in
(51), which can be efficiently performed for each i ∈ K.

4. SIMULATION RESULTS

In this simulation, numerical parameters were borrowed
from Bouafia et al. (2009) and are given in Table 2.
The goal is to bring the output voltage of the AC-DC
converter given in Figure 1 to a steady-state value of
vo∗ = 120 V whilst operating in unitary power factor. To
this end we could verify that, for i∗ = 1.369 A, the pair
(i∗, vo∗) ∈ Xe defines a reachable steady-state trajectory
xe(θ) = [i∗f(θ)′ vo∗]

′. Adopting this equilibrium pair, we
have solved the optimization problem

min
p,q,PR

(
x0 − xe(θ0)

)′
P (θ0)

(
x0 − xe(θ0)

)′
(52)

subject to (33)-(34) considering x0 = 0 and θ0 = 0.
Moreover, to obtain a fast convergence of vo(t) towards
vo∗, we have chosen r = 0. This objective function is
responsible for minimizing the upper bound (39). An
optimal solution was obtained for p = 6.2576 × 104,
q = 5.6854× 103 and

PR =

4.1718× 104 −0.0082 −0.0155
−0.0082 4.1718× 104 −0.0487
−0.0155 −0.0487 3.7902× 103

 (53)

assuring an upper bound in (39) of J < 1975.32. For
the sake of comparison, solving the analogous problem
with the constraint (45), related to a quadratic Lyapunov
function v̂(ξ) = ξ′Pξ, we have obtained an upper bound
J < 2965.81. Simulating the system response from x0 =
0, the obtained state trajectories and the correspondent
switching signal are shown in Figure 4, 5 and 6. From these
data we can conclude that the proposed switching function
was efficient in controlling the converter output voltage
towards a constant value of 120 V, under unitary power
factor operation. Moreover, as it can be noticed in Figure

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

6553



0 0.05 0.1 0.15 0.2
Time (s)

0

20

40

60

80

100

120

140

O
u

tp
u

t
vo

lt
a
g
e

(V
)

Fig. 5. Output voltage vo(t) and correspondent steady-
state reference (dashed line).
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Fig. 7. Steady-state response of current ia(t) (above) and
voltage vo(t) (below) for several values of T .

6 the switching frequency during the transient response
was relatively low, when compared to the steady-state,
which may not be observed in control techniques based on
averaged models.

Finally, let us investigate the effects of employing a piece-
wise constant switching function as

σ(t) = u(ξ(tk), θ(tk)), ∀t ∈ [tk, tk+1) (54)

where tk, k ∈ N, are switching instants respecting t0 = 0
and the switching period T = tk+1− tk. For several values
of T the steady-state behaviour of the phase current ia(t)
and output voltage vo(t) are shown in Figure 7 along with
the corresponding references (dotted lines). Notice that
the performance is impaired as larger values of switching

period T are adopted. This demonstrates the importance
of taking into account this aspect into the design step,
motivating future works.

5. CONCLUSION

We have presented a novel methodology for controlling
an AC-DC converter in a single control loop. This ap-
proach takes into account the design of a state-dependent
switched function that can bring the system state into
some steady state behaviour specified by the designer. To
this end, a set of attainable pairs (i∗, vo∗) is presented
from where an equilibrium trajectory xe(θ(t)), composed
of desired constant voltage and sinusoidal phase currents,
is defined and its global asymptotic tracking is assured.
The conditions were based on a parameter dependent
Lyapunov function and an upper bound for a quadratic
cost was guaranteed. The design procedure is written as
a convex optimization problem defined by a set of three
LMIs and was validated by means of a simulation example.
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