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Abstract: In this paper, we address a privacy issue raised by cloud based control. In a cloud
based control framework, a plant typically has no access to the models of the cloud system
and other plants connected via the cloud system. Under restricted information, the plant is
required to design its local controller for achieving control objectives. As a control objective, we
consider a tracking problem, and for constant reference signals, a class of tracking controllers is
identified based on Youla parametrization. More importantly, as local tracking controllers are
implemented, there is a possibility that the cloud system or other plants connected via the cloud
system may be able to identify private information of the plant by using the collected signal from
the plant; for example, the reference signal (say, the target production amount) of the plant can
be viewed as a piece of private information. In order to evaluate the privacy level of the reference
signal, we employ the concept of differential privacy. For the Laplace mechanism induced by
the entire system, we show that the differential privacy level cannot be further improved from
a ceiling value for any parameters of the local controller. In other words, there is a performance
limit in terms of differential privacy level, which is determined by the plant and cloud system
only.
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1. INTRODUCTION

As a key technology of Industry 4.0, cloud-based control
has attracted both social and research attentions; see
e.g. Lim et al. (2009). Although this is expected to dra-
matically improve the quality and flexibility of production
processes, it leads to potential privacy threat because users
share various information through the networks, and from
the shared information, there is a possibility that private
information of each user is identified by the cloud system
or other users.

Privacy threat is a big issue not only for cloud-based con-
trol but also for data-based IoT technologies. To deal with
privacy issues, statistical disclosure control technologies
have been developed; see e.g. Willenborg and Waal (1996,
2012). Originally, these techniques were proposed for static
data sets and, recently, have been developed for dynamical
data sets, since IoT systems can be dynamical systems.
For instance, differential privacy (Dwork et al. (2006a,b))
of dynamical systems are studied by Le Ny and Pappas

⋆ This work was supported in part by JSPS KAKENHI under Grant
JP18H01461, the European Research Council (ERC-CoG-771687)
and the Dutch Organization for Scientific Research (NWO-vidi-
14134).

(2014); Kawano and Cao. Also, there are research results in
the context of information entropies (Tanaka et al. (2017);
Farokhi and Sandberg (2019)).

In this paper, we study a privacy issue raised by cloud-
based control, where as a control objective, we address a
tracking problem of a plant. The control objective itself
is challenging, since the plant is supposed not to have
full information of the cloud system and other plants
connected via the cloud system, and other plants can
design their own local controllers. Therefore, each plant
needs to design its local controller under the assumption
that models of the cloud system (and other plants) are not
available. In this context, the concept of retrofit control
is proposed for characterizing a class of stabilizing local
controllers with Youla parametrization by Ishizaki et al.
(2019). By extending this method to tracking control, we
obtain a set of tracking local controllers. Although we
consider a constant reference for the sake of simplicity
of analysis, the obtained result can be extended to an
arbitrary superposition of periodic signals.

Next, we focus on the privacy issue. Especially, we consider
to protect privacy in the situation where the reference sig-
nal (e.g. the target production amount) of the plant cannot
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be identified by the cloud system from the plant’s sent
signals. As a privacy preserving data mining technique, we
employ differential privacy, where the main idea is to add
noise to the signal sent to the cloud system for making
the estimation of the reference difficult. For the Laplace
mechanism induced by the entire system, we construct a
lower bound on the differential privacy level for a given
distribution of the i.i.d. Laplace noise. In fact, this lower
bound does not depend on the parameters of the local
controllers. That is, given distribution, there is a ceiling
value for the differential privacy level to be achieved by
tuning the parameters, which is determined by the plant
and cloud system (and the other plants connected via the
cloud system) only.

The remainder of this paper is organized as follows. In
Section 2, we formulate a tacking control problem in
the context of cloud based control and provide a class
of tracking local controllers for a constant reference. In
Section 3, we estimate the ceiling level of differential
privacy. Section 4 illustrates our results by an academic
example. Finally, Section 5 concludes the paper.

Notations: The sets of real numbers and non-negative
integers are denoted by R and Z+, respectively. For the
sequence u : Z+ → R, a vector consisting of its sub-
sequence is denoted by ut := [u(0) · · · u(t)]⊤ ∈ Rt+1.
For the vector x ∈ Rn and sequence u : Z+ → R, their
norms are denoted by |x|p := (

∑n
i=1 |xi|p)1/p and ‖u‖p :=

(
∑∞

t=0 |u(t)|p)1/p, respectively, where p ∈ Z+ \ {0}. A
sequence u : Z+ → R is said to be u ∈ Lp[0,∞)
if ‖u‖p is bounded. The set of stable, proper, and rational
transfer functions is denoted by RH∞. A scalar random
variable ν is said to have a Laplace distribution with the
mean value µ ∈ R and the distribution b > 0, denoted
by ν ∼ Lap(µ, b) if its distribution has the following
probability density:

p(ν;µ, b) =
1

2b
e−

|ν−µ|
b .

Moreover, ν ∈ Rn with i.i.d. νi ∼ Lap(µi, b) is denoted
by ν ∼ Lapn(µ, b), where its probability density is

p(ν;µ, b) =
1

(2b)n
e−

|ν−µ|1
b .

2. CLOUD-BASED CONTROL

In this section, we formulate cloud-based control in the
framework of retrofit control proposed by Ishizaki et al.
(2019). Consider the interconnected discrete-time linear
system of the plant and cloud system in Fig. 1. The
transfer function matrices of the plant and cloud system
are respectively given by

Σ :

[
w
y

]
=

[
Gw,v(z) Gw,u(z)
Gy,v(z) Gy,u(z)

] [
v
u

]
, (1)

and

Γ : v = Gv,w(z)w, (2)

where each signal is supposed to be a scaler for the sake of
simplicity of the discussion. Suppose that the plant does
not know Gv,w(z). This is a reasonable assumption for
cloud-based control because the plant and cloud system
can belong to different parties, or because the cloud system
can be connected to other plants possessed by other parties

Cloud System: Г  

Plant:  ∑
yu

wv

Fig. 1. Pre-existing system.

Cloud System: Г  

Plant:  ∑

Local Controller:   ∏

y

r

u

wv

–+

Fig. 2. Entire system.

(in this case, the cloud system represents the system
consisting of the cloud itself and other plants). In this
setting, the transfer function of the interconnected system
of the plant and cloud from u to y becomes

Gpre(z) := Gy,u(z) +
Gy,v(z)Gv,w(z)Gw,u(z)

1−Gw,v(z)Gv,w(z)
, (3)

which is assumed to be internally stable.

The control objective considered in this paper is tracking,
i.e., y(t) → r as t → ∞ for a given constant reference r ∈
R. To this end, the plant designs its local controller. Since
the plant can access the signals v, w, u, and y, these signals
are available for controller design in contrast to Gv,w(z).
In summary, the entire system becomes the one shown in
Fig 2.

A tracking controller can be interpreted as a part of a sta-
bilizing controller. In Ishizaki et al. (2019), a class of local
controllers making the entire system internally stable has
been provided based on the Youla parameterization in the
continuous-time problem setting. We apply its discrete-
time counterpart and then identify a subset of controllers
additionally having the tracking performance. As for the
continuous-time case, in order to avoid unnecessary com-
plication of controller parametrization, suppose that the
plant (1) is internally stable. Then, the class of stabilizing
controllers is obtained as

u = Ky(z)(y − r) +Kw(z)w +Kv(z)v, (4)

where

Ky(z) :=
Q1(z)

1 +Q1(z)Gy,u(z) +Q2(z)Gw,u(z)
,

Kw(z) :=
Q2(z)

1 +Q1(z)Gy,u(z) +Q2(z)Gw,u(z)
,

Kv(z) := − Q1(z)Gy,v(z) +Q2(z)Gw,v(z)

1 +Q1(z)Gy,u(z) +Q2(z)Gw,u(z)
.

The transfer functions Q1(z), Q2(z) ∈ RH∞ are free
design parameters.

In order to find the classes of Q1(z) and Q2(z) achieving
tracking control y(t) → r as t → ∞, we compute the
transfer function from r to y as

y = −Gpre(z)Q1(z)r. (5)

See Appendix A for the detailed computation of obtain-
ing (5). From the final value theorem (see e.g. Levine
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(2018)), tracking control is achieved if and only if

Q1(1) = − 1

Gpre(1)
. (6)

Therefore, the controller (4) with the constraint (6) solves
the tracking control problem.

One notices that from (3), tracking controller design re-
quires the information of the DC gain of the cloud sys-
tem, namely Gv,w(1) while the plant cannot access the
transfer function of the cloud system Gv,w(z). It is rel-

atively easy to estimate its value at some point ejω
∗
,

namely Gv,w(ejω
∗
) from the output v by sending a sig-

nal w whose frequency is ω∗. For the DC gain, this a
constant input w(t) = a, ∀t ∈ Z+. An approximation of
the DC gain is obtained as

Gv,w(1) ' v(t)

w(t)
=

v(t)

a

for sufficiently large t ∈ Z+.

Remark 2.1. In this section, a reference r is supposed to
be a constant for the sake of simplicity of the discussion.
The condition (6) can be extended to an arbitrary super-
position of periodic signals. �

3. DIFFERENTIAL PRIVACY BOUND

3.1 Differential Privacy

The local controller is designed after the plant is intercon-
nected to the cloud system. This has advantages in view
of privacy preservation because the plant does not need to
share information of the local controller (i.e. control algo-
rithms) and reference r (e.g. a target produced amount)
when the cloud system is designed. However, there is still a
possibility that the cloud system estimates the reference r
from the signal w sent to it. In this section, our objective is
to design the local controller which makes the estimation
difficult, i.e. r is highly private against the cloud system.
As a criterion for privacy, we employ differential privacy
proposed by Dwork et al. (2006a,b), which has been ap-
plied to state-space representations of dynamical systems;
see e.g. Le Ny and Pappas (2014); Kawano and Cao. In this
subsection, we summarize existing results on differential
privacy.

Consider a minimal representation of the transfer function
from r to w of the entire system in Fig 2:{

x(t+ 1) = Ax(t) + br(t),
w(t) = c⊤x(t),

(7)

for t ∈ Z+, where x(t) ∈ Rn, r(t) ∈ R and w(t) ∈ R denote
the state, input and output, respectively, and A ∈ Rn×n

and b, c ∈ Rn.

One of the main ideas of differential privacy is to add
noise ν(t) ∈ R to the output w(t) ∈ R for increasing the
difficulty of estimating r(t). That is, instead of w(t), the
plant sends the following wν(t) to the cloud system:

wν(t) = w(t) + ν(t). (8)

For the zero initial state, the system (7) with the new out-
put (8) induces the mapping M : Rt+1×Rt+1 3 (rt, νt) 7→
wν,t ∈ Rt+1; recall the notation of the sequence in the
notation part of the introduction. In differential privacy

analysis, this mapping is called a mechanism (Dwork et al.
(2006b,a)).

Differential privacy gives an index of the privacy level
of a mechanism, which is characterized by the sensitiv-
ity of published output data wν,t with respect to in-
put data rt. More specifically, if for a different pair
of input data (rt, r

′
t), the corresponding pair of output

data (wν,t, w
′
ν,t) are very similar, then one can conclude

that input data rt is difficult to estimate, i.e. the mecha-
nism is highly private. For such a reason, differential pri-
vacy is defined by using a different but “similar” data pair,
where by similar we mean that they satisfy the following
adjacency relations.

Definition 3.1. Given c > 0 and p ∈ Z, a pair of in-
put data (rt, r

′
t) ∈ Rt+1 × Rt+1 is said to be adja-

cent Adjcp(rt, r
′
t) if |rt − r′t|p ≤ c. �

The value c gives an upper bound on the similarity of pairs
of input data sets (rt, r

′
t). Therefore, c is decided based on

the range of input data sets, in which one wants to make
the input data difficult to distinguish.

Now, we are ready to define differential privacy of the
mechanism proposed by Dwork et al. (2006a,b).

Definition 3.2. Let (Rt+1,F) be a measurable space.
The mechanism induced by (7) and (8) is said to be
ε-differentially private for Adjcp(rt, r

′
t) at a finite time

instant t ∈ Z+ if there exists ε > 0 such that

P(wν,t ∈ S) ≤ eεP(w′
ν,t ∈ S), ∀S ∈ F (9)

for any (rt, r
′
t) ∈ Adjcp(rt, r

′
t). �

If ε is small, then for a different pair of input data (rt, r
′
t),

the corresponding pair of probability distributions of out-
put data (wν,t, w

′
ν,t) is small, i.e., a mechanism is highly

private. Therefore, the privacy level of a mechanism is
evaluated by the single variable ε.

3.2 Differential Privacy Bound of Laplace Mechanism

From the definition, the variable ε depends on noise ν.
In this subsection, we consider to add an i.i.d. Laplace
noise; the corresponding mechanism is called the Laplace
mechanism which can be found in Fig. 3. For the Laplace
mechanism, we investigate the differential privacy level.
In fact, we clarify that there is a limit to the differential
privacy level determined by the plant and cloud system.

As preliminary, we introduce the q-induced norm of the
system (7),

‖Σ‖q−ind := sup
r∈Lq [0,∞)
∥r∥q ̸=0

‖w‖q
‖r‖q

.

Cloud System: Г  

Plant:  ∑

Local Controller:   ∏

y

r

u

w
v

–+

+ + υ

Fig. 3. Target Laplace Mechanism.
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For the Laplace mechanism design, the 1-induced norm
plays an important role as follows.

Theorem 3.3. The Laplace mechanism with i.i.d. ν ∼
Lapt+1(0, b) is ε-differentially private for Adjc1(rt, r

′
t) for

any finite time instant t ∈ Z+, rt, r
′
t ∈ L1[0,∞) with ε > 0

if and only if b > 0 is chosen such that

b ≥ c

ε
‖Σ‖1−ind (10)

holds.

Theorem 3.3 implies that large noise is required to make
the dynamical system (7) having a large 1-induced norm
highly differentially private. Since adding noise can de-
generate control performance, it is preferable to design
the local controller such that its 1-induced norm from r
to w is relatively small. This is a new requirement caused
by taking privacy issues into account. Therefore, we in-
vestigate the 1-induced norm from r to w based on the
characterization (4) of the local controller.

Remark 3.4. One may think that tracking control perfor-
mance is less affected by making the norm of the transfer
function from ν to y small even if one adds noise ν.
However, the transfer function is Gy,v(z)Gv,w(z), which
cannot be changed by local controller design. Therefore, we
consider to design the dynamical system (7) being highly
private by adding small noise. �

The transfer function from r to w of the entire system (7)
is computed as

w = − Gw,u(z)

1−Gw,v(z)Gv,w(z)
Q1(z)r. (11)

See Appendix A for the detailed computation of obtain-
ing (11). From (11), one notices that even when the local
controller does not know the transfer function Gv,w(z)
of the cloud system, the 1-induced norm can be made
arbitrary small by making the free parameter Q1(z) arbi-
trary small. However, there is the constraint (6) for Q1(z)
because of the requirement for tracking control. This is
formally stated as follows.

Theorem 3.5. Consider the entire system (7). The 1-
induced norm from r to w is lower bounded by

‖Σ‖1−ind ≥
∣∣∣∣ Gw,u(1)

1−Gw,v(1)Gv,w(1)

1

Gpre(1)

∣∣∣∣ . (12)

for any Q1(z), Q2(z) ∈ RH∞ achieving y(t) → r as t →
∞. �

As a corollary of Theorems 3.3 and 3.5, we have the
following lower bound on the differential privacy level.

Corollary 3.6. If the Laplace mechanism with i.i.d. ν ∼
Lapt+1(0, b) is ε-differentially private for Adjc1(rt, r

′
t) for

any finite time instant t ∈ Z+, then

ε ≥ c

b

∣∣∣∣ Gw,u(1)

1−Gw,v(1)Gv,w(1)

1

Gpre(1)

∣∣∣∣ (13)

holds. �

It is worth mentioning that the lower bound (13) on the
differential privacy level is independent from the design
parameters Q1(z) and Q2(z) of the local controller. There-
fore, if the distribution of the Laplace noise is fixed, the
differential privacy level ε cannot be made smaller than the
value determined by the plant and cloud even if one tunes

the controller parameters. Therefore, there is a ceiling
privacy level achieved by cloud-based control.

Remark 3.7. Recall that Gpre(z) is given in (3). By using
this, the transfer function in the right hand side of (13)
becomes

Gw,u(1)

1−Gw,v(1)Gv,w(1)

1

Gpre(1)

=
Gw,u(1)

1−Gw,v(1)Gv,w(1)

1

Gy,u(1) +
Gy,v(1)Gv,w(1)Gw,u(1)

1−Gw,v(1)Gv,w(1)

=
Gw,u(1)

Gy,u(1)(1−Gw,v(1)Gv,w(1)) +Gy,v(1)Gv,w(1)Gw,u(1)

In a specific case when Gy,u(1)Gw,v(1) = Gy,v(1)Gw,u(1),
this becomes Gw,u(1)/Gy,u(1), which implies that the
privacy limit is determined only by the plant. �

4. EXAMPLES

Consider the following plant and cloud system,

Gw,v(z) = Gw,u(z) =
5

2z + 1
,

Gy,v(z) = Gy,u(z) =
8

4z + 1
,

Gv,w(z) =
1

4z − 2
.

Then, Gpre(z) in (3) is computed as

Gpre(z) =
80z2 − 20z − 10

32z3 + 8z2 − 24z − 10
.

It is possible to confirm that both plant and Gpre(z) are
internally stable.

From the requirement of tracking control, Q1(z) ∈ RH∞
is required to satisfy (6), namely

Q1(1) = − 1

Gpre(1)
= − 3

25
.

As such a controller, we choose

Q1(z) = −25(1 + a1)

3(z + a1)
,

where a1 ∈ (−1, 1). Next, we choose Q2(z) ∈ RH∞ as

Q2(z) =
b2

z + a2
,

where a2 ∈ (−1, 1) and b2 ∈ R. The blue lines in Fig. 4
and Fig. 5 show the trajectories (y, w) of the system (7)
for r(t) = 1, t = ([0, 100] ∪ [101, 200]) ∩ Z+ and r(t) =
2, t = [201, 300] ∩ Z+ when a1 = 1/2, a2 = a1, and b2 =
−b1. Tracking control, i.e. y → r is achieved without
using Gv,w(z); one can further confirm that the tracking
performance does not depend on the choice of Q2(z).

On the other hand, from the signal w sent to the cloud,
the cloud can easily estimate that r has changed twice, and
the first and third values are the same; see the blue lines in
Fig. 4 and Fig. 5. Therefore, information of the reference r
can be viewed as less private. In order to increase the
privacy level of r, we consider to add i.i.d. Laplace noise ν
to w. In view of Remark 3.7, the lower bound (13) on the
differential privacy level is obtained as

ε ≥ c

b

∣∣∣∣Gw,u(1)

Gy,u(1)

∣∣∣∣ = 25

24

c

b
.

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

11168



Moreover, adding noise ν causes degeneration of tracking
performance. As mentioned in Remark 3.4, the sensitivity
of the output y with respect to the noise ν cannot be
improved by tuning the local controller. In fact, the
transfer function from ν to y is obtained as

Gy,v(z)Gv,w(z) =
8

4z + 1

1

4z − 2
,

whose H∞-norm is 0.526. Since both privacy level of r and
sensitivity of y depend on the plant and cloud system only,
it is very difficult to achieve both precise tracking and tight
privacy preservation.

The red line in Fig. 4 shows the trajectories (y, wν) when
the i.i.d. Laplace noise with the distribution b = 0.1 is
added to w. In this case, tracking performance is less
degenerate against the noise. However, simultaneously r
is less private. Next, the red line in Fig. 5 shows the
trajectories (y, wν) when b = 0.5. It becomes more difficult
to estimate r from wν while tracking performance is sig-
nificantly degenerate. Therefore, it is difficult to increase
the differential privacy level while keeping high tracking
performance.

0

1

2

y

0 0.5 1 1.5 2 2.5 3

-1

0

1

2

3

w

nominal

with noise

Time

υ

Fig. 4. The trajectories (y, w) of the Laplace mechanism
with b = 0.1, where the sampling time is 0.01.

0

1

2

nominal

with noise

0 0.5 1 1.5 2 2.5 3

-1

0

1

2

3

y
w
υ

Time

Fig. 5. The trajectories (y, w) of the Laplace mechanism
with b = 0.5, where the sampling time is 0.01.

5. CONCLUSION

In this paper, we have analyzed the differential privacy
level of the Laplace mechanism in the context of cloud
based control. We have revealed that there is a ceiling
level of differential privacy achieved by tuning the local
controller. Also, the degeneration property of the control
performance caused by adding noise, cannot be changed.
Therefore, there is a fundamental performance limit in
terms of differential privacy which is rooted in the fact
that it is difficult to improve both privacy level and control
performance by tuning parameters of the local controller.

Appendix A. COMPUTATIONS OF (5) AND (11)

In this appendix, we consider to obtain (5) and (11). First,
we compute the transfer function from (r, v) → y. The
changes of variables ŷ = y − Gy,vv and ŵ = w − Gw,vv
for (1), (2), and (4) yield

v =Gv,w(z)(ŵ +Gw,v(z)v),

ŵ =Gw,u(z)u,

ŷ =Gy,u(z)u,

u =Ky(z)(ŷ − r +Gy,v(z)v)

+Kw(z)(ŵ +Gw,v(z)v) +Kv(z)v

=Ky(z)ŷ −Ky(z)r +Kw(z)ŵ,

where in the last equality, the definitions of Ky(z), Kw(z),
and Kv(z) are used. From these four equations, the trans-
fer function from r to ŷ is computed as

ŷ = − Gy,u(z)Ky(z)

1−Kw(z)Gw,u(z)−Gy,u(z)Ky(z)
r

= −Gy,u(z)Q1(z)r,

where again the definitions of Ky(z) and Kw(z) are used.
Therefore, the change of variables ŷ = y −Gy,vv yields

y = −Gy,u(z)Q1(z)r +Gy,v(z)v. (A.1)

On the other hand, the transfer function from r to ŵ is
obtained as

ŵ = −Gw,u(z)Q1(z)r.

The change of variables ŵ = w −Gw,vv yields

w = −Gw,u(z)Q1(z)r +Gw,v(z)v (A.2)

From (2), it follows that

v = − Gv,w(z)Gw,u(z)

1−Gv,w(z)Gw,v(z)
Q1(z)r (A.3)

Then, (A.1) and (A.3) yield

y =−
(
Gy,u(z) +

Gy,v(z)Gv,w(z)Gw,u(z)

1−Gv,w(z)Gw,v(z)

)
Q1(z)r

=−GpreQ1(z)r.

This is nothing but (5).

Finally, (11) is obtained from (A.2) and (A.3).
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