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Abstract: In this paper, a novel online neighbor selection policy is proposed in the control of
nonlinear networked multi-manipulator systems where manipulators’ joints’ signals are subject
to varying noise levels. By addressing the issue in many conventional control methods of multi-
agent systems (MASs) where all available neighbor signals are used without evaluating the
quality of the information, efforts of this paper seek to improve the overall tracking performance
by actively selecting neighbor feedback signals in the robust non-singular terminal sliding mode
(NTSM) control. A fast neighbor selection scheme is presented by incorporating an online noise
covariance estimation into a nonlinear continuous-discrete unscented Kalman filter (CD-UKF).
A selection index vector is recursively updated by the estimated noise covariance matrix for
the control design. Simulation results of a group of six degrees of freedom (with three actuated
joints) Phantom Omni models demonstrate the effectiveness of the online neighbor selection
approach and compare it to previous work which does not actively select neighbor candidates.

Keywords: Neighbor Selection, Online Noise Estimation, Unscented Kalman Filter (UKF),
Non-singular Terminal Sliding-Mode (NTSM) Control, Manipulator, Nonlinear Systems.

1. INTRODUCTION

In the majority of the previous approaches, all the trans-
mitted data was immediately used in the control design of
MASs. However, in many practical MASs, agents and sen-
sors are heterogeneous and/or experience different degrees
of wear and tear, and therefore suffer from different levels
of noise and inaccuracy. Unnecessarily using noisy propa-
gated signals in the control design can severely degrade an
otherwise well-performing agent’s performance. Therefore,
it is necessary to set up a neighbor selection strategy to
reduce the influence of neighbors with noisy signals. This
idea has been applied to the leader selection problem in
a leader-following structure (Franchi et al. (2011)). How-
ever, actively selecting the neighbor information has been
given less attention in networked MASs for the purpose of
improving performance.

Dynamic neighbor selection involves the changing network
connectivity that also has been considered in the matter
of switching topology in a network of MASs. Currently,
a great deal of research is being devoted to the topic of
switching topology in response to the dynamic external
constrains such as the limited field of view or unexpected
obstacle occlusions. Such topology switching strategies are
referred to as Passive Switching Topology (PST). Many
control methods aim at demonstrating the control stability
under all possible topologies or different connections using
PST (Olfati-Saber and Murray (2004); Xiao and Wang
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(2008)). Xie and Wang (2005) proposed Active/Strategic
Switching Topology (AST) by intentionally selecting two
neighbors’ states in the control design of each agent.
Other research on AST can also be found in (Xie and
Wang (2005); Yang et al. (2014); Hoang et al. (2018)),
which help decrease the communication complexity/cost
drastically, but they are more applicable for MASs with a
large number of agents (e.g. swarm system (Krishnanand
and Ghose (2009))). Control approaches with AST for net-
worked MASs with small number of agents, such as multi-
manipulator systems, have not been thoroughly studied.
Nevertheless, intentionally selecting suitable neighbor/s in
the control design for small-volume systems is of great
importance and motivation for the design of the neighbor
selection policy in this paper.

The literature that is the most relevant to the proposed
paper includes: Sarkka (2007); Hoang et al. (2018); Mao
and Zhang (2018); Khoo et al. (2009); Shen et al. (2017)
and Kontoroupi and Smyth (2015). Compared to these
works, the main contributions of this paper include:

(1) Compared to Sarkka (2007) where a CD-UKF is
introduced with the noise mean and covariance given as
a priori, this paper considers an online noise covariance
estimation which is incorporated into a nonlinear CD-
UKF to recursively approximate the true noise covariance.
Furthermore, compared to Kontoroupi and Smyth (2015),
the noise estimation method is extended to also be used
as a neighbor selection index for a fast noise-level-based
neighbor selection scheme in the control design.

(2) Compared to Hoang et al. (2018) and Mao and Zhang
(2018) where the active neighbor selection aims at reduc-
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ing the communication complexity and computation load
for MASs with a large number of agents, the active neigh-
bor selection approach in this paper focuses on reducing
the noise propagation to improve the performance of the
nonlinear small-volume MASs.

(3) Compared to Khoo et al. (2009) and Shen et al.
(2017) where joint accelerations are required in the NTSM
method for nonlinear MASs, this paper considers the state
estimation with a nonlinear CD-UKF. As a result, the
acceleration feedback signals are not required to be mea-
surable. In addition, an active neighbor selection approach
is integrated into the NTSM control design for nonlinear
systems that are subject to unknown measurement and
process noises.

2. PROBLEM STATEMENT

2.1 Graph Theory

In the leader-following MASs, a graph G = (ν, ε, A) is used
to describe the connection and information flow among
the followers, where ν represents the nodes, ε denotes
the edges, and the adjacency matrix A = [aij ] describes
the connections between agents, which is defined such
that aij = 1 if (i, j) ∈ ε, and aij = 0, if (i, j) /∈ ε. The
connection between the ith follower and the leader is
represented by bi = 1, if the ith follower is connected to the
leader, and bi = 0 otherwise. The following assumptions
specify the communication network.

Assumption 1. Assumed that the manipulators are com-
municating via Ethernet Local Area Network (LAN) such
that the transmission delay is very small (usually several
miliseconds or less) and neglected.

Assumption 2. During the operation, the follower graph
is connected and at least one follower agent can receive
information from the leader.

2.2 System Description

An m-DOF manipulator’s dynamics can be represented by
the Euler-Lagrange equations in joint space as follows.

Mi(qi)q̈i + Ci(qi, q̇i)q̇i + gi(qi) + fi = τi − τ ei , (1)

where qi ∈ Rm, q̇i ∈ Rm, and q̈i ∈ Rm are the angular
position, velocity and acceleration for the ith manipulator.
Definitions of the following matrices are given as: Mi ∈
Rm×m, is the symmetric and uniformly positive definite
inertia matrix. Ci ∈ Rm×m is the Coriolis and centrifugal
loading matrix. gi ∈ Rm is the gravitational loading
vector. τi ∈ Rm denotes the designed control input and
τ ei ∈ Rm denotes the environment force exerted on the
manipulator. Since only free motion tracking is considered
in this paper, τ ei = 0. i = 1, 2, ..., n (n ≥ 2).

In many engineering and physics applications, a continuous-
time signal from a nonlinear system is observed discretely
due to processing delays or the manner of operation.
Therefore, it is more suitable to use the nonlinear CD-
UKF (Sarkka (2007)). By redefining the states Xi(t) ∈ RL
and Ẋi(t) ∈ RL (L = 2m) as

Xi(t) =

[
qi(t)
q̇i(t)

]
, Ẋi(t) =

[
q̇i(t)
q̈i(t)

]
, (2)

the nonlinear state-transition function is given in a
continuous-time form as

Ẋi(tk+1) = Fm(X(tk), τi(tk), tk) + υi(tk+1)

=

 ∫ tk+1

tk

Fv(X(τ), τi(τ), τ)dτ

Fv(X(tk), τi(tk), tk)

+ υi(tk+1),(3)

q̈i(tk+1) = Fv(Xi(tk), τi(tk), tk)

=M−1
i (tk)(τi(tk)− Ci(tk)q̇i(tk)− gi(tk)).

The measurement is modeled in a discrete-time manner as

Yi,k+1 = Hv(Xi(tk+1), ri,k+1, tk+1) = Xi(tk+1) + ri,k+1,

(4)

where Yi,k+1 ∈ RL, Fm and Hm are process model and
measurement model, respectively, and their noises are
represented by υi(tk+1) ∼ N(0, Vi(tk+1)) and ri,k+1 ∼
N(0, Ri,k+1). υi(tk+1) ∈ RL and ri,k+1 ∈ RL. Vi(tk+1)
and Ri,k+1 are noise covariance matrices.

Since we are concerned with the design of the active
neighbor selection approach, for simplicity the following
assumptions are made.

Assumption 3. In the calculation of Mi, Ci, and gi, the
system parameters, such as link length, joint mass, etc,
are predetermined, although they can be estimated in real
time by the CD-UKF introduced in this paper.

Assumption 4. The noises in the state transition and ob-
servation equations are additive zero-mean Gaussian pro-
cesses. In addition, the true noise covariance matrices are
heterogeneous between manipulators due to the different
extents of wear and tear.

Assumption 5. The joint angular position q and velocity
q̇ can be measured, while the acceleration q̈ is not mea-
surable. Instead, the acceleration estimation from the CD-
UKF is used when it is required in the controllers.

Control Objectives: For nonlinear multi-manipulator
systems formulated by (3) and (4), that are subject to
varying unknown noise levels, the objective is to design
a NTSM controller incorporating a novel online neighbor
selection policy and the CD-UKF-based state estimation
to improve the overall tracking performance in the sense of
‖qi(t)− q0(t)‖1 ≤ ∆ε, where the bound ∆ε ≥ 0 is desired
to be as small as possible while the tracking stability is
well maintained.

3. CONTROL STRATEGIES

The unknown noise covariance estimation requires a re-
cursive implementation to reach the true values from any
given initialization. This is driven by the nonlinear CD-
UKF that is introduced for the state estimation. Taking
the ith agent as an example, procedures of the CD-UKF
are presented as follows.

3.1 Continuous-Discrete Unscented Kalman Filter

The UKF specifies the state distribution using a minimal
set of carefully chosen sample points (called sigma points)
to completely capture the true mean and covariance of the
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state distribution for any nonlinearity. To facilitate the
presentation of the CD-UKF, some weights are defined
first as follows.

wm
0 =

λ

L+ λ
,

wc
0 =

λ

L+ λ
+ (1− µ2 + ς),

wm
p =wc

p =
1

2(L+ λ)
, p = 1, 2, · · · , 2L,

where λ = µ2(L+ κ)− L. κ as well as µ, ς are scalars to
be designed (Julier et al. (1995)).

Rewriting the weights in matrix form as

Wm = [wm
0 wm

1 · · · wm
2L]T , (5)

W c = [wc
0 wc

1 · · · wc
2L]T , (6)

Wmc = (I − [Wm Wm · · · Wm])× diag(W c)

×(I − [Wm Wm · · · Wm])T , (7)

where I ∈ R(2L+1)×(2L+1) is an identity matrix. Wmc ∈
R(2L+1)×(2L+1), Wm ∈ R2L+1 and W c ∈ R2L+1.

Then, the CD-UKF that includes a prediction step and an
update step can be formulated as follows (Sarkka (2007)).

Prediction step Prediction step solves the predicted
probability density at time step tk+1 using the posterior
probability density at the last time step (i.e., tk) as the
boundary condition. Assume that Xi(tk) has a mean
X̄i(tk) and a covariance Pi(tk). The sigma points χi(tk) ∈
RL×(2L+1) are calculated as

χi(tk) = [X̄i(tk) X̄i(tk) · · · X̄i(tk)]

+c [0L×L Pci(tk) − Pci(tk)],

where L = 2m, c =
√
L+ λ. Pci = chol(Pi(tk)) and chol(·)

denotes the Cholesky factorization.

Since the state-transition is given as a continuous-time
function, the prediction of states’ mean and covariance is
formulated as follows.

˙̄X−
i (tk) =

dχi(tk)

dt
= Fm(χi(tk),υi(tk), τi(tk))Wm, (8)

Ṗ x−i (tk) =
dPxi(tk)

dt

= χi(tk)WmcFTm(χi(tk), τi(tk))

+Fm(χi(tk), τi(tk))WmcχTi (tk) + Vi(tk). (9)

Integrating the differential equations in (8) and (9) over
[tk, tk+1] gives the predicted mean and covariance as

X̄
−
i (tk+1) =

∫ tk+1

tk

˙̄X−
i (τ)dτ,

Px−i (tk+1) =

∫ tk+1

tk

Ṗ xi(τ)dτ.

Update step Since the measurement is carried out in a
discrete-time fashion, the posterior probability density is
computed in discrete-time as

χ−
i (tk+1) = [X̄

−
i (tk+1) X̄

−
i (tk+1) · · · X̄

−
i (tk+1)]

+c
[
0L×L Pc−i (tk+1) − Pc−i (tk+1)

]
,

Y−
i,k+1 =Hm(χ−

i (tk+1), tk+1),

Ŷi,k+1 = Y−
i,k+1W

m,

where Pc−i (tk+1) = chol(Px−i (tk+1)).

The covariance of the measurement is given by

Pyi,k+1 = Y−
i,k+1W

mc(Y−
i,k+1)T +Ri,k+1. (10)

The cross-covariance of the state and measurement are

Pxyi,k+1 = χ−
i (tk+1)Wmc(Y−

i,k+1)T .

Eventually the estimated state mean and covariance are

Kk+1 = Pxyi,k+1 Py
−1
i,k+1,

X+
i (tk+1) = X−

i (tk+1) +Kk+1(Yi,k+1 − Ŷi,k+1),

Px+i (tk+1) = Px−i (tk+1)−Kk+1Pyi,k+1K
T
k+1,

where Kk+1 denotes the filter gain.

3.2 Neighbor Selection Policy

The CD-UKF provides a recursive estimation of the un-
known state (and structural parameters when necessary).
However, as shown in (9) and (10), the noise covariances
are required as a priori, but very often that is not the case.
The online covariance estimation method used to relax the
requirement of noise information is presented as follows.

Given the prior parameters, shape , εi,tk ∈ R1 and

rate , Φi,tk ∈ RL×L, of an inverse Wishart distribution
(IWD), their posteriors are calculated by

εi,tk+1
= εi,tk + 1, (11)

Φi,tk+1
= Φi,tk + ∆Si(tk+1)∆STi (tk+1), (12)

where ∆Si(tk+1) represents the Gaussian noise sample
that is given by

∆Si(tk+1) , X+
i (tk+1)− Fm(X+

i (tk),υi(tk), τi(tk))(13)

for the estimation of Vi in (9) or

∆Si(tk+1) , Yi,k+1 − Ŷi,k+1 (14)

for the estimation of Ri in (10).

Then, the noise level (or covariance matrix) is approxi-
mated by a point estimation (i.e., the mode of the IWD):

ωi,tk+1
=

Diag(Φi,tk+1
)

εi,tk+1
+ 1 + p

, (15)

where p is a positive constant. Diag(∗) returns a vector
that contains all diagonal entries of an input square
matrix. ωi,tk+1

represents the updated estimations of Vi
and Ri, denoted by ωi,tk+1

, {V̂i, R̂i}. Thus, Vi and Ri
in (9) and (10) are replaced by V̂i and R̂i, respectively so
that the above iteration can run along with the CD-UKF.
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The noise level ωi,tk+1
provides an index for the dynamic

neighbor identification. The online neighbor selection pol-
icy is designed based primarily on the noise level of neigh-
bor manipulators. By setting up a noise level threshold ξ,
the transmitted neighbor signals stamped with estimated
noise level are used to determine if a neighbor agent is
“performing-well” or “performing-poorly”. As a result, a
dynamic selection index Ω is designed as

Ωi,tp+1 =
diag(1− ωi,tp+1

)(sgn(ξ − ωi,tp+1
) + 1)

2
, (16)

Ωi,tp+1 = diag(Ωi,tp+1), (17)

where diag(∗) returns a diagonal matrix of an input
vector. 1 denotes a vector of all ones. Let Tns = tp+1 −
tp denote the update sampling time of the subsequent
neighbor selection. To avoid updating the selection law
unnecessarily too frequently, Tns is chosen to be not
less than sampling time of the sensor measurements and
assume that tp is an integral multiple of tk.

Note that the noise level threshold ξ is chosen at the de-
signer’s discretion and the individual robots’ application-
specific performance requirements at this stage. In addi-
tion, the dimension of Ω may vary due to the choice of
state. For simplicity, we only use the position noise sample
in the calculation of Ω such that Ω ∈ Rm×m.

For compactness, the augment of all time-dependent sig-
nals is omitted and then the neighbor selection policy can
be given by

ei =

n∑
j=1

aijΩj(qi − qj) + bi(qi − q0), (18)

ėi =

n∑
j=1

aijΩj(q̇i − q̇j) + bi(q̇i − q̇0), (19)

where ei ∈ Rm and ėi ∈ Rm are the position error and ve-
locity error between the ith agent and the leader (denoted
by the subscript of 0) as well as the selected neighbors.
Note that as the continuous controller is designed, the
zero-order hold (ZOH) model is required to convert the
discrete-time measurements to continuous-time signals.

3.3 Non-Singular Terminal Sliding Mode Control Design

With the neighbor selection scheme in (16)-(19), the
sliding surface for the NTSM control design is written as

si = ei + βi(ėi)
αi , (20)

where βi > 0, αi = p/q, and p and q are selected as odd
numbers such that 1 < αi < 2.

The controller of the ith follower is designed as follows

τi =Ciq̇i + gi +
( n∑
j=1

aijΩj + biI
)−1

Mi

{−(ėi)
(2−αi)

αiβi

+

n∑
j=1

aijΩj ˆ̈qj + biq̈0 − (Baei + κi)sgn(si)
}
, (21)

where κi > 0. ˆ̈qj is the estimated acceleration from
the CD-UKF. Baei represents the upper bound of the

acceleration estimating error, that is, ‖εaei ‖1 ≤ Baei and

εaei =
∑n
j=1 aijΩj(

ˆ̈qj − q̈j) with (ˆ̈qj − q̈j) approximated

by diagonal of the predicted acceleration covariance in (9).

The stability and joint angular position convergence proof
using the control input in (21) are presented as follows.

Proof. Substitute the control input in (21) into the dy-
namics in (1), we have

Miq̈i + Ciq̇i + gi

=Ciq̇i + gi +
( n∑
j=1

aijΩj + biI
)−1

Mi

{
− ė2−αi

i

αiβi

+

n∑
j=1

aijΩj ˆ̈qj + biq̈0 − Baei sgn(si)− κisgn(si)
}
.

Cancelling out the terms Ciq̇i and gi yields

( n∑
j=1

aijΩj + biI
)
q̈i −

n∑
j=1

aijΩj ˆ̈qj − biq̈0

= − ė2−αi
i

αiβi
− Baei sgn(si)− κisgn(si). (22)

The left-hand side of (22) satisfies the following equation

( n∑
j=1

aijΩj + bi

)
q̈i −

n∑
j=1

aijΩj ˆ̈qj − biq̈0(t) = ëi + εaei .

(23)

From (22) and (23), we have

ëi + εaei = − ė2−αi
i

αiβi
− Baei sgn(si)− κisgn(si),

which can be further expressed as

ėi + αiβidiag[ėαi−1
i ]ëi

= −αiβidiag[ėαi−1
i ](Baei + εaei + κi)sgn(si).

The time derivative of the sliding surface in (20) is

ṡi = −αiβidiag[ėαi−1
i ](Baei + εaei + κi)sgn(si).

Constructing the Lyapunov function in a quadratic form
as Vi = 1

2sTi si, and its derivative is

V̇i = sTi ṡi = −αiβidiag[ėαi−1
i ](Baei + εaei + κi)‖si‖ ≤ 0.

Therefore, the proposed control system is stable and the
sliding surface can be reached, i.e., si = 0. Furthermore,
when the sliding surface is reached, we have

ėi = −βi−
1
αi e

− 1
αi

i .

To prove the motion tracking can be reached, we construct
another Lyapunov function as V ei = 1

2eTi ei, and its
derivative becomes

V̇ ei = eTi ėi = −βi−
1
αi ‖ei‖

1− 1
αi

1 .

As βi > 0 we have V̇ ei ≤ 0, which proves that the tracking
error can ultimately converge to zero.
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4. SIMULATION RESULTS

The numerical simulations were performed on four follower
manipulators (n = 4) represented by the mathematical
model of 6-DoF Phantom Omni haptic devices 1 (with 3
actuated joints, i.e., m = 3) with the following inertia,
Coriolis, and gravity matrices/vector.

M =

[
h11 0 0
0 h22 h23
0 h32 h33

]
, g =

[
0

θ5gc2 + θ6gc23
θ6gc23

]
,

C =

[−(a1q̇2 + a2q̇3) −a1q̇1 −a2q̇1
a1q̇1 −a3q̇3 −a3(q̇2 + q̇3)
a2q̇1 a3q̇2 0

]
,

where g = 9.8 N/kg, h11 = θ1 + θ2c
2
2 + θ3c

2
23 + 2θ4c2c23,

h22 = θ2 + θ3 + 2θ4c3, h23 = θ3 + θ4c3, h33 = θ3,
a1 = θ2c2s2 + θ3c23s23 + θ4c2∗23, a2 = θ3c23s23 + θ4c2s23,
a3 = θ4s3. s2 = sin(q2), c2 = cos(q2), s3 = sin(q3),
c3 = cos(q3), s23 = sin(q2 + q3), c23 = cos(q2 + q3), and
c2∗23 = cos(2q2+q3). The relevant parameters to calculate
M , C, and g are given in Table 1.

Table 1. Dynamic parameters of the Phantom
Omni device (Shen and Pan (2019))

Parameter Value Parameter Value

l1(m) 0 θ3(kg ·m2) 8.0× 10−3

l2(m) 0.135 θ4(kg ·m2) 0.4× 10−3

l3(m) 0.130 θ5(kg ·m) 9.1× 10−3

θ1(kg ·m2) 3.7× 10−3 θ6(kg ·m) 5.2× 10−3

θ2(kg ·m2) 7.0× 10−3

The initial joint positions of manipulators were selected
within the physical limit (unit: rad) as q1 ∈ [−π3 ,

π
3 ],

q2 ∈ [0, 1.79] and q3 ∈ [−2.45, −0.25]. The initial
joint velocities were zero for all manipulators. The leader
trajectory was assigned as q0 = [−π/5 sin(ft) 1.0 −
1.6]T rad with f = π/3. The same control gains were
chosen for all agents’ controllers as αi = 7/5 and βi = 1,
κi = 8. Tns = 0.1 s. ξ = [0.2 0.2 0.2]T . κ = 0, µ = 1×10−3,
and ς = 2. p = 1 as in (15). The adjacent matrix A and b
were chosen as A = 14×4 − I4×4 and b = [1 0 0 1], where
14×4 is a square matrix of all ones.

For the sake of compactness, we will look at the first joint
of agent 2 only as an example, unless otherwise specified.
In the covariance matrix estimation, since integral com-
putation of the probability density is approximated by a
point estimation where the IWD mode in (15) is used, the
estimating accuracy improves with the increasing sample
data. Fig. 1 presents the density distribution evolution
where four sets of shape εi and scalar parameters Φi as
of 5, 15, 25, and 35 noise samples (i.e (13) and (14)) are
executed over 500 sample data ranging from 0 to 5×10−3.
As expected, when the noise sample increases from 5 to 35,
the density distribution becomes narrower and the mode is
closer to the true value. Therefore, it is feasible to use the
point estimation to approximate the noise variance. Fig.
2 illustrates an example of a joint that experiences small
noises with R2 = diag([0.01 0.01 0.01]) during t = 1−4 s
and it increases to R2 = diag([0.1 0.1 0.1]) from t = 4 s
onwards. Fig. 2(a) shows that the noise variance can be
estimated quickly and accurately. Fig. 2(b) illustrates good

1 https://www.3dsystems.com

0 1 2 3 4 5

10-3

0

5000

10000
sample=5
sample=15
sample=25
sample=35

Fig. 1. The evolution of the density distribution and mode
over the noise sample of 5, 15, 25, 35.

0 5 10

-0.5
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0.5

1

1.5

(a)
Reference
Measurement
Noise variance

3.5 4 4.5 5

0.4

0.6

0.8
(b)

Fig. 2. (a) The measurement noise variance estimation;
(b) (Zoomed-in) The estimation adaptability to a
suddenly increased noise level at t = 4 s.

adaptability of the variance estimation approach towards
the sudden change of noise levels.

With the estimated noise variance, the noise-level based
neighbor selection policy was tested and the results are
shown as follows. Joints of the follower manipulators
were assumed to experience different levels of noise. The
assigned noise covariances for the four manipulators are
stacked into R = [r1 r2 r3 r4], where ri = [rj1 rj2 rj3]T

(i = 1, 2, 3, 4) includes the variance for the three joints.
Then, the noise covariances (only consider measurement
noise) were assigned piecewise as

t = 0− 6 s:

R =

[
0.01 0.01 0.01 0.03
0.01 0.01 0.08 0.03
0.01 0.01 0.08 0.03

]
;

t = 6− 8 s:

R =

[
0.01 0.01 1.00 0.03
0.3 0.01 0.08 0.03
0.01 0.01 0.08 0.03

]
;

t = 8− 15 s:

R =

[
0.3 0.01 0.01 0.03
0.3 0.01 0.08 0.03
0.01 0.01 0.08 0.03

]
.

According to (16), the selection index ωi in comparison
with the threshold ξi determines if a connected agent could
be selected as a trustworthy neighbor for the subsequent
control design. The selection index variations in the control
of joint 1 and joint 2 of agent 2 are illustrated in Fig. 3. For
example, the selection indexes for joint 1 of the agent 3 and
agent 1 are over the threshold after t = 6 s and t = 8 s
respectively, and thus they are no longer considered as
neighbors for the control of other agents’ respective joints.
A comparison of joint position tracking with and without
the neighbor selection is demonstrated in Fig. 4, where the
tracking error presents a significant fluctuation without
selecting proper neighbor candidates in the control design.
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Fig. 3. The change of neighbor selection indexes in com-
parison with the threshold for (a) joint 1 and (b) joint
2 of agent 2.
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Fig. 4. Comparison of tracking errors of the control design
with neighbor selection and without neighbor selec-
tion for (a) joint 1 and (b) joint 2 of agent 2.

Fig. 5. Joint position tracking between the leader and the
follower manipulators.

For example, the tracking error jumps up to 0.045 rad
for joint 1 and −0.104 rad for joint 2 as the noise level
increases. In contrast, the tracking error experiences less
influences from the propagated noises and remain within
a small error bound when using the controller with the
neighbor selection approach. Fig. 5 presents good tracking
performance using the NTSM method.

5. CONCLUSIONS

This paper has presented a novel online neighbor selection
policy for networked nonlinear multi-manipulator systems
that are subject to different noise levels. The quality of the
neighbor information is recursively evaluated online via a
nonlinear CD-UKF incorporating a noise covariance esti-
mation, and then the neighbor signals are actively selected
for the robust NTSM control. The proposed noise-level-
based neighbor selection approach has been successfully

verified by numerical simulations which showed improve-
ment of the overall performance.
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