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Abstract: Multi-stage NMPC with model-error model (MS-MEM) handles structural plant-
model mismatch present in the nominal model of the plant in a non-conservative fashion.
A model-error model (MEM) that consists of a stable linear time-invariant dynamics and a
static time-variant nonlinear mapping is built using the past data such that it captures the
unmodeled dynamics of the plant. The scenario tree is built for the nominal and for the extreme
realizations of the plant obtained using the nominal model and the model-error model, and a
multi-stage decision problem is formulated. In this paper, we propose an efficient strategy to
update the model-error model present in the MS-MEM approach if new measurements invalidate
the model-error model. The advantages of the proposed scheme over the previous approach
where only the gain of the linear model is updated are demonstrated for a continuous stirred
tank reactor (CSTR) benchmark example.
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1. INTRODUCTION

Model predictive control (MPC) is broadly used in the pro-
cess industries because of its ability to handle MIMO sys-
tems and constraints. The performance of such controllers
may deteriorate and constraint violations may occur in the
presence of plant-model mismatch which can be avoided
by adopting robust MPC strategies. The most prominent
ones are the min-max MPC (Campo and Morari, 1987),
the tube-based MPC (Mayne et al., 2005), and the multi-
stage MPC (Lucia et al., 2012, 2013).

Min-max MPC solves the MPC optimization problem for
the worst-case realization of the uncertainty (Campo and
Morari, 1987; Scokaert and Mayne, 1998). Tube-based
MPC uses two controllers, a primary controller and an
ancillary controller (Mayne et al., 2005). The primary
controller computes an optimal control trajectory using
the nominal model of the plant and the ancillary controller
tracks it. Multi-stage MPC models a decision problem
under uncertainty (which can be unknown disturbance
or parametric uncertainty) by a tree of discrete scenar-
ios (Lucia et al., 2013). Multi-stage MPC explicitly takes
into account the presence of future feedback information
in the computation of its control moves and therefore, it
is less conservative than other robust MPC approaches.
Several variants of the multi-stage NMPC exist in litera-
ture (Thangavel et al., 2018a,b, 2020). However, dealing
with the presence of structural plant-model mismatch still
remains an open area of research (Mayne, 2014).

Falugi and Mayne (2014) extended the tube-based NMPC
method to handle structural plant-model mismatch. The

unstructured uncertainty is modeled as an additive dis-
turbance by imposing additional hard constraints on the
plant output. Subramanian et al. (2015) modeled the
presence of structural plant-model mismatch as a time-
varying additive bounded disturbance and handled it in
a multi-stage NMPC framework. This, however, led to
a significant loss in performance compared to the case
without structural uncertainty. (Thangavel et al., 2018c)
considered an additive model-error model (MEM) which
consists of a linear model followed by an unknown non-
linear static operator with bounded gain to capture the
unmodeled dynamics of the plant. The key idea here is
that the model error is different for different frequencies
and not the same upper bound for the induced norm of the
MEM is assumed at all frequencies, which strongly reduces
the conservativeness of the MEM. The MEM is built using
the data collected from the previous plant operations and
the scenario tree of multistage NMPC is built using the
combined nominal model and the model-error model. This
results in a significant improvement in the performance
when compared to the case where the structural plant-
model mismatch is modeled as an additive disturbance
with bounded variation (Thangavel et al., 2018c).

The robustness of multi-stage NMPC with model-error
model (MS-MEM) depends on the accuracy of the model-
error model that is considered. The MEM is valid only for
the data that was used to build it. In order to take into
account that the structural uncertainty may be larger than
observed in the past, a tuning parameter was introduced in
MS-MEM approach to over-approximate the uncertainty
region and in addition, the validity of the model-error
model is checked whenever a new measurement informa-
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tion from the plant becomes available (Poolla et al., 1994).
If the MEM is invalidated by the observed measurement,
the gain of the linear model that is present in the MEM
is updated such that the updated MEM describes all the
observed measurements. However, this is done uniformly
for all frequencies and therefore over-approximates the
model uncertainty and results in a performance loss. The
performance can be improved by recomputing the model-
error model using all the available measurements (both
online data - from the current plant operation and offline
data - from previous plant runs) whenever the model-
error model is invalidated. However, this will result in an
optimization problem at each MPC iteration which may
not be feasible to solve in real-time.

In this paper, we propose to solve a simplified optimiza-
tion problem to adapt the MEM which approximates the
information provided by the offline data and uses only the
online data to build the MEM. The proposed approach
guarantees that the uncertainty region which is described
by the updated model-error model contains the uncer-
tainty region described by the model-error model built
using the offline data.

2. MODEL-ERROR MODEL (MEM)

The nonlinear dynamics of the plant is given by

zk+1 = h(zk,uk), (1)

where h : Rnz × Rnu → Rnz is an unknown smooth
nonlinear function, zk ∈ Rnz and uk ∈ Rnu represent
the true plant state and control input, nz and nu give the
number of plant states and control inputs. The nominal
model of the plant is given by

xk+1 = f(xk,uk), (2)

where f : Rnx ×Rnu → Rnx is a known smooth nonlinear
function, xk ∈ Rnx represents the state of the model
equation and nx is the number of modeled states. We
assume that only the model states are measured and no
further information from the plant is available (i.e. about
the hidden states or dynamics). In this paper, we refer
to all the data stored during the past plant operations as
offline data and the data collected during the current plant
run as online data.

The error between the true dynamics of the plant and the
nominal model reinitialized at the plant measurement is
given by

ek+1 = P(h(zk,uk))− f(P(zk),uk), (3)

where P : Rnz → Rnx is a projection operator which
projects the plant states onto the model states and ek
represents the discrepancy between the nominal model
predictions and the projected plant measurements. An un-
certainty region which encloses the unmodeled dynamics
of the plant can be obtained using a linear stable dynamic
model and an unknown (possible nonlinear and time vary-
ing) static mapping (∆k) with bounded gain (Poolla et al.,
1994; Ljung, 2001) as shown in Fig. 1. The chosen model-
error model (MEM) structure can be written as

êk+1 = Aeêk +Beuk, (4a)

∆k+1(êk+1) :=
[
δ1
k+1(êk+1,[1]), · · · , δnx

k+1(êk+1,[nx])
]T
, (4b)∥∥δsk+1

∥∥
i∞ ≤ 1, ∀s ∈ I1 := {1, · · · , nx}, (4c)

ek+1 = ∆k+1(êk+1), (4d)

xk+1 = f(xk,uk)

êk+1 = Aeêk + Beuk ∆k+1

êk+1

e
k
+

1

xk+1

xk = P(zk)

P(zk+1)

uk

Model-error Model

1
Fig. 1. Model-error model (MEM) structure.

where Ae ∈ Rnx×nx ,Be ∈ Rnx×nu describe the dynamics
of the state of the linear model (êk ∈ Rnx) in the model-
error model. êk,[s] represents the sth element of the vector
êk. ∆k(·) is defined by nx unknown nonlinear operators δsk,
where δsk represents an unknown static nonlinear mapping
corresponding to state s and ‖·‖i∞ denotes the induced
infinity norm of the function. The observed discrepancy
between the projected plant measurement and the pre-
dicted modeled state reinitialized at the projected plant
measurements is described by the model-error model (4).

The model-error model can be obtained from the past
observations (offline data) by solving an optimization
problem (5), if the plant has been sufficiently excited:

min
Ae

0 ,B
e
0 ,Dk+1

1

Nm

Nm−1∑
k=0

êTk+1Qêk+1, (5a)

subject to

êk+1 = Ae0 êk +Be0uk, ∀k ∈ I2, (5b)

ê0 = P(z0)− x0, |eig(Ae0)| ≤ 1, (5c)

Dk+1 = diag([d1
k+1, · · · , d

nx

k+1]), ∀k ∈ I2, (5d)

ek+1 = Dk+1êk+1, k ∈ I2, (5e)

− 1 ≤ dsk+1 ≤ 1, ∀s ∈ I1, k ∈ I2, (5f)

where I2 := {0, · · · , Nm − 1} denotes the indices of
the measurements that are used to build the model-
error model, Nm is the number of measurements and
the diagonal matrix Q ∈ Rnx×nx is a weighting matrix.
Ae0 ∈ Rnx×nx ,Be0 ∈ Rnx×nu describe the dynamics of
the linear model and Dk ∈ Rnx×nx denotes the gains
of the unknown nonlinear operator ∆k obtained using
the offline data. The objective function (5a) is chosen
to minimize the volume of the uncertainty region around
the nominal model. Constraint (5c) enforces stable linear
dynamics of the model-error model, where eig(·) gives the
eigenvalues of the matrix. Constraints (5e) and (5f) ensure
that the uncertainty region described by the model-error
model and the static gain-bounded unknown mapping s.t.
‖δsk‖i∞ ≤ 1 encloses the observed plant-model mismatch.
The constraints (5c) and (5e) result in a non-convex
optimization problem and can be replaced by a set of linear
constraints (6) if the input is one-sided (i.e. there is no
change in the sign of the control input), and the structure
of Ae is restricted to a diagonal matrix.

− êk+1 ≤ ek+1 ≤ êk+1, ∀k ∈ I2, (6a)

ê0 = P(z0)− x0, −1 ≤ Ae
0,[s,s] ≤ 1, ∀s ∈ I1. (6b)

where Ae
0,[s,s] represents sth row and column of the matrix

Ae0 . In the presence of a bounded measurement error,
the true projected plant state is not known but a range
which encloses it can be obtained using the observed plant
measurement corrupted by measurement noise (xmk ), and
the measurement error bound (σk). ek+1 is given as
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Fig. 2. Scenario tree of the multi-stage NMPC with MEM.

ek+1 = xmk+1 − f(x̃k,uk), (7a)

x̃k = arg max
xm

k
−σk≤x̃k≤xm

k
+σk

|xmk+1 − f(x̃k,uk)|, (7b)

and (6a) is replaced by

−êk+1 ≤ ek+1 ± σk+1 ≤ êk+1, ∀k ∈ I2, (8)

such that the nominal model along with the model-error
model encloses the projected true plant state. In the
absence of a sufficient level of excitation in the offline data,
probing inputs should be applied to plant to capture the
unmodeled dynamics of the plant. An overview on the
generation of excitation signals for system identification
is given in Schoukens et al. (2016).

3. MULTI-STAGE NMPC WITH MEM (MS-MEM)

Multi-stage NMPC describes the evolution of the state
trajectories for different realizations of the uncertainty
in the form of a tree of discrete scenarios as shown in
Fig. 2. Each branch in the scenario tree corresponds to
a particular realization of the uncertainty. Multi-stage
NMPC considers the presence of measurement information
in the future, i.e. the information that the system is
at a particular node of the tree and the future control
inputs are adapted accordingly. This results in a better
performance when compared to open-loop robust NMPC
approaches (Lucia et al., 2012, 2013).

Multi-stage NMPC with model-error model (MS-MEM)
considers the nominal model of the plant along with the
MEM at each node in the scenario tree to handle structural
plant-model mismatch. The model is given as[
xj
k+1

êjk+1

]
=

[
f(x

p(j)
k ,uj

k)
0nx

]
+

[
Dr(j)Ae

Ae

] [
x
p(j)
k

ê
p(j)
k

]
+

[
Dr(j)Be

Be

]
uj
k. (9)

The state prediction (xj
k+1

) at stage k + 1 and position j

in the scenario tree is given by the parent state (x
p(j)
k

),

control input (uj
k
), parent model-error model state (ê

p(j)
k

)

and the realization of the gain Dr(j) which is a diagonal
matrix of dimension nx. By the construction of the model-
error model, the extreme values of the diagonal elements
of Dr(j) are ±1 (i.e. the maximum absolute values of dsk
are 1). This is however valid only for the data that was
used to build the MEM. The possible variations in the

future model uncertainty (due to unaccounted data) as
well as the inaccuracies of the MEM can be counteracted
by introducing the tuning parameter Λ (called the robust
factor). The robust factor is a vector of dimension nx with
Λ[s] ≥ 1, where s denotes the index of the modeled state.
The robust factor is chosen based on the accuracy of the
model-error model. In the presence of a good MEM (which
can be obtained if sufficiently many plant measurements
in the optimal operating region of the plant are available),
Λ[s] is chosen as 1 and in the presence of a poor MEM,

Λ[s] is chosen larger than 1. The elements D
r(j)
[s,s] can take

values in {−Λ[s], 0,Λ[s]}. IfD
r(j)
[s,s] = 0, the nominal model is

considered in the predictions, if D
r(j)
[s,s] = −Λ[s] or Λ[s], the

nominal model along with the MEM is used to predict the
extreme realizations of the plant dynamics. This results
in 3nx branches that are considered at each node in the
scenario tree. This results in a rapid growth of the scenario
tree along the prediction horizon and can be controlled
by stopping the branching under the assumption that the
uncertainty remains constant after a certain stage known
as the robust horizon (Nr).

The optimization problem which is solved at each sampling
instance is given by

min
xj

k
,êj

k
,uj

k
∀(j,k)∈I3

N∑
i=1

ωiJi(X i,U i), (10a)

subject to:

(9), ∀ (j, k + 1) ∈ I3, (10b)

g(xj
k+1,u

j
k) ≤ 0, ∀ (j, k + 1) ∈ I3, (10c)

uj
k = ul

k if

[
x
p(j)
k

ê
p(j)
k

]
=

[
x
p(l)
k

ê
p(l)
k

]
, ∀ (j, k), (l, k) ∈ I3,(10d)

where I3 represents the set of indices (j, k) that occur in
the scenario tree, N represents the number of scenarios,
X i and U i represent the states and the control input that
belongs to the ith scenario in the tree and ωi denotes the
weight of the cost (Ji) associated with each scenario, with

Ji(X i,U i) =

Np−1∑
k=0

L(xj
k+1,u

j
k), ∀xj

k+1 ∈ X i,u
j
k ∈ U i, (11)

where L(xj
k+1,u

j
k) is the stage cost, Np represents the

length of the prediction horizon. The additional constraint
that has to be satisfied at each node in the scenario tree
is given by (10c). It enforces that the controller cannot
anticipate the future realization of the uncertainty while
computing its control moves (i.e. the control input for
the branches originating from the same node must be the
same, e.g. in Fig. 2, u1

0 = u2
0 = u3

0 ), this is enforced
by (10d).

3.1 Proposed model-error model update scheme

Whenever new measurement information from the plant
becomes available, the bound on the induced l∞ gain of
the unknown system can be computed from the sequence
of inputs and outputs as in (Ljung, 2001):

φsk =
[
êsk, · · · , êsk−m6

]
, µs

k = max
k

|esk|
‖φsk‖∞

, ∀s ∈ I1, (12a)

γsk =
√
mµs

k, ∀s ∈ I1, (12b)
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where m is the number of inputs (êsk) that influence the
output of the nonlinear operator (δsk). Since we consider a
static nonlinear operator, m is set to 1. If γsk is larger than
for some s ∈ I1, then the observed measurements cannot
be obtained using the nominal model and the MEM such
that ‖δsk‖i∞ ≤ 1. Hence, the MEM is invalidated (Poolla
et al., 1994). It was proposed in Thangavel et al. (2018c,
2019) to update the gain of the linear model (Be) present
in the MEM such that the updated MEM can describe
the observed discrepancy between the projected plant
measurements and the predicted model states. Adjusting
only the gain of the linear model in the MEM over-
approximates the uncertainty region described by the
MEM and results in a performance loss. This can be
avoided by updating the linear model (both Ae and Be)
present in the MEM using the online data. The two major
factors to be considered while building the new MEM using
the online data are:

(1) Existence of a sufficient level of excitation in the
inputs obtained from the online data is necessary to
recompute the model-error model;

(2) The information provided by the old MEM built using
the offline data should be taken into account.

The condition to check the presence of persistent excita-
tion signals of order n (number of unknown parameters to
be estimated) in the input (u[i]) is given by (Ljung, 1999) Ru[i]

(0) · · · Ru[i]
(n− 1)

...
. . .

...
Ru[i]

(n− 1) · · · Ru[i]
(0)

 > 0, (13)

where Ru[i]
(t) := 1

No−1

∑No−1
j=1 uj,[i]uj+t,[i] and No rep-

resents the number of measurements available from the
current plant run (online data). The condition (13) must
be satisfied to update the MEM using the online data.
In addition to this, the updated MEM should take into
account the information provided by the MEM built using
the offline data i.e. the uncertainty region described by
the MEM built using the offline data should be contained
within the uncertainty region described by the updated
MEM at all frequencies. This can be enforced using

|H0,[j,i](e
īωts)| ≤ |H̃[j,i](e

īωts)|, ∀ω ≤ ωn, i ∈ I4, j ∈ I1, (14)

where I4 = {1, · · ·nu}, ts is the plant sampling time and

ωn is the Nyquist frequency.H0(z) and H̃(z) represent the
transfer function of the linear model present in the MEM
obtained using the offline and online data and are given
by (zI−Ae0)−1Be0 and (zI− Ãe)−1B̃e. z is a delay block

and I is an identity matrix. If Ae0 and Ãe are restricted

to a diagonal matrix then H0,[j,i] and H̃[j,i] are given as

H0,[j,i] =
Be

0,[j,i]

z −Ae
0,[j,j]

, H̃[j,i] =
B̃e

[j,i]

z − Ãe
[j,j]

. (15)

Substituting |H0,[j,i]| and |H̃[j,i]| in (14), we get√
(Be

0,[j,i]
)2

(cos(ωts)−Ae
0,[j,j]

)2+sin(ωts)2 ≤
√

(B̃e
[j,i]

)2

(cos(ωts)−Ãe
[j,j]

)2+sin(ωts)2
. (16)

Taking squares on both sides, applying trigonometric
reductions and rearranging we get

(Be
0,[j,i])

2((Ãe
[j,j])

2 + 1)

−(B̃e
[j,i])

2((Ae
0,[j,j])

2 + 1)
≤

2(Ãe
[j,j](B

e
0,[j,i])

2−
Ae

0,[j,j](B̃
e
[j,i])

2)cos(ωts).
(17)

cos(ωts) can take values between ±1. The following con-
ditions ensures (14) is satisfied at all frequencies provided

Ae0 and Ãe are diagonal matrices:

(Be
0,[j,i])

2((Ãe
[j,j])

2 + 1)

−(B̃e
[j,i])

2((Ae
0,[j,j])

2 + 1)
≤
±2(Ãe

[j,j](B
e
0,[j,i])

2−
Ae

0,[j,j](B̃
e
[j,i])

2).
(18)

The formulation of the optimization problem that is solved
to update the MEM if the MEM obtained using the offline
data is invalidated is given as

min
Ã

e
No

, B̃ẽ
No

1− α
No

O1 +
α

No
O2 (19a)

subject to

ĕ0 = P(z0)− x0, ĕk+1 = Ae0 ĕk +Be0uk, ∀k ∈ I5, (19b)

êk+1 = ÃeNo
êk +BeNo

uk, ∀k ∈ I5, (19c)

ê0 = P(z0)− x0, −1 ≤ diag(AeNo
) ≤ 1, (19d)

− êk+1 ≤ ek+1 ± σk+1 ≤ êk+1, ∀k ∈ I5, (19e)

(18), ∀j ∈ I1, i ∈ I4, (19f)

where I5 := {0, · · · , No − 1}, and AeNo
∈ Rnx×nx ,BeNo

∈
Rnx×nu describe the dynamics of the linear model in
the MEM obtained using the online data. ĕk represents
the prediction of the linear model in the MEM that was
obtained using offline data. The objective function (19a) is
chosen to minimize the difference between the uncertainty
region described by the MEM built using the offline data
and the one built using the online data (given by O1), and
the uncertainty region around the nominal model of the
plant which encloses the observed online data (given by
O2), where O1 and O2 are defined as

O1 =
∑No−1

k=0 (êk+1 − ĕk+1)TQ(êk+1 − ĕk+1) (20)

O2 =
∑No−1

k=0 êTk+1Qêk+1 (21)

α is a tuning parameter and is chosen between 0 and 1.
If α is chosen close to 0 more emphasis is given to the
offline data and if it is chosen close to 1 more emphasis is
given to the online data. The constraints (19c)-(19e) are
similar to the constraints (5b) and (6). In the absence of
measurement noise, σk+1 is set to 0. The constraint (19f)
ensures that the updated MEM along with the nominal
model describes all the plant measurements recorded in
the offline data.

3.2 Algorithm

The algorithm for the implementation of the proposed
robust multi-stage NMPC with MEM is given below.

Step 1: Model-error model is obtained by solving (5)
using the offline data.

Step 2: Set Ae = Ae0 , B
e = Be0 in (10).

Step 3: Solve (10) and apply the first control input to
the plant.

Step 4: After a new measurement has been received,
compute γsk using (12) withAe = Ae0 ,B

e = Be0 .
Step 5: If (13) is not satisfied & γsk � 1 ∀s ∈ I1:

Adjust the gain of the linear model present
in MEM as in (Thangavel et al., 2018c). Set
Ae = Ae0 , B

e = BeNm
.

Else if (13) is satisfied & γsk � 1 ∀s ∈ I1:
Update the MEM by solving (19). Set Ae =

ÃeNo
, Be = B̃eNo

.
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Else: Continue
Step 6: If: End time is reached Stop

Else: Reinitialize the robust NMPC with the
plant measurements. Go to Step 3.

4. CASE STUDY

We consider the nonlinear continuous stirred tank reactor
(CSTR) benchmark problem from Klatt and Engell (1998)
to show the advantages of multi-stage NMPC with model-
error model using the proposed model-error model update
strategy (abbreviated as MS-MEM-MU) over the previous
approach using only gain updates presented in Thangavel
et al. (2018c) (is abbreviated as MS-MEM-GU). The true
plant model along with the nominal model of the plant
can be obtained from Thangavel et al. (2018c).

The sampling time was chosen as 0.005 h (18 s). The non-
linear dynamics were discretized using orthogonal colloca-
tion on finite elements and the optimization problems were
solved using IPOPT (Wächter and Biegler, 2006). The
first and second order derivative information to IPOPT
were provided by CasADi (Andersson et al., 2019). The
objective is to maximize the number of moles of product B
produced per hour (ṅB = V̇incB) while respecting the con-
straint on the reactor temperature (TR ≤ 142). This can be
achieved by increasing the concentration of product B and
the feed rate F . The length of the prediction horizon and of
the robust horizon of the NMPC are chosen as Np = 5 and
Nr = 1. The recursive feasibility, stability and constraint
satisfaction of the MS-MEM NMPC were verified using
simulation studies. The bound (σ) on the measurement
noise is given by [0.005, 0.005, 0.05]. The data obtained
when the plant is controlled using a standard NMPC with
nominal model for 0.25 h (15 minutes) is considered as
the offline data. The initial model-error model used in
multi-stage NMPC with MEM is built by solving the
optimization problem (5) using the offline data. The order
of the excitation signal n is 2, since the structure of Ae

is restricted to a diagonal matrix. The tuning parameter
(Λ) is chosen as [2, 2, 2]T . The constraint on the reactor
temperature is implemented as a soft constraint to prevent
the NMPC optimization problem from becoming infeasible
in case of constraint violations.

Fig. 3 shows the results that were obtained using different
NMPC strategies in the presence of measurement noise.
Standard NMPC with the nominal model violates the
constraint because the nominal model does not include
the exothermic reaction B → C that is taking place inside
the reactor. The MS-MEM-GU and MS-MEM-MU NMPC
approaches consider the influence of the unmodelled dy-
namics of the plant using a model-error model and are
able to satisfy the constraints and to maximize the number
of moles of product B produced. Fig. 4 shows the gain
estimate of the unknown nonlinear static map of the MEM
(γsk) obtained from the plant measurements using (12),
where the MEM is updated at each NMPC iteration if the
observed measurements invalidate the MEM built using
the offline data. It can be seen from figure, that γ3 is
greater than 1 at the first-time step. The MEM is in-
validated at the first-time step and has to be updated.
The condition (13) is not satisfied only at the first-time
step hence only the gain of the linear model present in the

Fig. 3. Comparison of the results obtained using different
NMPC strategies. SN - Standard NMPC.

Table 1. Consolidated results.

NMPC Strategies
∑

nB [up to 0.25 h] CPU
No noise Noise [s]

Standard NMPC (True Model) 13.44 13.44 0.12
Standard NMPC (Nominal Model) CV CV 0.13
MS-MEM-GU (Thangavel et al., 2018c) 11.79 11.28 1.95
MS-MEM-MU (Proposed) 12.68 12.37 2.02

CV - Constraint Violation

MEM is updated after the first NMPC iteration and the
MEM is obtained by solving (19) for all the subsequent
NMPC iterations when using the MS-MEM-MU NMPC
approach. Only the gain of the linear model present in the
MEM is updated at all NMPC iterations when using the
MS-MEM-GU approach. The estimate (γsk) of the gain of
the unknown mapping obtained using the updated model-
error model is always less than the value of the chosen
robust factor Λ as shown in Fig. 4. Fig. 5 shows the
Bode magnitude plot of the linear model present in the
updated MEM obtained at time 0.25 h when using the
MS-MEM-GU and MS-MEM-MU NMPC approaches. The
magnitude plot of the linear model corresponding to the
state cA is not plotted in the figure because γ1 is always
less than 1 as shown in Fig. 4, hence H0,[1,1] it is not
updated. The model-error model obtained by solving (19)
tightly approximates the uncertainty region around the
nominal model based on the observed measurements at all
frequencies when compared to updating only the gain of
the linear model present in the MEM as shown in Fig. 5.
This results in more moles of product B produced when
using the proposed MS-MEM-MU NMPC approach when
compared to the MS-MEM-GU NMPC approach.

Table 1 shows the number of moles of product B produced
until 0.25 h using the different NMPC strategies along
with their corresponding computation times, where CV
denotes constraint violation. Standard NMPC with the
nominal model produces more moles of product B when
compared to the other NMPC strategies but it violates
the constraints. There is a 10% increase in the number of
moles of product B produced when using the MS-MEM-
MU NMPC approach over the MS-MEM-GU NMPC ap-
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Fig. 4. Gain estimate (γsk) of the unknown mapping (δsk).
- Robust factor (Λ). - Upper bound on the gain

of the unknown mapping of the MEM as in (4).

Fig. 5. Bode magnitude plots of the linear models present
in the updated MEM obtained at time 0.25 h.

proach. MS-MEM NMPC approaches perform better in
the absence of measurement error because a zero value
of σ considered in the optimization problem (5) decreases
the uncertainty region associated with the nominal model
due to the presence of accurate plant measurements. The
time taken to solve the proposed MS-MEM-MU NMPC
approach is slightly higher than the MS-MEM-GU NMPC
approach, because the MEM is obtained by solving an
optimization problem if the MEM is invalidated at an
NMPC iteration in the former approach whereas the gain
of the linear model present in the MEM can be updated
using matrix multiplication in MS-MEM-MU approach
which is computationally less expensive.

5. CONCLUSION

A new scheme to update the model-error model used in
multi-stage NMPC with model-error model if the observed
plant measurement invalidates the MEM is presented.
The proposed scheme tightly approximates the uncertainty
region around the nominal model of the plant at all
frequencies and results in a better performance when
compared to the previous approach (Thangavel et al.,
2018c). Our future work will focus on extending the
proposed approach to work in a moving window fashion
to tackle the increase of the computational complexity of
the proposed model-error model update approach with the
increase in the number of measurements.
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