

Fast Trajectory Planning in Cartesian rather than Frenet Frame:

A Precise Solution for Autonomous Driving in Complex Urban Scenarios

Bai Li*, Youmin Zhang**

* College of Mechanical and Vehicle Engineering, Hunan University,

Changsha, China (e-mail: libai@hnu.edu.cn, libaioutstanding@163.com).

** Department of Mechanical, Industrial and Aerospace Engineering,

Concordia University, Montreal, Canada (e-mail: ymzhang@encs.concordia.ca).

Abstract: On-road trajectory planning is a direct reflection of an autonomous vehicle’s intelligence level

when traveling on an urban road. The prevalent on-road trajectory planners include the spline-based,

sample-and-search-based, and optimal-control-based methods. Path-velocity decomposition and Frenet

frame have been widely adopted in the aforementioned methods, which, nonetheless, largely degrade the

trajectory planning quality when the road curvature is large and/or the scenario is complex. This paper

aims to plan precise and high-quality on-road trajectories, thus we choose to describe the concerned

scheme as an optimal control problem, wherein the urban road scenario is described completely in the

Cartesian frame rather than in the Frenet frame. The formulated optimal control problem should be

numerically solved in real-time. To that end, a light-weighted iterative computation architecture is built.

In each iteration, a tunnel construction strategy tractablely models the collision-avoidance constraints,

and a constraint softening strategy helps to find an intermediate trajectory for constructing the tunnels in

the next iteration. Efficacy of the proposed on-road trajectory planner is validated by simulations on a

high-curvature urban road wherein the ego vehicle is surrounded by multiple social vehicles at various

speeds.

Keywords: Autonomous driving, trajectory planning, computational optimal control, nonlinear program

(NLP), Frenet frame



1. INTRODUCTION

Autonomous driving on a complex urban road requires the

cooperation of multiple modules, including localization,

perception, prediction, planning, and control (Levinson et al.,

2011). Planning techniques are important as they are a direct

reflection of the intelligence level of an autonomous vehicle

(Li et al., 2019a). The existing planning methods are typically

developed for parking in a tiny parking lot (Li and Shao,

2015) and cruising on a structured urban road (Claussmann et

al., 2020). Commonly a cruising-oriented planner cannot deal

with parking cases while a parking-oriented planner may not

bring out the best in a cursing task either. This paper is

focused on the local trajectory planning on an urban road.

1.1 Related Studies

The prevailing on-road trajectory planners, in the early years,

are the spline-based methods, which use clothoid curves or

polynomials to present a path/trajectory. If a spline-based

method only plans a path, then extra efforts are needed to

attach a time course along the derived path to form a

trajectory. Commonly a spline-based method evenly samples

some offset candidates ahead to produce spline candidates,

then evaluates their performances w.r.t. underlying collision

risks, vehicle kinematics violations, passenger comfort, and

travel efficiency (Hu et al., 2018). Since a spline-based

method usually samples multiple splines for selection, it is

also referred to as a lattice planner in the literature. However,

a spline-based planner is inefficacious when the on-road

situation becomes complex, because there may not be even

one feasible solution among the multiple sampled splines. As

a remedy, sample-and-search-based planners are proposed,

which discretize the spatial or spatial-temporal space into a

multi-layer grid map, and derive the best one via graph

searches (McNaughton et al., 2011; Ajanovic et al., 2018).

Sample-and-search-based planners usually ensure resolution

completeness or even resolution optimality, but the derived

coarse path/trajectory is not smooth, which would render

difficulties in the subsequent control module. A virtual

controller is deployed to simulate the tracking process of the

coarse path/trajectory, and the tracking result is forwarded to

the control module (Ma et al., 2015). Alternatively, one may

adopt a computational optimal control approach, which is

warm-started by the coarse path/trajectory (Meng et al., 2019;

Lim et al., 2018; Ziegler et al., 2014; Ding et al., 2019; Chen

et al., 2019). Compared with the virtual-controller-based

methods, the optimal-control-based methods describe the

trajectory smoothing (also known as trajectory optimization)

scheme as a continuous-time optimization, which means

there are degrees of freedom to construct a smooth trajectory.

Assuming that a coarse trajectory is already derived by a

sample-and-search-based planner, this work particularly

focuses on the optimal-control-based trajectory optimization.

The predominant optimal-control-based trajectory optimizers

are typically subject to two limitations: i) they describe the

driving process in the Frenet frame rather than the Cartesian

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

Copyright lies with the authors 17306

frame, and ii) they decouple trajectory planning into path +

velocity planning or lateral + longitudinal planning. More

explicitly, the usage of Frenet frame uniformly eases the

modeling difficulties of a road’s trend (Werling et al., 2010),

but the mapping between Frenet and Cartesian frames is

theoretically not stable (Wang et al., 2002), which leads to

impractical results when the road curvature is large (Fig. 1).

Even when the road curvature is small, the real-world

curvature is seldom reflected in a Frenet-frame-based

trajectory planning method (Barfoot and Clark, 2004),

yielding that the derived trajectory might not be able to be

efficaciously tracked by the controller. The second limitation

involves dividing a problem into multiple highly dependent

parts but conquering them independently. Such a decoupling

operation harms the algorithm optimality or even

completeness when the scenario is complex (Miller et al.,

2018).

Planned trajectory in Frenet frame

Reference line

Legend

Fig. 1. An unrealistic trajectory presented in the Frenet frame

when road curvature is large.

1.2 Contributions

This work aims to provide accurate trajectory planning

solutions to generic on-road autonomous driving cases. To

that end, we describe the on-road trajectory planning scheme

as an optimal control problem, the solution to which is a

trajectory rather than a path or other partial elements of a

trajectory. Also, the on-road driving scenario is described in

the Cartesian rather than Frenet frame, thereby making the

derived trajectories easy to track. Nonetheless, formulating an

on-road trajectory planning scheme as a standard optimal

control problem in the Cartesian frame and solving it

numerically like off-road parking maneuver planning would

take long processing time, which is not acceptable in an on-

road driving task.

This paper proposes a fast solution to the aforementioned

optimal control problem. Concretely, a tunnel-based strategy

is adopted to model the collision-avoidance constraints in a

tractable way, and a constraint softening strategy is proposed

to facilitate the numerical optimization process. A light-

weighted iterative computation framework is built, wherein

the tunnel construction and numerical optimization are

alternatively executed. Since the two steps in each iteration

are simple, the iteration process usually converges quickly.

1.3 Organization

In the rest of this paper, Section 2 formulates the nominal

optimal control problem for our concerned on-road trajectory

planning scheme. Section 3 introduces our proposed method,

which aims to provide accurate, fast, and optimal solutions.

Simulation setups, results, and discussions are provided in

Section 4, and finally, Section 5 concludes the paper.

2. NOMINAL PROBLEM FORMULATION

In this section, the on-road trajectory planning scheme is

nominally formulated as an optimal control problem, which

consists of a cost function and many constraints:

 

 

   

 

 

box box

collision

init init

f f

minimize (), ()

subject to

(), () 0,

() 0, () 0,

() 0,

(0) , (0) ,

(t), (t) 0.

t t

f t t

h t h t

h t

g





 



 



x u

x u

x u

x

x x u u

x u

 (1)

Herein,
f[0, t]t denotes the time index, and the terminal

moment
ft is fixed.  () (), (), (), (), ()t x t y t t v t t x contains

the state profiles,  () (), ()t a t tu contains the control

profiles, and the concrete definitions follow (Li and Shao,

2015).  (), () 0f t t x u represents the vehicle kinematic

principles described by differential equations.  box 0h 

represents the inequality box constraints, and  collision 0h 

denotes the algebraic inequality collision-avoidance

constraints.  f f(t), (t) 0g x u stands for the implicit

boundary conditions at
ftt  . The cost function  is defined

as

 ft 2 2

1 ref 2 ref
0

() () d ,





        w x x w u u (2)

wherein
1 2,w w are weighting vectors,

refx and
refu denote

the nominal driving states and operations, respectively. Eq. (2)

reflects the smoothness of the state/control profiles.

Sampled grids representing
road barriers

Fig. 2. A typical on-road driving scenario.

The primary difficulties in (1) lie in the collision-avoidance

constraints described in the Cartesian frame. As depicted in

Fig. 2, the ego vehicle needs to avoid collisions with the

static/moving obstacles as well as the road barriers. Since the

road barriers may be in irregular shapes, they need to be

sampled as grids and regarded as static obstacles in
collisionh

0 , which makes (1) intractable.

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

17307

3. FAST NUMERICAL SOLUTION

This section introduces a fast solution method that solves (1)

numerically. A fundamental method is presented first, which

is further improved by developing an iterative computation

framework.

3.1 Basic Method

Recall that the primary difficulties in (1) are caused by the

intractable collision-avoidance constraints. Given that the ego

vehicle does not have chances to collide with all the

static/moving obstacles at every moment, a tunnel-based

strategy is adopted to convert the complicated collision-

avoidance constraints into a fixed scale of within-tunnel

constraints.

A spatial-temporal tunnel is constructed that separates the

ego vehicle from the obstacles in the scenario. In building a

tunnel, the first step is to plan a coarse trajectory, which

determines the homotopic route on the road. The coarse

trajectory can be derived via a sample-and-search-based

planner such as (Xu et al., 2014). In the second step, we use

two discs to even cover the rectangular body of the ego

vehicle, and denote the disc centers as
f f f(,)P x y and

r r r(,)P x y (Li et al., 2019b):

f W F R

f W F R

r W F R

r W F R

1
() () (3L 3L L) cos (),

4

1
() () (3L 3L L) sin (),

4

1
() () (L L 3L) cos (),

4

1
() () (L L 3L) sin ().

4

x t x t t

y t y t t

x t x t t

y t y t t









    

    

    

    

 (3a)

The radius RC of either disc is determined according to

2 2R W F

C B

L L L1
R () (L) ,

2 2

 
  (3b)

where
W F RL , L , L , and

BL represent the vehicle wheelbase,

front overhang length, rear overhang length, and width,

respectively. Suppose the derived coarse trajectory records

the movement of rear-axle center point  (), ()x t y t , in the

third step, we need to specify the movements of points
fP

and
rP via (3). For convenience, the trajectory for

fP is

denoted as
fTraj and the trajectory for

rP as
r .Traj

Thereafter, two tunnels are paved along
fTraj and

rTraj ,

respectively. Suppose that the tunnel for
fP consists of Nbox

local boxes. In specifying the kth box for
fP , we capture the

space occupied by the static/moving obstacles at

f boxNt /kt k  to form an instantaneous map, and then

spirally expand from the point  f f. (), . ()k kTraj x t Traj y t until

collisions with the instantaneous map occur (Fig. 3).

Applying such procedures to all
box (1,..., N)kt k  renders

the tunnel for
fP . The tunnel for

rP can be derived similarly.

Finally, the original collision-avoidance constraints are

converted to the within-tunnel constraints, which require that

either disc center stays in its tunnel at sampled instances, e.g.,

 

box

b

f f r r

ox

f

,

(), (), (), () ,

t
, 1,..

N
, .N.

k k k

k k k k k

k

x t y t x t y t

t k k

 



  

lb dc ub

dc (4)

By replacing  collision () 0h t x with (3) and (4) in (1), a

tunnel-based optimal control problem (denoted as P0) is

formulated:

 

 

   

 

box box

init init

f f

minimize (), ()

subject to

(), () 0,

() 0, () 0,

Eqs. (3), (4),

(0) , (0) ,

(t), (t) 0.

t t

f t t

h t h t

g





 

 



x u

x u

x u

x x u u

x u

 (5)

In solving P0 numerically, P0 is first discretized into a

nonlinear program (NLP) problem and then optimized by a

gradient-based NLP-solver such as the interior-point method

(IPM). The technical details of the tunnel-based method are

elaborated in (Li et al., 2020).

Pf(tk)

1

2

3

4

5

6

7

8
10

11

9 invalid

12
13

14

1615 17 18

Pf(tk)

RCRC

RC
RC

(a) (b)

(c) (d)

19

RC

RC

RC

RC

Pf(tk)

Pf(tk)

1

2

3

4

5

6

7

8
10

11

13 1615 17 18

in
v

a
li

d

invalid

in
v

a
lid

9 invalid

12

14

19

in
v

a
li

d

invalid

in
v

a
lid

Fig. 3. Procedures to specify a local box at tk for Pf. Note that

the dashed box in (d) is the desired local box.

3.2 Iterative Computation Framework

The preceding subsection has presented how to formulate P0,

the numerical solution to which is the desired on-road

trajectory. Instead of solving P0 directly, this subsection

introduces an iterative computation strategy that runs faster.

Our proposal is inspired by the fact that the only nonlinear

constraints in P0 are i) the kinematic constraints 0f  , and ii)

the disc center definitions (3a). If they are linearized or

softened as part of the cost function, P0 would become a

linearly constrained nonlinear optimization problem, which is

easier to solve.

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

17308

This work chooses to soften the aforementioned nonlinear

constraints: i) 0f  is softened as a polynomial  , and ii)

(3a) is softened as a polynomial  . Concretely,  is defined

as

 
f 2

0
x(), u() d .

t

f


  


   (6a)

Similarly,  measures the violation degree of each equality

in (3a), e.g., the first equality of (3a) is softened as

f

2

f W F R
0

1
() () (3L 3L L) cos () d .

4

t

x x


    


      (6b)

With  and  at hand, we replace (2) with (),

thereby formulating a new optimal control problem P1:

   

 

box box

init init

f f

minimize ,

subject to

() 0, () 0,

Eq. (4),

(0) , (0) ,

(t), (t) 0.

h t h t

g

 

 

 



x u

x x u u

x u

 (7)

Since (7) only contains inequality box constraints, it never

suffers from the risk of being infeasible. Solving (7)

numerically is easy and fast, but if the cost function value is

larger than 0, then the derived trajectory violates 0f  and/

or (3a). The violations occur if the constructed tunnels are not

appropriate. To address this issue, it is natural to consider

updating the tunnels according to the optimized trajectory,

thereby updating P1. This process continues until the

optimized cost function value becomes 0, which means a

feasible solution (denoted as χ) to the original problem P0 is

derived. Generally, starting a constrained optimization

process with a feasible solution is easier than with an

infeasible one, thus P0 with the latest tunnels is numerically

solved, which is warm-started by χ . Through this, an optimal

trajectory is obtained finally.

As a summary of this section, the pseudo-codes of our

proposed on-road trajectory planner are presented as follows.

Algorithm 1. On-road Trajectory Planner in Cartesian Frame

Input: Road scenario setups, initial configuration, and parametric settings;

Output: A local on-road trajectory for the ego vehicle;

1. Generate a coarse trajectory
coarseχ via a search-and-sample method;

2. Construct tunnel-based constraints according to
coarseχ ;

3. Form optimal control problem P1;

4. Set
coarseχ as the initial guess, solve P1 numerically, denote the derived

optimum as
preciseχ , and record () ;

5. Initialize 0iter  ;

6. while 2(10),  do

7. 1iter iter  ;

8. if
max(Iter)iter  , then

9. return with a failure;

10. end if

11. Update tunnel-based constraints according to
preciseχ ;

12. Update optimal control problem P1;

13. Set
preciseχ as the initial guess, solve P1 numerically, use the derived

optimum to update
preciseχ , and update () ;

14. end while

15. Update tunnel-based constraints according to
preciseχ ;

16. Update optimal control problem P0 according to the latest tunnels;

17. Set
preciseχ as the initial guess, solve P0 numerically;

18. Output the derived optimal trajectory;

19. return with success.

4. SIMULATIONS

Simulations were performed in MATLAB 2014b and

executed on an i5-8250U CPU with 8 GB RAM that runs at

1.60 × 2 GHz. Basic parametric settings are listed in Table 1.

An urban road segment is selected as the driving scenario,

which contains a right-turn and a U-turn (Fig. 4). The driving

status of each surrounding social vehicle is randomly

determined. More details about the parametric settings and

scenario setups are provided in the source codes at

https://github.com/libai1943/OnRoadPlanner_IFAC2020.

Fig. 4. On-road driving scenario in our simulations.

Table 1. Basic parametric settings.

Parameter(s) Description Setting(s)

W R

F B

L , L ,

L , L

Geometric size of ego

vehicle

2.80 m, 0.929 m

0.96 m, 1.942 m

ft Specified terminal moment 8.0 s

max max

max max

a , v ,

,  

Bounds on ()a t , ()v t ,

()t , and ()t

5 m/s2, 25 m/s

0.7 rad, 1.0 rad/s

initx Initial state of ego vehicle [0, 0.78,0,0.18,20]

1 2,w w Weighting vectors in (2) T T[0,0,0,0] , [1,10]

Nbox
Number of local boxes in

constructing each tunnel
160

maxIter
Maximum allowable

iterations in Algorithm 1
6

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

17309

Fig. 5. Intermediate and final results derived by Algorithm 1

when there are three static obstacles in the environment.

Let us begin with a simple case with three static obstacles.

Fig. 5a shows the derived coarse trajectory, Fig. 5b plots the

tunnels constructed along that coarse trajectory, Fig. 5c

depicts the intermediate solutions to P1 in the iterations, Fig.

5d shows the final on-road trajectory, and Fig. 5e plots the

footprints. The coarse trajectory in Fig. 5a is planned in the

Frenet frame, thus it does not care about the curvature

limitation issue when the ego vehicle is taking the right turn

or U-turn. By contrast, the optimized trajectory depicted in

Fig. 5d reflects the vehicle kinematics better. The footprints

plotted in Fig. 5e indicate that the adopted tunnel-based

formulation is efficacious to avoid collisions. The

performance of Algorithm 1 to handle moving obstacles is

demonstrated in Fig. 6.

Fig. 6. On-road trajectory derived by Algorithm 1 when there

are three moving obstacles in the environment.

To further investigate the benefit of building the iterative

computation architecture as in Algorithm 1, we define a

comparative algorithm (denoted as Algorithm 2) and make

comparisons w.r.t. computational time and success rate in

500 randomly generated simulation cases wherein the

obstacles are moving.

Algorithm 2. A comparative planner that directly solves P0

Input: Road scenario setups, initial configuration, and parametric settings;

Output: A local on-road trajectory for the ego vehicle;

1. Generate a coarse trajectory
coarseχ via a search-and-sample method;

2. Construct tunnel-based constraints according to
coarseχ ;

3. Form optimal control problem P0;

4. Set
coarseχ as the initial guess, solve P0 numerically;

5. if the numerical optimization fails, then

6. return with a failure;

7. end

8. Output the derived optimal trajectory;

9. return with success.

Table 2. Comparative simulation results.

Algorithm ID Average CPU time/sec Success rate

Algorithm 1 4.484 94.8 %

Algorithm 2 1.267 11.6 %

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

17310

Comparisons between Algorithms 1 and 2 reflect the

necessity of designing an iterative computation framework.

Algorithm 2 is not efficient because i) all the coupled

constraints in P0 have to be simultaneously handled, and

more importantly ii) the tunnels paved along the coarse

trajectory do not contain a feasible trajectory, i.e., P0 may be

an infeasible problem in Algorithm 2. By contrast, Algorithm

1 can handle most of the simulation cases. Algorithm 1 takes

longer time than Algorithm 2 because it involves repeated

tunnel construction procedures, each of which is time-

consuming when executed in Matlab. The reported CPU time

in Table 2 could be largely shortened if the source codes are

written in the C++ compilation environment.

Typical simulation results derived by Algorithm 1 are shown

in a video, which is available at https://www.bilibili.com/

video/BV13541147GJ/.

5. CONCLUSIONS

This paper has proposed an iterative computation framework

for precisely and fast solving on-road trajectory planning

problems in the Cartesian frame. Highlights of the paper

include i) the on-road trajectory planning scheme is

formulated in the Cartesian frame rather than the commonly

used Frenet frame, and ii) an iterative framework is proposed

to facilitate the numerical optimization difficulties. One of

our future works is to handle the failed simulation cases by

providing fault-tolerant solutions.

ACKNOWLEDGMENTS

This work was supported by the Fundamental Research

Funds for the Central Universities, the Natural Sciences and

Engineering Research Council of Canada, as well as the JDX

Automated Driving R&D Center of JD.com. Bai Li thanks Z.

Yin and L. Zhang for the support given during this work.

REFERENCES

Ajanovic, Z., et al. (2018). Search-based optimal motion

planning for automated driving. In 2018 IEEE/RSJ

International Conference on Intelligent Robots Systems

(IROS) (4523–4530).

Barfoot, T. D., & Clark, C. M. (2004). Motion planning for

formations of mobile robots. Robotics and Autonomous

Systems, 46(2), 65–78.

Bender, J. P., Dang, T., & Stiller, C. (2014). Trajectory

planning for Bertha—A local, continuous method. In

2014 IEEE Intelligent Vehicles Symposium (IV) (450–

457).

Chen, J. Y., Zhan, W., & Tomizuka, M. (2019). Autonomous

driving motion planning with constrained iterative LQR.

IEEE Transactions on Intelligent Vehicles, 4(2), 244–254.

Claussmann, L., Revilloud, M., Gruyer D., & Glaser S.

(2020). A review of motion planning for highway

autonomous driving. IEEE Transactions on Intelligent

Transportation Systems, 21(5), 1826–1848.

Ding, W., Zhang, L., Chen, J., & Shen, S. (2019). Safe

trajectory generation for complex urban environments

using spatio-temporal semantic corridor. IEEE Robotics

and Automation Letters, 4(3), 2997–3004.

Hu, X., et al. (2018). Dynamic path planning for autonomous

driving on various roads with avoidance of static and

moving obstacles. Mechanical Systems and Signal

Processing, 100, 482–500.

Levinson, J., et al. (2011). Towards fully autonomous driving:

Systems and algorithms. In 2011 IEEE Intelligent

Vehicles Symposium (IV) (163–168).

Li, B., & Shao, Z. (2015). A unified motion planning method

for parking an autonomous vehicle in the presence of

irregularly placed obstacles. Knowledge-Based Systems,

86, 11–20.

Li, B., et al. (2019a). Tractor-trailer vehicle trajectory

planning in narrow environments with a progressively

constrained optimal control approach. IEEE Transactions

on Intelligent Vehicles, Accepted.

Li, B., Jia, N., Li, P., & Li Y. (2019b). Incrementally

constrained dynamic optimization: A computational

framework for lane change motion planning of connected

and automated vehicles. Journal of Intelligent

Transportation Systems, 23(6), 557–568.

Li, B., et al. (2020). Maneuver planning for automatic

parking with safe travel corridors: A numerical optimal

control approach. In 2020 European Control Conference

(ECC), 1993–1998.

Lim, W., Lee, S., Sunwoo, M., & Jo, K. (2018). Hierarchical

trajectory planning of an autonomous car based on the

integration of a sampling and an optimization method.

IEEE Transactions on Intelligent Transportation Systems,

19(2), 613–626.

Ma, L., et al. (2015). Efficient sampling-based motion

planning for on-road autonomous driving. IEEE

Transactions on Intelligent Transportation Systems, 16(4),

1961–1976.

McNaughton, M., Urmson, C., Dolan, J. M., & Lee, J. W.

(2011). Motion planning for autonomous driving with a

conformal spatiotemporal lattice. In 2011 IEEE

International Conference on Robotics and Automation

(ICRA) (4889–4895).

Meng, Y., Wu, Y., Gui, Q., & Liu, L. (2019). A decoupled

trajectory planning framework based on the integration of

lattice searching and convex optimization. IEEE Access, 7,

130530–130551.

Miller, C., Pek, C., & Althoff, M. (2018). Efficient mixed-

integer programming for longitudinal and lateral motion

planning of autonomous vehicles. In 2018 IEEE

Intelligent Vehicles Symposium (IV) (1954–1961).

Wang, H., Kearney, J., & Atkinson, K. (2002). Robust and

efficient computation of the closest point on a spline

curve. In 5th International Conference on Curves and

Surfaces (397–406).

Werling, M., Ziegler, J., Kammel, S., & Thrun, S. (2010).

Optimal trajectory generation for dynamic street

scenarios in a Frenet frame. In 2010 IEEE International

Conference on Robotics and Automation (ICRA) (987–

993).

Xu, W., Pan, J., Wei, J., & Dolan, J. M. (2014). Motion

planning under uncertainty for on-road autonomous

driving. In 2014 IEEE International Conference on

Robotics and Automation (ICRA) (2507–2512).

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

17311

