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Abstract: On-road trajectory planning is a direct reflection of an autonomous vehicle’s intelligence level 

when traveling on an urban road. The prevalent on-road trajectory planners include the spline-based, 

sample-and-search-based, and optimal-control-based methods. Path-velocity decomposition and Frenet 

frame have been widely adopted in the aforementioned methods, which, nonetheless, largely degrade the 

trajectory planning quality when the road curvature is large and/or the scenario is complex. This paper 

aims to plan precise and high-quality on-road trajectories, thus we choose to describe the concerned 

scheme as an optimal control problem, wherein the urban road scenario is described completely in the 

Cartesian frame rather than in the Frenet frame. The formulated optimal control problem should be 

numerically solved in real-time. To that end, a light-weighted iterative computation architecture is built. 

In each iteration, a tunnel construction strategy tractablely models the collision-avoidance constraints, 

and a constraint softening strategy helps to find an intermediate trajectory for constructing the tunnels in 

the next iteration. Efficacy of the proposed on-road trajectory planner is validated by simulations on a 

high-curvature urban road wherein the ego vehicle is surrounded by multiple social vehicles at various 

speeds. 

Keywords: Autonomous driving, trajectory planning, computational optimal control, nonlinear program 

(NLP), Frenet frame 



1. INTRODUCTION 

Autonomous driving on a complex urban road requires the 

cooperation of multiple modules, including localization, 

perception, prediction, planning, and control (Levinson et al., 

2011). Planning techniques are important as they are a direct 

reflection of the intelligence level of an autonomous vehicle 

(Li et al., 2019a). The existing planning methods are typically 

developed for parking in a tiny parking lot (Li and Shao, 

2015) and cruising on a structured urban road (Claussmann et 

al., 2020). Commonly a cruising-oriented planner cannot deal 

with parking cases while a parking-oriented planner may not 

bring out the best in a cursing task either. This paper is 

focused on the local trajectory planning on an urban road. 

1.1 Related Studies 

The prevailing on-road trajectory planners, in the early years, 

are the spline-based methods, which use clothoid curves or 

polynomials to present a path/trajectory. If a spline-based 

method only plans a path, then extra efforts are needed to 

attach a time course along the derived path to form a 

trajectory. Commonly a spline-based method evenly samples 

some offset candidates ahead to produce spline candidates, 

then evaluates their performances w.r.t. underlying collision 

risks, vehicle kinematics violations, passenger comfort, and 

travel efficiency (Hu et al., 2018). Since a spline-based 

method usually samples multiple splines for selection, it is 

also referred to as a lattice planner in the literature. However, 

a spline-based planner is inefficacious when the on-road 

situation becomes complex, because there may not be even 

one feasible solution among the multiple sampled splines. As 

a remedy, sample-and-search-based planners are proposed, 

which discretize the spatial or spatial-temporal space into a 

multi-layer grid map, and derive the best one via graph 

searches (McNaughton et al., 2011; Ajanovic et al., 2018). 

Sample-and-search-based planners usually ensure resolution 

completeness or even resolution optimality, but the derived 

coarse path/trajectory is not smooth, which would render 

difficulties in the subsequent control module. A virtual 

controller is deployed to simulate the tracking process of the 

coarse path/trajectory, and the tracking result is forwarded to 

the control module (Ma et al., 2015). Alternatively, one may 

adopt a computational optimal control approach, which is 

warm-started by the coarse path/trajectory (Meng et al., 2019; 

Lim et al., 2018; Ziegler et al., 2014; Ding et al., 2019; Chen 

et al., 2019). Compared with the virtual-controller-based 

methods, the optimal-control-based methods describe the 

trajectory smoothing (also known as trajectory optimization) 

scheme as a continuous-time optimization, which means 

there are degrees of freedom to construct a smooth trajectory. 

Assuming that a coarse trajectory is already derived by a 

sample-and-search-based planner, this work particularly 

focuses on the optimal-control-based trajectory optimization. 

The predominant optimal-control-based trajectory optimizers 

are typically subject to two limitations: i) they describe the 

driving process in the Frenet frame rather than the Cartesian 
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frame, and ii) they decouple trajectory planning into path + 

velocity planning or lateral + longitudinal planning. More 

explicitly, the usage of Frenet frame uniformly eases the 

modeling difficulties of a road’s trend (Werling et al., 2010), 

but the mapping between Frenet and Cartesian frames is 

theoretically not stable (Wang et al., 2002), which leads to 

impractical results when the road curvature is large (Fig. 1). 

Even when the road curvature is small, the real-world 

curvature is seldom reflected in a Frenet-frame-based 

trajectory planning method (Barfoot and Clark, 2004), 

yielding that the derived trajectory might not be able to be 

efficaciously tracked by the controller. The second limitation 

involves dividing a problem into multiple highly dependent 

parts but conquering them independently. Such a decoupling 

operation harms the algorithm optimality or even 

completeness when the scenario is complex (Miller et al., 

2018). 

Planned trajectory in Frenet frame

Reference line

Legend

 

Fig. 1. An unrealistic trajectory presented in the Frenet frame 

when road curvature is large. 

1.2 Contributions 

This work aims to provide accurate trajectory planning 

solutions to generic on-road autonomous driving cases. To 

that end, we describe the on-road trajectory planning scheme 

as an optimal control problem, the solution to which is a 

trajectory rather than a path or other partial elements of a 

trajectory. Also, the on-road driving scenario is described in 

the Cartesian rather than Frenet frame, thereby making the 

derived trajectories easy to track. Nonetheless, formulating an 

on-road trajectory planning scheme as a standard optimal 

control problem in the Cartesian frame and solving it 

numerically like off-road parking maneuver planning would 

take long processing time, which is not acceptable in an on-

road driving task. 

This paper proposes a fast solution to the aforementioned 

optimal control problem. Concretely, a tunnel-based strategy 

is adopted to model the collision-avoidance constraints in a 

tractable way, and a constraint softening strategy is proposed 

to facilitate the numerical optimization process. A light-

weighted iterative computation framework is built, wherein 

the tunnel construction and numerical optimization are 

alternatively executed. Since the two steps in each iteration 

are simple, the iteration process usually converges quickly. 

1.3 Organization 

In the rest of this paper, Section 2 formulates the nominal 

optimal control problem for our concerned on-road trajectory 

planning scheme. Section 3 introduces our proposed method, 

which aims to provide accurate, fast, and optimal solutions. 

Simulation setups, results, and discussions are provided in 

Section 4, and finally, Section 5 concludes the paper. 

2. NOMINAL PROBLEM FORMULATION 

In this section, the on-road trajectory planning scheme is 

nominally formulated as an optimal control problem, which 

consists of a cost function and many constraints: 
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Herein, 
f[0, t ]t  denotes the time index, and the terminal 

moment 
ft  is fixed.  ( ) ( ), ( ), ( ), ( ), ( )t x t y t t v t t x  contains 

the state profiles,  ( ) ( ), ( )t a t tu  contains the control 

profiles, and the concrete definitions follow (Li and Shao, 

2015).  ( ),  ( ) 0f t t x u  represents the vehicle kinematic 

principles described by differential equations.  box 0h   

represents the inequality box constraints, and  collision 0h   

denotes the algebraic inequality collision-avoidance 

constraints.  f f(t ),  (t ) 0g x u  stands for the implicit 

boundary conditions at 
ftt  . The cost function   is defined 

as 

 ft 2 2

1 ref 2 ref
0

( ) ( ) d ,





        w x x w u u        (2) 

wherein 
1 2,w w  are weighting vectors, 

refx  and 
refu  denote 

the nominal driving states and operations, respectively. Eq. (2) 

reflects the smoothness of the state/control profiles. 

Sampled grids representing 
road barriers

 

Fig. 2. A typical on-road driving scenario. 

The primary difficulties in (1) lie in the collision-avoidance 

constraints described in the Cartesian frame. As depicted in 

Fig. 2, the ego vehicle needs to avoid collisions with the 

static/moving obstacles as well as the road barriers. Since the 

road barriers may be in irregular shapes, they need to be 

sampled as grids and regarded as static obstacles in 
collisionh  

0 , which makes (1) intractable. 
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3. FAST NUMERICAL SOLUTION 

This section introduces a fast solution method that solves (1) 

numerically. A fundamental method is presented first, which 

is further improved by developing an iterative computation 

framework. 

3.1 Basic Method 

Recall that the primary difficulties in (1) are caused by the 

intractable collision-avoidance constraints. Given that the ego 

vehicle does not have chances to collide with all the 

static/moving obstacles at every moment, a tunnel-based 

strategy is adopted to convert the complicated collision-

avoidance constraints into a fixed scale of within-tunnel 

constraints. 

A spatial-temporal tunnel is constructed that separates the 

ego vehicle from the obstacles in the scenario. In building a 

tunnel, the first step is to plan a coarse trajectory, which 

determines the homotopic route on the road. The coarse 

trajectory can be derived via a sample-and-search-based 

planner such as (Xu et al., 2014). In the second step, we use 

two discs to even cover the rectangular body of the ego 

vehicle, and denote the disc centers as 
f f f( , )P x y  and 

r r r( , )P x y  (Li et al., 2019b): 

f W F R

f W F R

r W F R

r W F R

1
( ) ( ) (3L 3L L ) cos ( ),

4

1
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4
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4

1
( ) ( ) (L L 3L ) sin ( ).

4

x t x t t

y t y t t

x t x t t
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





    
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        (3a) 

The radius RC of either disc is determined according to 

2 2R W F

C B

L L L1
R ( ) (L ) ,

2 2

 
        (3b) 

where 
W F RL ,  L ,  L , and 

BL  represent the vehicle wheelbase, 

front overhang length, rear overhang length, and width, 

respectively. Suppose the derived coarse trajectory records 

the movement of rear-axle center point  ( ), ( )x t y t , in the 

third step, we need to specify the movements of points 
fP  

and 
rP  via (3). For convenience, the trajectory for 

fP  is 

denoted as 
fTraj  and the trajectory for 

rP  as 
r .Traj  

Thereafter, two tunnels are paved along 
fTraj  and 

rTraj , 

respectively. Suppose that the tunnel for 
fP  consists of Nbox 

local boxes. In specifying the kth box for 
fP , we capture the 

space occupied by the static/moving obstacles at 

f boxNt /kt k   to form an instantaneous map, and then 

spirally expand from the point   f f. ( ), . ( )k kTraj x t Traj y t  until 

collisions with the instantaneous map occur (Fig. 3). 

Applying such procedures to all 
box ( 1,..., N )kt k   renders 

the tunnel for 
fP . The tunnel for 

rP  can be derived similarly. 

Finally, the original collision-avoidance constraints are 

converted to the within-tunnel constraints, which require that 

either disc center stays in its tunnel at sampled instances, e.g., 

 
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b

f f r r

ox

f

,

( ), ( ), ( ), ( ) ,

t
,  1,..

N
, .N.

k k k

k k k k k

k
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t k k

 



  

lb dc ub

dc            (4) 

By replacing  collision ( ) 0h t x  with (3) and (4) in (1), a 

tunnel-based optimal control problem (denoted as P0) is 

formulated: 
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          (5) 

In solving P0 numerically, P0 is first discretized into a 

nonlinear program (NLP) problem and then optimized by a 

gradient-based NLP-solver such as the interior-point method 

(IPM). The technical details of the tunnel-based method are 

elaborated in (Li et al., 2020). 
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Fig. 3. Procedures to specify a local box at tk for Pf. Note that 

the dashed box in (d) is the desired local box. 

3.2 Iterative Computation Framework 

The preceding subsection has presented how to formulate P0, 

the numerical solution to which is the desired on-road 

trajectory. Instead of solving P0 directly, this subsection 

introduces an iterative computation strategy that runs faster. 

Our proposal is inspired by the fact that the only nonlinear 

constraints in P0 are i) the kinematic constraints 0f  , and ii) 

the disc center definitions (3a). If they are linearized or 

softened as part of the cost function, P0 would become a 

linearly constrained nonlinear optimization problem, which is 

easier to solve. 
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This work chooses to soften the aforementioned nonlinear 

constraints: i) 0f   is softened as a polynomial  , and ii) 

(3a) is softened as a polynomial  . Concretely,   is defined 

as 

 
f 2

0
x( ),  u( ) d .

t

f


  


              (6a) 

Similarly,   measures the violation degree of each equality 

in (3a), e.g., the first equality of (3a) is softened as 

f

2

f W F R
0

1
( ) ( ) (3L 3L L ) cos ( ) d .

4

t

x x


    

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With   and   at hand, we replace (2) with ( ),  

thereby formulating a new optimal control problem P1: 

   
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Eq. (4),
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           (7) 

Since (7) only contains inequality box constraints, it never 

suffers from the risk of being infeasible. Solving (7) 

numerically is easy and fast, but if the cost function value is 

larger than 0, then the derived trajectory violates 0f   and/ 

or (3a). The violations occur if the constructed tunnels are not 

appropriate. To address this issue, it is natural to consider 

updating the tunnels according to the optimized trajectory, 

thereby updating P1. This process continues until the 

optimized cost function value becomes 0, which means a 

feasible solution (denoted as χ ) to the original problem P0 is 

derived. Generally, starting a constrained optimization 

process with a feasible solution is easier than with an 

infeasible one, thus P0 with the latest tunnels is numerically 

solved, which is warm-started by χ . Through this, an optimal 

trajectory is obtained finally. 

As a summary of this section, the pseudo-codes of our 

proposed on-road trajectory planner are presented as follows. 

Algorithm 1. On-road Trajectory Planner in Cartesian Frame 

Input: Road scenario setups, initial configuration, and parametric settings; 

Output: A local on-road trajectory for the ego vehicle; 

1. Generate a coarse trajectory 
coarseχ  via a search-and-sample method; 

2. Construct tunnel-based constraints according to 
coarseχ ; 

3. Form optimal control problem P1; 

4. Set 
coarseχ  as the initial guess, solve P1 numerically, denote the derived 

optimum as 
preciseχ , and record ( ) ; 

5. Initialize 0iter  ; 

6. while 2( 10 ),  do 

7.     1iter iter  ; 

8.     if 
max( Iter )iter  , then 

9.         return with a failure; 

10.     end if 

11.     Update tunnel-based constraints according to 
preciseχ ; 

12.     Update optimal control problem P1; 

13.     Set 
preciseχ  as the initial guess, solve P1 numerically, use the derived 

optimum to update 
preciseχ , and update ( ) ; 

14. end while 

15. Update tunnel-based constraints according to 
preciseχ ; 

16. Update optimal control problem P0 according to the latest tunnels; 

17. Set 
preciseχ  as the initial guess, solve P0 numerically; 

18. Output the derived optimal trajectory; 

19. return with success. 

4. SIMULATIONS 

Simulations were performed in MATLAB 2014b and 

executed on an i5-8250U CPU with 8 GB RAM that runs at 

1.60 × 2 GHz. Basic parametric settings are listed in Table 1. 

An urban road segment is selected as the driving scenario, 

which contains a right-turn and a U-turn (Fig. 4). The driving 

status of each surrounding social vehicle is randomly 

determined. More details about the parametric settings and 

scenario setups are provided in the source codes at 

https://github.com/libai1943/OnRoadPlanner_IFAC2020. 

 

Fig. 4. On-road driving scenario in our simulations. 

Table 1. Basic parametric settings. 

Parameter(s) Description Setting(s) 

W R

F B

L ,  L ,

L ,  L
 

Geometric size of ego 

vehicle 

2.80 m, 0.929 m 

0.96 m, 1.942 m 

ft  Specified terminal moment 8.0 s 

max max

max max

a ,  v ,

,   
 

Bounds on ( )a t , ( )v t , 

( )t , and ( )t  

5 m/s2, 25 m/s 

0.7 rad, 1.0 rad/s 

initx  Initial state of ego vehicle [0, 0.78,0,0.18,20]  

1 2,w w  Weighting vectors in (2) T T[0,0,0,0] ,  [1,10]  

Nbox 
Number of local boxes in 

constructing each tunnel 
160 

maxIter  
Maximum allowable 

iterations in Algorithm 1 
6 

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

17309



 

 

     

 

 
Fig. 5. Intermediate and final results derived by Algorithm 1 

when there are three static obstacles in the environment. 

Let us begin with a simple case with three static obstacles. 

Fig. 5a shows the derived coarse trajectory, Fig. 5b plots the 

tunnels constructed along that coarse trajectory, Fig. 5c 

depicts the intermediate solutions to P1 in the iterations, Fig. 

5d shows the final on-road trajectory, and Fig. 5e plots the 

footprints. The coarse trajectory in Fig. 5a is planned in the 

Frenet frame, thus it does not care about the curvature 

limitation issue when the ego vehicle is taking the right turn 

or U-turn. By contrast, the optimized trajectory depicted in 

Fig. 5d reflects the vehicle kinematics better. The footprints 

plotted in Fig. 5e indicate that the adopted tunnel-based 

formulation is efficacious to avoid collisions. The 

performance of Algorithm 1 to handle moving obstacles is 

demonstrated in Fig. 6. 

 

Fig. 6. On-road trajectory derived by Algorithm 1 when there 

are three moving obstacles in the environment. 

To further investigate the benefit of building the iterative 

computation architecture as in Algorithm 1, we define a 

comparative algorithm (denoted as Algorithm 2) and make 

comparisons w.r.t. computational time and success rate in 

500 randomly generated simulation cases wherein the 

obstacles are moving. 

Algorithm 2. A comparative planner that directly solves P0 

Input: Road scenario setups, initial configuration, and parametric settings; 

Output: A local on-road trajectory for the ego vehicle; 

1. Generate a coarse trajectory 
coarseχ  via a search-and-sample method; 

2. Construct tunnel-based constraints according to 
coarseχ ; 

3. Form optimal control problem P0; 

4. Set 
coarseχ  as the initial guess, solve P0 numerically; 

5. if the numerical optimization fails, then 

6.     return with a failure; 

7. end 

8. Output the derived optimal trajectory; 

9. return with success. 

Table 2. Comparative simulation results. 

Algorithm ID Average CPU time/sec Success rate 

Algorithm 1 4.484 94.8 % 

Algorithm 2 1.267 11.6 % 
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Comparisons between Algorithms 1 and 2 reflect the 

necessity of designing an iterative computation framework. 

Algorithm 2 is not efficient because i) all the coupled 

constraints in P0 have to be simultaneously handled, and 

more importantly ii) the tunnels paved along the coarse 

trajectory do not contain a feasible trajectory, i.e., P0 may be 

an infeasible problem in Algorithm 2. By contrast, Algorithm 

1 can handle most of the simulation cases. Algorithm 1 takes 

longer time than Algorithm 2 because it involves repeated 

tunnel construction procedures, each of which is time-

consuming when executed in Matlab. The reported CPU time 

in Table 2 could be largely shortened if the source codes are 

written in the C++ compilation environment. 

Typical simulation results derived by Algorithm 1 are shown 

in a video, which is available at https://www.bilibili.com/ 

video/BV13541147GJ/. 

5. CONCLUSIONS 

This paper has proposed an iterative computation framework 

for precisely and fast solving on-road trajectory planning 

problems in the Cartesian frame. Highlights of the paper 

include i) the on-road trajectory planning scheme is 

formulated in the Cartesian frame rather than the commonly 

used Frenet frame, and ii) an iterative framework is proposed 

to facilitate the numerical optimization difficulties. One of 

our future works is to handle the failed simulation cases by 

providing fault-tolerant solutions. 

ACKNOWLEDGMENTS 

This work was supported by the Fundamental Research 

Funds for the Central Universities, the Natural Sciences and 

Engineering Research Council of Canada, as well as the JDX 

Automated Driving R&D Center of JD.com. Bai Li thanks Z. 

Yin and L. Zhang for the support given during this work. 

REFERENCES 

Ajanovic, Z., et al. (2018). Search-based optimal motion 

planning for automated driving. In 2018 IEEE/RSJ 

International Conference on Intelligent Robots Systems 

(IROS) (4523–4530). 

Barfoot, T. D., & Clark, C. M. (2004). Motion planning for 

formations of mobile robots. Robotics and Autonomous 

Systems, 46(2), 65–78. 

Bender, J. P., Dang, T., & Stiller, C. (2014). Trajectory 

planning for Bertha—A local, continuous method. In 

2014 IEEE Intelligent Vehicles Symposium (IV) (450–

457). 

Chen, J. Y., Zhan, W., & Tomizuka, M. (2019). Autonomous 

driving motion planning with constrained iterative LQR.  

IEEE Transactions on Intelligent Vehicles, 4(2), 244–254. 

Claussmann, L., Revilloud, M., Gruyer D., & Glaser S. 

(2020). A review of motion planning for highway 

autonomous driving. IEEE Transactions on Intelligent 

Transportation Systems, 21(5), 1826–1848. 

Ding, W., Zhang, L., Chen, J., & Shen, S. (2019). Safe 

trajectory generation for complex urban environments 

using spatio-temporal semantic corridor. IEEE Robotics 

and Automation Letters, 4(3), 2997–3004. 

Hu, X., et al. (2018). Dynamic path planning for autonomous 

driving on various roads with avoidance of static and 

moving obstacles. Mechanical Systems and Signal 

Processing, 100, 482–500. 

Levinson, J., et al. (2011). Towards fully autonomous driving: 

Systems and algorithms. In 2011 IEEE Intelligent 

Vehicles Symposium (IV) (163–168). 

Li, B., & Shao, Z. (2015). A unified motion planning method 

for parking an autonomous vehicle in the presence of 

irregularly placed obstacles. Knowledge-Based Systems, 

86, 11–20. 

Li, B., et al. (2019a). Tractor-trailer vehicle trajectory 

planning in narrow environments with a progressively 

constrained optimal control approach. IEEE Transactions 

on Intelligent Vehicles, Accepted. 

Li, B., Jia, N., Li, P., & Li Y. (2019b). Incrementally 

constrained dynamic optimization: A computational 

framework for lane change motion planning of connected 

and automated vehicles. Journal of Intelligent 

Transportation Systems, 23(6), 557–568. 

Li, B., et al. (2020). Maneuver planning for automatic 

parking with safe travel corridors: A numerical optimal 

control approach. In 2020 European Control Conference 

(ECC), 1993–1998. 

Lim, W., Lee, S., Sunwoo, M., & Jo, K. (2018). Hierarchical 

trajectory planning of an autonomous car based on the 

integration of a sampling and an optimization method. 

IEEE Transactions on Intelligent Transportation Systems, 

19(2), 613–626. 

Ma, L., et al. (2015). Efficient sampling-based motion 

planning for on-road autonomous driving. IEEE 

Transactions on Intelligent Transportation Systems, 16(4), 

1961–1976. 

McNaughton, M., Urmson, C., Dolan, J. M., & Lee, J. W. 

(2011). Motion planning for autonomous driving with a 

conformal spatiotemporal lattice. In 2011 IEEE 

International Conference on Robotics and Automation 

(ICRA) (4889–4895). 

Meng, Y., Wu, Y., Gui, Q., & Liu, L. (2019). A decoupled 

trajectory planning framework based on the integration of 

lattice searching and convex optimization. IEEE Access, 7, 

130530–130551. 

Miller, C., Pek, C., & Althoff, M. (2018). Efficient mixed-

integer programming for longitudinal and lateral motion 

planning of autonomous vehicles. In 2018 IEEE 

Intelligent Vehicles Symposium (IV) (1954–1961). 

Wang, H., Kearney, J., & Atkinson, K. (2002). Robust and 

efficient computation of the closest point on a spline 

curve. In 5th International Conference on Curves and 

Surfaces (397–406). 

Werling, M., Ziegler, J., Kammel, S., & Thrun, S. (2010). 

Optimal trajectory generation for dynamic street 

scenarios in a Frenet frame. In 2010 IEEE International 

Conference on Robotics and Automation (ICRA) (987–

993). 

Xu, W., Pan, J., Wei, J., & Dolan, J. M. (2014). Motion 

planning under uncertainty for on-road autonomous 

driving. In 2014 IEEE International Conference on 

Robotics and Automation (ICRA) (2507–2512). 

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

17311


