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Abstract: UAVs especially quadcopters have recently caught the attention of researchers
and manufacturers due to their various commercial and military applications like surveillance,
photography and many others. They have small sizes since have low cost, easy manufacturing,
extreme maneuverability and VTOL capabilities. This paper addresses the problem of unmod-
elled dynamics and disturbances while designing an appropriate control law for the quadcopter
UAV having very coupled nonlinear dynamics. Most of the controllers available in the literature
ignore Coriolis terms in the model and small signal approximations are made to linearize or
simplify the model about certain operating conditions. But such control system has a very
limited performance and fails to deliver the desired results even for small disturbances and
parametric variations since the assumptions no longer remain valid. We have derived an extensive
nonlinear model of quadcopter with least approximations in terms of linear velocities in body
frame, position in the inertial frame, the Euler angles and their rates. We have designed a
feedback linearization based nonlinear controller using a novel approach. This has further been
cascaded with sliding mode control and backstepping based control to handle uncertainties. The
simulation results of this controller have also been included for a known quadcopter model.

Keywords: Nonlinear Control; Feedback Linearization; Quadcopter; Unmodelled Dynamics and
Disturbances;

1. INTRODUCTION

Unmanned Aerial Vehicles (UAVs) are flying vehicles with-
out having a human pilot onboard (Valavanis and Vacht-
sevanos (2015)). Quadcopters are a subclass of rotorcraft
UAVs with four propellers mounted on a + or × shaped
rigid frame for thrust and orientation control. Their sizes
are much smaller than the conventional aircraft hence
the advantages of low power consumption, manufacturing
cost indoor usage. They have geometrical symmetry which
makes the modelling and controller design easy as com-
pared to other rotorcraft. Their extreme maneuverability
and Vertical Take-off and Landing (VTOL) features make
it even superior to other UAVs. These are the reasons
that we have considered control system design problem
of quadcopter.
In the literature, quadcopters have a wide range of con-
trol system applications like cooperative and formation
controlAli and Montenegro (2016),Yamamoto et al. (2017)
and altitude control. Furthermore, many controller design
schemes have been proposed like fuzzy controlSun and Liu
(2017), linear parameter varying (LPV) controlCisneros
et al. (2016), adaptive control Lin et al. (2013),Ding et al.
(2017),Song and Wang (2018), predictive controlTanveer
et al. (2014),Alexis et al. (2012), neural network control-

Hwang (2012), nonlinear control methodsKumar et al.
(2017)-Mellinger and Kumar (2011) and sliding mode
controlFalcón et al. (2018). While these are all excellent
contributions we saw a need of improvising the model
and derive the model with lesser approximations and in
a form that is easily controllable. Also the linear system
approximation has a very limited performance region so
we developed a nonlinear control law. Our contributions in
this paper are that we have derived the quadcopter non-
linear model with least small signal approximations and
assumptions in section (2). Feedback linearization based
control of the derived model has been designed in section
(3). Finally the simulation results of the proposed control
scheme and future work has been discussed in section (??)
and (7) respectively.

2. QUADCOPTER MODELLING

For quadcopter modelling we have considered three coor-
dinate frames that are inertial, vehicle and body frame.
which have been explained in the Fig. 1 and Fig. 2
The state vector is defined as

X =∆
[
x y z φ θ ψ ẋ ẏ ż φ̇ θ̇ ψ̇

]

Where x, y and z are the components of position vector

of Ob in inertial frame along îi, ĵi and k̂i respectively as
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îv(East)

ĵb

îb
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Fig. 2. Transformation to Body Frame from Vehicle Frame

shown in the Fig. 1. And φ, θ and ψ are the Euler angles
that define the transformation from vehicle frame to body
frame as expressed in Fig. 2. Oi is the origin of inertial
frame located at the ground control station where Ob is
the origin of vehicle frame and body frame located at the
center of mass of the quadcopter. It should be noted that
inertial frame and vehicle frame have parallel coordinate
axis only the origin is located elsewhere.
We have derived the expression for the transformation
from vehicle to body frame. Take cx =∆ cosx and sx =∆ sinx
then

R =

[
cφcθ − sφsψsθ −cφsψ cφsθ + cθsφsψ
cθsψ + cψsφsθ cφcψ sψsθ − cψcθsφ
−cφsθ sφ cφcθ

]
(1)

This is a very peculiar transformation belonging to special
orthogonal group(SO3) hence if R = Rv→b then Rb→v =
R−1 = RT since for R ∈ SO(3)

R =
{
R ∈ R3 | RTR = RRT = I, det(R) = 1

}

Now the acceleration according to Newton’s second law in
inertial frame can be written as

m

[
ẍ
ÿ
z̈

]
=

[
0
0
−mg

]
+RT

[
0
0
T

]
(2)

Where T is the total thrust force produced by all the
rotors. And m is the total mass of quadcopter with g being
the gravitational constant. If we express the roll, pitch and
yaw rates i-e the angular velocities in body frame as p, q
and r respectively then these quantities in terms of the
Euler angle rates can be given as

[
p
q
r

]
=

[
cos θ 0 − sin θ cosφ

0 1 sinφ
sin θ 0 cosφ cos θ

]

φ̇

θ̇

ψ̇


 (3)

Say the angular velocities vector ω = [p q r]T and from (3)

Rω =

[
cos θ 0 − sin θ cosφ

0 1 sinφ
sin θ 0 cosφ cos θ

]

In the linearized models Rω is assumed to be identity using
small signal approximation, but as mentioned earlier we
shall not be making any assumptions. Differentiating (3)
both sides we get
[
ṗ
q̇
ṙ

]
= Rω



φ̈

θ̈

ψ̈


+




sinφ sin θφ̇ψ̇ − cos θ cosφθ̇ψ̇ − sin θθ̇φ̇

cosφφ̇ψ̇

cos θθ̇φ̇− sinφ cos θφ̇ψ̇ − sin θ cosφθ̇ψ̇




Say

A =




sinφ sin θφ̇ψ̇ − cos θ cosφθ̇ψ̇ − sin θθ̇φ̇

cosφφ̇ψ̇

− sinφ cos θφ̇ψ̇ − sin θ cosφθ̇ψ̇ + cos θθ̇φ̇


 (4)

Then

ω̇ =

[
ṗ
q̇
ṙ

]
= Rω



φ̈

θ̈

ψ̈


+A (5)

Remark 1. The term A in (5) is often ignored in literature
to simplify Euler angle dynamics, this might make sense
for linearized model controller designs, but in some cases
it is ignored even when nonlinear controllers are being
designed. See Joukhadar et al. (2019) and Navabi and
Mirzaei (2016). This is because term Rω is taken as an
identity matrix using small signal approximations for the
Euler angles. This is a very impractical supposition since
φ and θ are never small enough to be taken as close to
zero while performing practical maneuvers. This is the
reason controller designed for a linearized model has a
very limited performance region while controllers designed
using nonlinear model without unrealistic suppositions
show excellent performance for a wide region. But we have
not taken Rω as identity to develop a model with least
possible assumptions.

The angular acceleration ω̇ = [ṗ q̇ ṙ]T can be given by
Newton’s second law and adding the Coriolis terms we get

Jω̇ =

[
τφ
τθ
τψ

]
− ω × Jω (6)

Here ’×’ represents the cross product. τφ, τθ and τψ are

the moments along b̂1, b̂2 and b̂3 respectively as shown in
Fig. (??). J is the matrix of inertia and can be expressed
as as a diagonal matrix due to the symmetry of quadcopter
as follows

J =

[
Jxx 0 0
0 Jyy 0
0 0 Jzz

]
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Jxx, Jyy and Jzz are the moment of inertia of quadcopter

about b̂1, b̂2 and b̂3 respectively. Using (2), (5) and (6) we
have the system dynamics as follows

[
ẍ
ÿ
z̈

]
=

[
0
0
−g

]
+RT




0
0
T

m






φ̈

θ̈

ψ̈


 = R−1

ω J−1

([
τφ
τθ
τψ

]
− ω × Jω

)
−R−1

ω A

(7)

The (7) describe the nonlinear model of quadcopter in
terms of position in inertial frame linear velocities in body
frame, Euler angles and their rates.

3. FEEDBACK LINEARIZATION BASED CONTROL

Quadcopter is an under-actuated system there are only
four inputs and twelve state variables. We can effectively
control four states at a time. We aim to control position
and yaw or heading angle that is [xdes, ydes, zdes]T and
ψdes as shown in Fig.(3). In (7) we can see that there is

Desired
Trajectory

Position
Control

Attitude
Control

Actuator

Quadcopter



xdes

ydes

zdes




ψdes

θc φ
c

T cτ cφτ cθτ cψ

ω1ω2ω3ω4

X

Fig. 3. Control Scheme for Quadcopter

only one input variable T and three output variables [x y z]
in the first equation, so for feedback linearization we desire
to transform this system in the form

[
ẍ
ÿ
z̈

]
=

[
ux
uy
uz

]
(8)



φ̈

θ̈

ψ̈


 =

[
uφ
uθ
uψ

]
(9)

Where ux, uy, uz, uφ, uθ and uψ are the inputs we can
control as we desire. From (7) and (8) we can write

[
ux
uy
uz

]
=

[
0
0
−g

]
+RT




0
0
T

m




R

[
ux
uy

uz + g

]
=RRT




0
0
T

m




[
cφcθ − sφsψsθ −cφsψ cφsθ + cθsφsψ
cθsψ + cψsφsθ cφcψ sψsθ − cψcθsφ
−cφsθ sφ cφcθ

][
ux
uy

uz + g

]
=




0
0
T

m




The above system can be solved for the commanded values
of φ, θ and T and they come out to be as follows

φc = tan−1 uxsψc − uycψc

uz + g

θc = tan−1 uxcψc + uysψc

(uz + g)cφc + (sψcux − cψcuy)sφc

T c =

[
cψcsθc + cθcsφccψc

sψcsθc − cθcsφcsψc

cφccθc

]T [
ux
uy

uz + g

]
(10)

Remark 2. The typical feedback linearization techniques
use complex Lie algebra and there are often some approx-
imations or limitations involved taking into account the
fact that this is an underactuated system with transcen-
dental and bilinear coupled state dynamics. But novelty
and contribution of our controller lies in the fact that
we have used the very basic definition of feedback lin-
earization process and derived the control inputs utilizing
a special property (RT = R−1) of the SO(3) group of
matrices. This way the expressions for control inputs are
way simpler and easy to derive as compared to typical
methods. See Chang and Eun (2014).

In (10) ψc = ψdes. Now from (7) and (9) we can write
[
uφ
uθ
uψ

]
= R−1

ω J−1

([
τφ
τθ
τψ

]
− ω × Jω

)
−R−1

ω A

=⇒



τ cφ
τ cθ
τ cψ


 = ω × Jω + J

(
A+Rω

[
uφ
uθ
uψ

])
(11)

The commanded values in (10) and (11) ensure that
the system follows (8) and (9). Now the states of the
system follow simple double integrator system dynam-
ics so no integral action is needed for zero steady state
error and desired tracking performance can be achieved
by applying proportional derivative control strategies to
ux, uy, uz, uφ, uθ and uψ as described in (??). For propor-
tional derivative (PD) control we simply use the strategy
in (Khalil (2002)) that is for any system of the form

s̈ = us (12)

We define an error

e =∆ sdes − s
For tracking this error must exponentially go to zero that
means the error must satisfy

ë+ kpse+ kvsė = 0 (kps, kvs > 0)

=⇒ (s̈des − us) + kps(s
des − s) + kvs( ˙sdes − ṡ) = 0
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Then our control input must be

us = s̈des + kps(s
des − s) + kvs(ṡ

des − ṡ) (13)

From the linearized model in (8) and (9) we can see that all
the states in Q follow the dynamics similar to (12), hence
the control in (13) can be extended to find the linearized
control inputs as follows,
The Position Control Inputs:

ux = ẍdes + kpx(xdes − x) + kvx(ẋdes − ẋ)

uy = ÿdes + kpy(ydes − y) + kvy(ẏdes − ẏ)

uz = z̈des + kpz(z
des − z) + kvz(ż

des − ż)
(14)

The Attitude Control Inputs:

uφ = φ̈des + kpφ(φdes − φ) + kvφ(φ̇des − φ̇)

uθ = θ̈des + kpθ(θ
des − θ) + kvθ(θ̇

des − θ̇)
uψ = ψ̈des + kpψ(ψdes − ψ) + kvψ(ψ̇des − ψ̇)

(15)

3.1 Simulation Results

Tracking for Step Input The step tracking of quadcopter
using feedback linearization and the conventional PID
control designed for a linearized model are being compared
here. It is very interesting to note that the Feedback
Linearization based control shows slightly better perfor-
mance for a smaller step signal as shown in Fig. (4) but it
outclasses the tracking performance when there is a larger
step as shown in Fig. (5). The reason is when linearizing
the model small signal approximations etc are made which
hold true for small slowly varying reference signals but no
longer remain valid for fast changing reference signals.
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Fig. 4. Position Tracking for a Smaller Step Input

Increasing the step size further leads the PID controller
towards instability while the feedback linearization based
control shows excellent performance. This can be easily
verified in the simulations. This behavior is also intu-
itively predictable seeing that as the step size increases
the more conventional PID strays from the small signal

approximations and hence away from its limited region of
convergence.
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Fig. 5. Position Tracking for a Larger Step Input

Tracking for Sinusoidal Input A similar performance
can be seen for a sinusoidal input or a circular trajectory
in Fig. (6). That is for sinusoids of smaller amplitude
or frequency the Feedback linearization shows similar
or slightly better performance than conventional PID
but again way better performance for sinusoids of larger
amplitude or frequency.
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Fig. 6. Position Tracking for Sinusoidal Input

4. CONTROL IN THE PRESENCE OF
UNMODELLED DYNAMICS AND DISTURBANCES

The unmodelled dynamics and disturbances play a very
important role in the stability and tracking performance as
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discussed in (Rohrs et al. (1985)). No matter how accurate
our model is, there are always uncertainties involved when
dealing with the practical systems. Therefore our control
system must robust enough to handle a fair amount of
them. There are always external disturbances like wind
conditions and friction and unmodelled dynamics like rotor
drag involved in a quadcopter flight which can be modelled
as bounded uncertainties in the model.
The feedback linearization based control designed in the
previous section has a great advantage that the un-
modelled dynamics and disturbances can be included in
the model and handled very easily with even a simple
Lyapunov-based control scheme for the linearized inputs.
If we include external disturbances and other bounded
uncertainties in the system dynamics we can describe the
model using (8) and (9) as

[
ẍ
ÿ
z̈

]
=

[
ux + δx(X , t)
uy + δy(X , t)
uz + δz(X , t)

]
(16)



φ̈

θ̈

ψ̈


 =

[
uφ + δφ(X , t)
uθ + δθ(X , t)
uψ + δψ(X , t)

]
(17)

For each state ξ in Q, each δξ(X , t) in (17) and (16)
represents a bounded uncertainty discussed above given as
∆ξ ≥ |δξ(X , t)|. Where ∆ξ is the known uncertainty upper
bound. Now for the controller design we again consider a
system of the form

s̈ = us + δs(X , t) (18)

We define an error

e =∆ s− sdes =⇒ ë = us + δs(X , t)− s̈des
For tracking of (18), this error must go to zero exponen-
tially, so we can define e1 = e and e2 = ė and represent
the above error dynamics equation in state space form as

ė1 = e2

ė2 = us + δs − s̈des
(19)

Now we shall use two advanced nonlinear control strategies
for uncertainty handling that are backstepping and sliding
mode control.

5. BACKSTEPPING AND LYAPUNOV REDESIGN
CONTROL

The control discussed here combines backstepping and
Lyapunov redesign from (Khalil (2002)). First we define a
Lyapunov function for e1 and treat e2 as input to stabilize
it then we use backstepping to change the variable and find
a control that stabilizes the composite Lyapunov function
of e1 and new variable.
Lets take the Lyapunov function for e1 as,

V1(e1) =
1

2
e2

1

Then V̇1(e1) = e1ė1 = e1e2. For exponential stability of
e1, we take e2 = %(e1) = −e1. Therefore,

V̇ (e1) = −e2
1 < 0

Now we define the new variable ζ = e2 − %(e1) = e2 + e1.
Then,

ζ̇ = us + δs − s̈des + ζ − e1

The composite Lyapunov function of e1 and ζ can be
written as,

Vc(e1, ζ) =
1

2
e2

1 +
1

2
ζ2

For the system to be globally asymptotically stable the
derivative this composite Lyapunov function must be
negative definite that is,

V̇c(e1, ζ) = −e2
1 + ζ(us + δs − s̈des + ζ)

If we select

us = s̈des − (1 + κs)ζ + υs (κs > 0)

Then,

V̇c(e1, ζ) = −e2
1 − κsζ2 + ζ(υs + δs)

≤ −e2
1 − κsζ2 + ζυs + ∆s |ζ| (20)

Take,

υs = −η(e) sat

(
η(e)

ζ

ε

)
(21)

Where η(e) ≥ |δs|+ηos, hence we can take η(e) = ∆s+ηos
the ηos and ε are positive constants. Here,

sat(ξ) =∆
{

sgn(ξ) if ξ ≥ 1
ξ if ξ < 1

, (22)

sgn(ζ) =∆
{−1 if ζ < 0

0 if ζ = 0
1 if ζ > 0

(23)

This piece-wise definition of υs has been chosen to stabi-
lize and remove chattering from error dynamics which is
always present when the control uses signum nonlinearity.
That is,

For this choice of υs in (21) the derivative of composite
Lyapunov function from (20) can be expressed as,
When η(s)|ζ| ≥ ε,

V̇c(e1, ζ) ≤ −e2
1 − κsζ2 − ηos |ζ| < 0

When η(s)|ζ| < ε,

V̇c(e1, ζ) ≤ −e2
1 − κsζ2 +

ε

4
This ensures ultimate boundedness of the solution, but
ε small enough we can make the system very close to
globally asymptotically stable. Extending this strategy to
our system in (17) and (16) the linearized control inputs
for quadcopter for (10) and (11) can be written as,

The Position Control Inputs:

ux = ẍdes + (1 + κx)ζφ + υx

uy = ÿdes + (1 + κy)ζφ + υy

uz = z̈des + (1 + κz)ζφ + υz

(24)

The Attitude Control Inputs:

uφ = φ̈des + (1 + κφ)ζφ + υφ

uθ = θ̈des + (1 + κθ)ζθ + υθ

uψ = ψ̈des + (1 + κψ)ζψ + υψ

(25)

Where for each state ξ in Q, κξ is a positive constant that
can be tuned and,

ζξ =∆ (ξdes + ξ̇des − ξ − ξ̇)

υξ =∆ −ηξ sat

(
ηξζξ
εξ

)

ηξ =∆ ∆ξ + ηoξ

(26)

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

8965



Here ηoξ is a positive constant. The above mentioned (24),
(25) and (26) describe the backstepping control design for
the feedback linearized inputs of a quadcopter.

5.1 Simulation Results

We have compared the results of tracking performance of
backstepping control designed above in Fig. (7). We can
see that the error is converging for our controller while
diverging for conventional PID.
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Fig. 7. Position Tracking for Sinusoidal Disturbance [z =
z + sin(x)]

6. SLIDING MODE CONTROL

In sliding mode control we design a sliding surface and
ensure the system stability on that surface. We design a
control law that ensures the system’s stability by pushing
it on the sliding surface. As suggested in (Khalil (2002)),
we consider a sliding surface for the system in (19) as

S = αse1 + e2

The Lyapunov function for the sliding surface can be taken
as

V (S) =
1

2
S2

Then

V̇ (S) = S
(
αse2 + δs − s̈des + us

)

≤ S
(
αse2 + ∆s − s̈des + us

)

By taking

us = −β(e) sat

(S
ε

)
(27)

Where β(e) ≥ |αe2 + δs − s̈des| + βo, hence can be taken
as β(e) = |α(ṡ− ṡdes)− s̈des|+ ∆s + βo, here βo is a small
positive constant.
Then if |S| ≥ ε,

V̇ (S) < −βo|S| ≤ 0

and if |S| < ε

V̇ (e1) < −αe2
1 + |e1|ε

Again we do not actually stabilize the system but achieve
ultimate boundedness, whose bound can be decreased buy
decreasing ε. Now again extending this strategy to our
perturbed system in (17) and (16) the linearized control
inputs for quadcopter for (10) and (11) can be written as,
The Position Control Inputs:

ux = −βx sat

(Sx
εx

)

uy = −βy sat

(Sy
εy

)

uz = −βz sat

(Sz
εz

)
(28)

The Attitude Control Inputs:

uφ = −βφ sat

(Sφ
εφ

)

uθ = −βθ sat

(Sθ
εθ

)

uψ = −βψ sat

(Sψ
εψ

)
(29)

Where for each state ξ in Q, εξ is a small positive that can
be adjusted to reduce chattering and,

βξ =∆ |αξ(ξ̇ − ξ̇des)− ξ̈des|+ ∆ξ + βoξ

Sξ =∆ (ξ̈ − ξ̈des) + (ξ̇ − ξ̇des)
(30)

6.1 Simulation Results

We have compared the results of tracking performance of
sliding mode control designed above in Fig. (7) with back-
stepping control designed in the earlier section. While both
have converging errors unlike PID transient performance of
backstepping is much better but steady state performance
of sliding mode control is better.
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7. CONCLUSION & FUTURE WORK

The PID control has its own benefits like easy implemen-
tation and tuning, but it fails to operate outside a limited
performance region for most of the complex nonlinear
systems. It also can not perform well in the presence of
uncertainties which are always there in practical systems.
Our proposed control schemes, while having much wider
performance regions and capability of handling uncertain-
ties, also contains some of the benefits of PID control since
we have used a novel feedback linearization scheme. We
have stressed upon the use of more accurate models for
better control by deriving a model closer to the reality than
the ones usually used in the literature. In the future we can
design a robust adaptive controller for handling even the
unmatched uncertainties. We can design nonlinear control
for sampled data systems. We can explore geometric non-
linear control or passivity based control.
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