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Abstract: An online actor-critic-based control design strategy is proposed for a variable span and sweep
morphing wing aircraft considering the morphing parameters as control effectors, which makes the
system non-affine in control. By adopting the dynamic property of the morphing system, the augmented
morphing aircraft system is formulated to be affine in control input. Through the online actor-critic-based
control design for the augmented system, the proposed method has an advantage in terms of control
design for the non-affine complex system with uncertainty, because the time-varying internal dynamic
model caused by the morphing system is not required. From the augmented dynamic model, the control
input frequency constraints of the morphing system, which are generally considered slow can also be
addressed. Numerical simulation is performed to demonstrate the effectiveness of the proposed scheme.
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1. INTRODUCTION

Recently, lots of studies on morphing aircraft have been con-
ducted because of its ability that to change its shape during
flight, which enables the aircraft to perform various tasks ef-
ficiently (Ajaj et al. (2015)). Owing to the large-scale shape
change, morphing aircraft has some advantages in extending the
flight envelope and improving the performance of the aircraft,
such as maneuverability and controllability (Prabhakar et al.
(2015, 2016)). Several control strategies have been developed
for the morphing aircraft using linear (Zhang and Wu (2014))
and nonlinear (Young et al. (2006)) control design approaches.
However, most of those approaches have considered the mor-
phing parameter as an open-loop command, which makes it
difficult to take advantage of the benefits of the morphing air-
craft. Once considering the morphing parameters as additional
control inputs, that is, enabled to control the morphing parame-
ters actively, then the system could have redundancy in control
inputs. Then morphing aircraft requires flight control laws ca-
pable of high performance while maintaining stability in the
presence of large variations in aerodynamic forces, moments
of inertia, and mass center. The issues are the identification of
the transient aerodynamic forces and moments of significant
consequence to design the suitable controller. However, it is
difficult to obtain an accurate aerodynamic model of the mor-
phing system, especially for low-cost morphing aircraft under
consideration in this study. In addition, the over-actuated sys-
tems with redundancy in control inputs require optimal control
laws to exploit the better performance of the control system.
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For this reason, an actor-critic-based online control design
method that enables model-free control design can be con-
sidered, which can be implemented by using reinforcement
learning (RL). In terms of the optimal control design, solving
the Hamilton-Jacobi-Bellman (HJB) equation is required in
general (Bellman (1957)). Usually, in the case that the system
is modeled by linear dynamics and the cost function to be
minimized is quadratic in the state and control, the optimal
control is obtained by solving a standard Riccati equation.
On the other hand, when the system is modeled by nonlinear
dynamics, the optimal control is determined by the solutions
to the HJB equation given by a nonlinear partial differential
equation (Abu-Khalaf and Lewis (2005)). It is often compu-
tationally untreatable or impossible to solve. The problem can
be dealt with an idea known as adaptive or approximate dy-
namic programming (ADP) (Lewis and Vrabie (2009); Wang
et al. (2009)). ADP is based on value function approximation
(VFA) that approximates the cost function by using function
approximation, such as neural networks or linear regression,
to obtain the solution of the HJB equation. It is an extension
of adaptive control that draws optimal online control design
techniques and is directly related to the feedback control sys-
tems (Lewis et al. (2012)). This approach has received a lot
of attention from many researchers in recent years, and the
analysis of stability has been actively carried out. The actor-
critic structure consists of following two steps: i) policy eval-
uation by the critic followed by ii) policy improvement. The
actor applies an control policy to the environment, and the
critic assesses the value of that control policy. Based on this
assessment, various schemes can be used to improve the control
policy in the sense that the new policy yields better value than
previous value. In contrast to the generalized policy iteration
(PI) based on a greedy policy improvement using the value
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function, which can be highly problematic in aircraft system,
the actor-critic structure generates a smooth control policy by
using the function approximation. Note that applying RL to
the continuous-time systems is considerably more difficult than
applying it to the discrete-time systems, and fewer results are
available. A method known as integral reinforcement learning
(IRL) allows the application of the RL formulate online optimal
adaptive control methods for the continuous-time systems. This
method finds real-time solutions to the optimal HJB equations
online without knowing the complete system dynamics.

Another challenging issue with the use of the morphing pa-
rameters as control input is that the dynamic model of the
system is represented as a non-affine in control system, because
the aerodynamic effects of the morphing aircraft are non-affine
with respect to the morphing parameters. In view of this, due
to the dynamic nonlinearities which are dependent not only
on the states of the system but also on the control inputs, the
control design for non-affine in control system is a difficult
problem (Boskovic et al. (2004)). Solving this problem with
model approximation may lead to fatal degradation of control
performance. On the other hand, in the control design based on
the exact dynamic model, the nonlinear dynamics caused by the
effect depending on control input should be included. However,
it is practically problematic because of the complexity of the
system, and obtaining the exact dynamic model of the morphing
system is difficult in general. Moreover, most of the control
design methods developed in the past decades are applicable to
nonlinear and affine in control systems, characterized by control
input appearing linearly in the state equation (Isidori (2013)).
The same is true of the control design methods in RL.

The objective of this study is to propose an online adaptive opti-
mal control design based on an actor-critic structure, which can
be applied to a morphing aircraft system considering morphing
parameters as additional control inputs. By using an adaptive
control design scheme, the stability of the closed-loop system
with respect to the morphing parameter variations is guaran-
teed. The main contributions of this paper can be summarized
as follows. (1) The optimal control design of the morphing
aircraft is proposed using the morphing system control actively.
The morphing parameters are considered as additional control
inputs not the open-loop command, which makes the system
have non-affine dependency on control input. Therefore, a vir-
tual dynamic model is augmented with respect to the original
system, which can alleviate the difficulties in the control prob-
lem. In addition, the augmented system can take into account
the limit of the slow morphing actuator dynamics, which is the
general assumption on the morphing aircraft. (2) Even though
the state-of-the-art online ADP algorithms have been actively
studied, the experiments with the complex nonlinear aircraft
plant are rare. Motivated by the result of Vamvoudakis and
Lewis (2010), the problem is extended to more complex and
general system with multiple control inputs including time-
varying morphing parameters and then proved its closed-loop
stability and the convergence towards the optimal solution with
regard to the augmented dynamic system.

This paper is organized as follows. The problem considered
in this study is stated in Sec. 2 and the dynamic model of
morphing aircraft is included. Section 3 contains the actor-
critic-based control design for the continuous-time system and
algorithm. Numerical simulation result is shown in Sec. 4, and
concluding remark is given in Sec. 5.

2. PROBLEM STATEMENTS

The morphing aircraft model considered in this study is shown
in Fig. 1, which has variable-span and variable-sweep wing.
Variable-span and variable sweep morphing are parameterized
by two morphing parameters, η1 and η2. Span and sweep angle
variations are linearly mapped onto [−0.5, 0.5], as summarized
in Tables 1 and 2.

Fig. 1. Morphing parameter definition

Table 1. Span morphing parameter definition

Min. Span Max. Span
Value 1.7 m 2.8 m
Variable η1 = −0.5 η1 = 0.5

Table 2. Sweep morphing parameter definition

Min. Sweep Max. Sweep
Value 0 deg 40 deg
Variable η2 = −0.5 η2 = 0.5

2.1 Dynamic Model of Morphing Aircraft

In this study, the longitudinal motion of morphing aircraft is
considered. The nominal dynamic model is obtained at the
flight condition of airspeed 20 m/s with the altitude 300 m,
where both morphing parameters, denoted as η, are zero. The
longitudinal motion of conventional aircraft is governed by the
following dynamic equations.

mV̇ = FT cos(α + αT ) − D − mg sin γ (1)
mγ̇V = FT sin(α + αT ) + L − mg cos γ (2)

α̇ = q − γ̇ (3)
q̇ = M/Jy (4)

where the state variables are airspeed V , angle of attack α, pitch
rate q, and flight path angle γ, and the control variables are
throttle command δt, elevator deflection δe. The FT is thrust
force and L, D and M is the aerodynamic forces and moment,
which is given as functions of states and morphing parameters
(Lee and Kim (2019)). Note that the morphing parameters are
considered as additional control effectors in this study. Since
the aerodynamic effect of the morphing aircraft is represented
as non-affine with respect to the morphing parameters, the
dynamic model of the system cannot be represented as an affine
in control input form anymore. Therefore, it is inevitable that
bringing in a technical approach to deal with the difficulty.

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

15069



By leveraging the advantages of the model-free structure of
ADP, a simple first-order controller dynamics can be considered
as an augmented system, which enables the affine form of
the total system. As the morphing system dynamics (6) is
introduced, the whole dynamic model of the morphing aircraft
can be represented as

Ẋ = F(X, η) + G(X, η)U (5)
η̇ = A(η) + B(η)ηc (6)

where the state vectors are X = [V, α, q, γ]T and η = [η1, η2]T ,
and the control vectors are U = [δt, δe]T and ηc = [η1c, η2c]T .

As a result, the derived augmented dynamic model of the
morphing aircraft can be represented as

ẋ = f (x) + g(x)u (7)
where the new state vector is x = [XT , ηT ]T and the new control
input vector is u = [UT , ηT

c ]T . Note that the original system
(5) is non-affine in control due to η considered as the control
input, whereas the augmented system (7) is affine in control
by considering η as the state, and ηc as the control input. The
optimal control problem now finds an optimal control input
for U and ηc with a different performance index including ηc
term, which may lead to a different response from the original
problem. Let us assume that the unknown morphing actuator
dynamics can be represented as follows.

ηc = l(ν) (8)
where ν is actuator command, and l(ν) is unknown non-affine
function. In this study, the actor-critic structure does not require
the exact model to solve the optimal control problem. However,
the augmented dynamic model is needed for the smooth formu-
lation in this structure.

2.2 Optimal Control Problem

In this study, considering the above dynamic system, it is
assumed that f (x) and g(x) in (7) is Lipschitz continuous, and
the solution x(t) is unique. The objective of the optimal control
problem is to minimize the following value function.

V(x(t)) =

∫ ∞

t
r(x(τ), u(τ))dτ (9)

where the cost function is r(x, u) = xT Qx + uT Ru with Q and
R being symmetric positive definite matrices with appropriate
dimensions. Note that the optimal control u(t) must not only
stabilize the system but also guarantee that (9) is finite, which
called the control is admissible. For the admissible control,
an infinitesimal equivalent to (9) is the following Bellman
equation.

0 = VT
x ( f (x) + g(x)u) + xT Qx + uT Ru, V(0) = 0 (10)

where Vx is the partial derivative of the value function V(x) with
respect to x. In fact, the value function of the original system is
given as follows.

Vo(t) =

∫ ∞

t
XT QX + UT RU + ηT

c Rηcηcdτ. (11)

The value function of the augmented system can be rewritten as

V(t) =

∫ ∞

t
XT QX + UT RU + ηT Qηη + νT Rννdτ. (12)

According to the value function of the augmented system,
the optimal performance of the original system would be de-
creased. It is assumed that ν and η have the similar value with
ηc in this study. Note that the further study is needed to select
the weighting parameters appropriately for the value function

to guarantee the optimal solution. Let us define the following
continuous-time Hamiltonian (Lewis and Vrabie (2009)).

H(x, u,V) = VT
x ( f (x) + g(x)u) + xT Qx + uT Ru. (13)

Then, the optimal value function is given as

V∗(x) = min
u

(∫ ∞

t
r(x(τ), u(τ))dτ

)
(14)

and it satisfies the following HJB equation.
0 = min

u
H(x, u∗,V∗)

= V∗Tx ( f (x) + g(x)u∗) + xT Qx + u∗T Ru∗
(15)

where V∗(0) = 0. Then, by solving the optimal control problem
given as following equation.

∂H(x, u∗,V∗)
∂u∗

= 0. (16)

Then, the optimal control u∗ can be derived as follows.

u∗ = −
1
2

R−1gT (x)V∗x (x). (17)

In practical, for continuous-time nonlinear system, obtaining
the optimal control is difficult due to that the HJB equation
cannot be solved analytically for the general nonlinear system,
and the complete system dynamics should be known, which is
inevitable to obtain the optimal value function.

In solving the optimal control problem, the policy iteration
(PI) is a typical method of reinforcement learning (RL), which
solves the algorithm consisting of policy evaluation and policy
improvement iteratively.

2.3 Value Function Approximation

The PI algorithm given in Algorithm 1 proceeds by alternately
updating the value (critic) and the control policy (actor) by
solving (15) and (17), respectively. To implement PI online for
a dynamic system with the continuous-time system, the value
function approximation (VFA) can be used that approximates
the value with unknown parameters. And the unknown param-
eters are tuned online exactly as in system identification. Ac-
cording to the Weierstrass higher-order approximation theorem
(Hornik et al. (1990)), there exists a dense basis set {φi(x)} such
that

V(x) =

∞∑
i=1

wiφi(x)

=

L∑
i=1

wiφi(x) +

∞∑
i=L+1

wiφi(x)

= WT
c Φ(x) + ε(x)

(18)

where Φ(x) = [φ1(x), φ2(x), · · · , φL(x)]T is the basis vector,
Wc is the weights vector, and ε(x) converges uniformly to zero
as the number of terms retained L→ ∞.

3. CONTROL DESIGN BASED ON ACTOR-CRITIC
STRUCTURE

In this section, an online actor-critic-based control system,
described in Fig. 2, is designed so that the closed-loop system

Algorithm 1 Policy Iteration (PI)
I Policy Evaluation.

Given policies, solve for the value using (15).
I Policy Improvement.

Update the control policy using (17).
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is asymptotically stable. RL is considerably more difficult to
be applied for continuous-time systems than for discrete-time
systems. As ealier stated, using IRL allows the application of
the RL to formulate an online optimal adaptive control method
for continuous-time systems (Vamvoudakis et al. (2014)). The
control policy as the solution to optimal HJB equation can
be found online in real-time without knowing the internal
dynamics of the system, f (x).

Fig. 2. Actor-critic-based control system

3.1 Critic Network using Value Function Approximation

The weights of the critic network, Wc, are unknown and there-
fore the weight estimates can be used. Then, the output of the
critic network as follows.

V̂(x) = ŴT
c Φ(x) (19)

where Ŵc is the currently known value of the critic network
weight. Recall that Φ(x) is the predefined basis vector with N
the number of elements. Then, the approximation error can be
represented as follows.

ε = ρ + ŴT
c Φ(x(t)) − ŴT

c Φ(x(t − T )) (20)

where ρ =
∫ t

t−T r(x(τ), u(τ))dτ. Equation (20) can be rewritten
as

ŴT
c ∆Φ(x(t)) = ε − ρ (21)

where ∆Φ(x(t)) = Φ(x(t)) − Φ(x(t − T )). It is desired to select
Ŵc to minimize the following squared residual error.

Ec =
1
2
εTε. (22)

Then, Ŵc(t) → Wc. The tuning law for the critic network
weights as the normalized gradient descent algorithm is se-
lected as follows.

˙̂Wc = −ac
∂Ec

∂Ŵc

= −ac
∆ΦT (x(t))(

1 + ∆ΦT (x(t))∆Φ(x(t))
)T

(
ρ + ∆ΦT (x(t))Ŵc

)
.

(23)

Note that the data (∆Φ(t), ρ(t)) are required at each time in the
tuning algorithm.

Let us define the critic network weight estimation error is as
W̃c = Wc−Ŵc. By substituting (20) in (23), the dynamics of the
critic network weight estimation error can be obtained as

˙̃Wc = −ac∆̄Φ(t)∆̄ΦT (t)W̃c + ac∆̄Φ(t)
ε

1 + ∆ΦT (t)∆Φ(t)
(24)

where ∆̄Φ(t) = ∆Φ(t)/(1 + ∆ΦT (t)∆Φ(t)). To guarantee the
convergence of Ŵc to Wc, following assumptions are required.

Assumption 1. Persistence of excitation (PE). Let the signal
∆̄Φ(t) be persistently excited over the interval [t − T, t], i.e.,

there exist constants β1 > 0, β2 > 0, and T > 0 such that, for all
t,

β1I ≤ S 0 ≡

∫ t

t−T
∆̄Φ(τ)∆̄ΦT (τ)dτ ≤ β2I (25)

Assumption 2. For a given compact set, the approximation error
and its gradient are bounded.

Assumptions 1 and 2 are standard assumptions in approxima-
tion based control. Note that, from (21), the regression vector
∆Φ(t), or the normalized vector ∆̄Φ(t) must be persistently
excited to solve for Ŵc in a least squares sense. Note that the
basis set should be defined appropriately including the morph-
ing parameter η, by using random noise or sinusoidal signal,
in order that the whole system may activate (Assumption 1), in
this study.

3.2 Actor Network using Adaptive Control Approach

The actor network for policy improvement step in PI by using
VFA is given as

u(x) = −
1
2

R−1gT (x)∇ΦT Wc (26)

with the critic network weights Wc unknown. Therefore, the
control policy using the estimate of the actor network is defined
as

u2(x) = −
1
2

R−1gT (x)∇ΦT Ŵa (27)

where Ŵa is the current estimated value of the actor network
weight. The approximate HJB equation can be represented as∫ t

t−T

(
−Q(x) −

1
4

WT
c D(x)Wc + ε(x)

)
dτ

= WT
c ∆Φ(x(t))

(28)

where D(x) = ∇Φ(x)g(x)R−1gT (x)∇ΦT (x), and Wc is the ideal
unknown weights of the critic and actor networks that solve
the HJB. The tuning laws for the critic and actor networks
can be obtained that guarantee the convergence to the optimal
control along with closed-loop stability, given by the following
theorems.
Theorem 1. Let tuning law for the critic network be provided
by

˙̂Wc = −ac
∆Φ(x(t))T(

1 + ∆Φ(x(t))T ∆Φ(x(t))
)2(∫ t

t−T

(
−Q(x) −

1
4

ŴT
a D(x)Ŵa

)
dτ + ∆Φ(x(t))T Ŵc

) (29)

where ∆Φ(x(t)) =
∫ t

t−T ∇Φ(x)( f + gu2)dτ, and by assumptions,
u2 is persistently excited. Let the tuning law of the actor
network is selected as

˙̂Wa = −aa(kaŴa − kcŴc)

+
1
4

aaD(x)Ŵa
∆Φ(x(t))T

(1 + ∆Φ(x(t))T ∆Φ(x(t)))2 Ŵc

(30)

where ac and aa are the learning rates, and kc and ka are pos-
itive tuning parameters, which can be chosen appropriately to
ensure stability. Then, the closed-loop system state is uniformly
ultimately bounded (UUB), and the critic network weights error
W̃c = Wc − Ŵc and the actor network weights error W̃a = Wc −

Ŵa are UUB.

Proof. The convergence proof is based on Lyapunov analysis.
Let us consider the Lyapunov function.

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

15071



L = V(x) +
1
2

(W̃c
T a−1

c W̃c) +
1
2

(W̃a
T a−1

a W̃a) (31)

Then, the derivative of the L is given by

L̇ = V̇(x)+W̃c
T a−1

c
˙̃Wc+W̃a

T a−1
a

˙̃Wa = L̇v(x)+L̇c(x)+L̇a(x) (32)
For the first term,

L̇v(x) = −xT Qx −
1
4

WT
c DWc +

1
2

WT
c DW̃a + εHJB(x) + ε1(x)

≡ ˙̄Lv(x) +
1
2

WT
c DW̃a + ε1(x)

(33)

For the second term,

L̇c(x) = w̃T
c

σ

(1 + σTσ)2

(
−σT W̃c +

1
4

W̃T
a DW̃a + εHJB(x)

)
≡ ˙̄Lc(x) +

1
4

W̃T
c

σ

(1 + σTσ)2 W̃T
a DW̃a

(34)

Finally, by adding the first and second terms

L̇(x) = ˙̄Lv + ˙̄Lc + ε1(x) − W̃T
a

[
a−1

a
˙̂Wa −

1
4

DŴa
σ

(1 + σTσ)2 Ŵc

]
+

1
2

W̃T
a DWc +

1
4

W̃T
a DWc

σ

(1 + σTσ)2 W̃c

−
1
4

W̃T
a DWc

σ

(1 + σTσ)2 Wc +
1
4

W̃T
a DW̃a

σ

(1 + σTσ)2 Wc

(35)

and we can define the actor tuning law as

˙̂Wa = −aa

(
(kaŴa − kcŴc) −

1
4

DŴa
σ

(1 + σTσ)2 Ŵc

)
(36)

By choosing the parameter such that L exceeds a certain bound,
then, it is shown that L̇ is negative. Therefore the closed-
loop system and weight parameters are UUB according to the
standard Lyapunov extension theorem. The rest of the proof is
similar with Vamvoudakis and Lewis (2010).
Theorem 2. Optimal solution. Suppose the hypotheses of The-
orem 1 hold. Then,
H(x, û2, Ŵc) ≡

∫ t
t−T (ρ − ε)dτ + ŴT

c Φ(x(t)) − ŴT
c Φ(x(t − T )) is

UUB, where û = − 1
2 R−1gT (x)∇ΦT Ŵc.

That is, Ŵc converges to the approximate HJB solution.
Also, û2(x) converges to the optimal solution, where û2 =
− 1

2 R−1gT (x)∇ΦT Ŵa.

Proof. See Vamvoudakis et al. (2011)

4. NUMERICAL SIMULATION

Numerical simulation is performed to demonstrate the per-
formance of the proposed control design. In this study, the
variable-span and variable-sweep morphing wing aircraft is
modeled as a nonlinear system consisting of the typical air-
craft dynamics and morphing system dynamics. The actuator
dynamics are modeled considering the saturation of the actu-
ator, and the simulation time and the convergence criterion is
set to 100 seconds and 10−5, respectively. The nominal flight
condition is a trim condition with V = 20 m/s at h = 300 m,
and the initial condition is given by that the flight path angle
is perturbed at the trim condition. Simulations are conducted
for the optimal control problem with the perturbed initial con-
dition. The basis function Φ is chosen as the quadratic vector in
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Fig. 4. Control input trajectories (scenario 1)
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Fig. 5. Control input trajectories (scenario 2). By using morph-
ing parameters more actively, the use of the throttle can be
reduced.

the original states and morphing parameters including ε which
denotes some exciting terms.

Figures 3 - 5 show that the state trajectories with several learn-
ing rates and control input trajectories with a fixed learning
rate, respectively. Through the state trajectories, it can be seen
that the closed-loop system achieves the UUB condition in this
regulation problem. It is shown that the solution converges to
the trim value according to the smooth control trajectories and
the control performance can be achieved even when the con-
stant wind disturbance applied to the system, which is a typical
advantage compared to the model-based controller. Figure 3
shows that the performance of learning is improved when the
learning rate increases. In figs. 4 and 5, two scenarios that
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Fig. 6. Actor and critic parameter error trajectory

have different weighting matrices on the control are compared.
By considering the morphing parameters as control input, it is
shown that the use of the throttle can be reduced according
to the pre-design weighting parameters of the cost function.
Comparing to the generalized PI that takes the greedy action to
maximize the value, which becomes problematic, in this paper,
by using the function approximation, the continuous policy tra-
jectory can be generated via the actor-critic structure. The rate
limit of the morphing system can also be covered by choosing
the parameter of the morphing system dynamics appropriately.
The norm of the difference between actor and critic networks
weight parameters are shown in Fig. 6. Both of the critic and
actor parameters converge after about 40 seconds to the optimal
values by arriving at the convergence criterion denoted as the
broken line. The critic and actor networks converge to the same
values, which shows that the actor network also converges to the
optimal values. By adjusting the tuning parameters, while these
transient properties can be changed, the actor network always
converges to the value of the critic network.

5. CONCLUSION

Online optimal control design strategy for a variable-span and
variable-sweep morphing wing aircraft was proposed based on
the actor-critic structure. Considering the morphing parameters
as control input, the dynamic model of the morphing aircraft
has a dependency on the varying control input. Therefore, the
augmented dynamic model was derived, which is an affine in
control input form, using first-order dynamics for the morphing
system. By adjusting the system parameter, the slow dynamic
property of the morphing system can be treated. The system
internal dynamics should be computed carefully according to
the variation of control input due to the effect of morphing pa-
rameter variation as a disturbance on the internal system. Com-
paring with the model-based control design where the dynamic
model of the system should be derived by depending on the
morphing parameter variation, the online actor-critic method,
which does not require the internal dynamics, has a great advan-
tage of the computational efficiency. The stability of the closed-
loop system with the adaptation law derived by the proposed
control design was proved by the Lyapunov theory. Numerical
simulation was conducted to demonstrate the effectiveness of
the proposed approach by applying it to the morphing aircraft
without knowing the internal system dynamics. Simulation re-
sults showed that the proposed control design provides good
performance with the actor and critic update laws, even when
the internal system dynamics is unknown.
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