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Abstract: The novel control algorithm for linear time-invariant systems under disturbances and
measurement noises is proposed. The designed control law, based on the noise and disturbance
estimation, ensures the accuracy in steady state depending on the disturbance, only one
component of noise vector and its first derivatives. Sufficient conditions in terms of linear matrix
inequality (LMI) providing stability of the closed-loop system are obtained. The simulations
show efficiency of the proposed method compared with existing ones.
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1. INTRODUCTION

The algorithms from Ahrens and Khalil (2009); Anderson
and Moore (2005); Astolfy and Marconi (2015); Haykin
(1991); Paarmann (2001); Khlebnikov (2017); Prasov and
Khalil (2013); Sanfelice and Praly (2011); Wang et al.
(2015) are based on disturbance and noise attenuation
approaches, using filters and high-gain feedback. The accu-
racy in steady state, given by these algorithms, sufficiently
depends on upper bounds of disturbances, noises and
its derivatives. In contrast to Ahrens and Khalil (2009);
Astolfy and Marconi (2015); Khlebnikov (2017); Prasov
and Khalil (2013); Sanfelice and Praly (2011); Wang et
al. (2015) there are disturbance compensation methods
allowing to effectively reject disturbances without using
filters or high-gain feedback and increase the accuracy
in steady state. The idea of disturbance compensation
method consists in on-line disturbance estimation and
using this estimate to design the control law. As a re-
sult the value of the control signal is opposite to the
value of the disturbance estimate. The classical results of
disturbance decoupling problem (DDP) are considered in
Isidori (1995); Wonham (1979). Currently, there are many
solutions of DDP proposed for various kinds of plant (see
e.g. Conte et al. (2015), Wen et al. (2016)). In Chen et al.
(2015) the DDP is solved by the linear quadratic Gaussian
optimization and H∞-optimization assuming that distur-
bances are random or belong to the class of L2. The
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DDP with optimal compensation of the arbitrary bounded
disturbances is formulated in Yakubovich (1975) and for
some special cases this problem is solved in Vidyasagar
(1986). The full solution of the DDP with optimal distur-
bance compensation is obtained in Dahleh and Pearson
(1987) by using l1-optimization methods. However, the
algorithms based on l1-optimization have high dynamical
order and weak convergence to an equilibrium point. In
contrast to Dahleh and Pearson (1987); Vidyasagar (1986);
Yakubovich (1975) the quality of transients can be im-
proved if disturbances are described by the sum of sinu-
soidal signals, see for instance Fedele and Ferrise (2013);
Marino and Tomei (2002); Pigg and Bodson (2010); Xia
(2002). However, the complexity of calculation and imple-
mentation of algorithms Fedele and Ferrise (2013); Marino
and Tomei (2002); Pigg and Bodson (2010); Xia (2002)
significantly depends on number of sinusoidal signals.

Thus, disturbance compensation algorithms Chen et al.
(2015); Conte et al. (2015); Dahleh and Pearson (1987);
Fedele and Ferrise (2013); Isidori (1995); Marino and
Tomei (2002); Vidyasagar (1986); Wen et al. (2016); Won-
ham (1979); Xia (2002); Yakubovich (1975) provide bet-
ter accuracy in steady state than disturbance attenua-
tion algorithms Ahrens and Khalil (2009); Anderson and
Moore (2005); Astolfy and Marconi (2015); Haykin (1991);
Paarmann (2001); Khlebnikov (2017); Prasov and Khalil
(2013); Sanfelice and Praly (2011); Wang et al. (2015)
without noises. However, these disturbance compensation
algorithms cannot be directly applied to systems in pres-
ence of noises.

Differently from Chen et al. (2015); Conte et al. (2015);
Dahleh and Pearson (1987); Fedele and Ferrise (2013);
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Isidori (1995); Marino and Tomei (2002); Vidyasagar
(1986); Wen et al. (2016); Wonham (1979); Xia (2002);
Yakubovich (1975), the disturbance and noise compen-
sation method is obtained in Furtat (2017). In contrast
to Khlebnikov (2017) and Stoorvogel (1992) in Furtat
(2017) the disturbances and noises are different and ma-
trices of the plant model have more general structure.
Also, differently from Fedele and Ferrise (2013); Marino
and Tomei (2002); Pigg and Bodson (2010); Xia (2002),
in Furtat (2017) disturbances and noises may be non-
sinusoidal and unlike Astolfy and Marconi (2015); Wang
et al. (2015) in Furtat (2017) the noises can have an
arbitrary frequency spectrum. Also, in contrast to Ahrens
and Khalil (2009); Anderson and Moore (2005); Astolfy
and Marconi (2015); Haykin (1991); Paarmann (2001);
Khlebnikov (2017); Prasov and Khalil (2013); Sanfelice
and Praly (2011); Wang et al. (2015) in Furtat (2017) the
accuracy in steady state depends on the first derivative of
disturbances and only one component of vector of noises.
Thus, algorithm Furtat (2017) is effective under distur-
bances and noises with large magnitudes.

Despite the abovementioned advantages of algorithm Fur-
tat (2017), it is available only for measured state vec-
tor and scalar control signal. Thus, the present paper is
dedicated to development of approach Furtat (2017) for
solution of these problems.

The rest of the paper is outlined as follows. The problem
formulation is presented in Section 2. In Sections 3, 4
the noise estimation algorithm and the control law are
designed. In Section 4 the equation of the closed-loop
system and main results are given. The simulations illus-
trate an efficiency of the proposed scheme and confirm
analytical results in Section 5. Section 6 collects some
conclusions. Finally, the proof of theorems are considered
in Appendixes.

The following notations are used in the paper: R is the
set of real numbers; I is the identity matrix; A+ is the

left pseudo-inverse matrix to A; Ej = [0, ..., 0, 1, 0, ..., 0]
T

is the vector of the corresponding dimension where the
jth component is equal to 1 and other components are
equal to zero; Ẽ = [E1, ..., Er−1, Er+1, ..., Em]; | · | and
‖ · ‖ denotes Euclidean norm of a vector and matrix
respectively; p = d

dt .

2. PROBLEM STATEMENT

Consider a plant model in the form

ẋ = Ax+Bu+Bf(t), y = Lx, (1)

z = y + ξ, (2)

where x = x(t) ∈ Rn is the state vector, u = u(t) ∈ Rl
is the control signal, y = y(t) ∈ Rm is the unmeasured
output signal (m ≥ 2), the signal z = z(t) ∈ Rm is
available for measurement, ξ = ξ(t) = [ξ1(t), ..., ξm(t)]T

is the bounded noise with bounded component ξ̇r, r ∈
{1, 2, ...,m}. Denote χ1 = lim

t→∞
sup
t≥0
|ξr(t)| and χ2 =

lim
t→∞

sup
t≥0
|ξ̇r(t)|. The unknown function f = f(t) ∈ Rl

satisfies the conditions χ3 = lim
t→∞

sup
t≥0
|f(t)| and χ4 =

Fig. 1. Structure of the control scheme.

lim
t→∞

sup
t≥0
|ḟ(t)|. The matrices A ∈ Rn×n, B ∈ Rn×l, D ∈

Rn×l, L ∈ Rm×n are known and A is Hurwitz.

It is necessary to design the algorithm that provides the
input-to-state stability of (1) leading to ultimate bound

lim
t→∞

sup
t≥0
|y(t)| ≤ δ, (3)

where δ = Θ(
∑4
i=1 χi) is obtained in Theorem 1 below,

Θ(χ) for χ ∈ R means that lim
χ→0

Θ(χ)
χ = C, C is a

constant. Thus, the accuracy in steady state depends
only on disturbance φ, rth component of the noise vector
and its first derivatives. In Ahrens and Khalil (2009);
Anderson and Moore (2005); Astolfy and Marconi (2015);
Furtat et al. (2015); Haykin (1991); Paarmann (2001);
Khlebnikov (2017); Prasov and Khalil (2013); Sanfelice
and Praly (2011); Wang et al. (2015) the accuracy δ
depends on disturbance φ, all component of noise vector
and its derivatives.

Let us briefly consider the main steps of the control scheme
synthesis. Plant equations (1), (2) contain two independent
unknown signals f and ξ. Therefore, at least two inde-
pendent measurements of the plant output are required
for simultaneous compensation of f and ξ, consequently,
m ≥ 2. Thus, the algorithm synthesis consists of two steps.
At the first step the new noise vector without rth compo-
nent ξ̃ = [ξ1, ..., ξr−1, ξr+1, ..., ξm]T is estimated in Section

3. To this end, the estimation algorithm of ξ̃ is designed
(Estimator ξ̃ in Fig. 1). As a result, only the component ξr
influences on the accuracy of the noise estimation, but not
the whole vector ξ. At the second step the estimate ŷ (see
Fig. 1) of the plant output y is constructed in Section 4 by

using information about ξ̂. Further, the unknown function
f is estimated and compensated by using the control law
(”Control law” in Fig. 1).

3. NOISE ESTIMATION ALGORITHM

In the present section an algorithm for estimation of the
vector ξ̃ = [ξ1, ..., ξr−1, ξr+1, ..., ξm]T is constructed. First

we obtain equation in variable ξ̃ and then design the
estimate of ξ̃.

Eliminate the rth equation in (2) and rewrite the result

w.r.t. ξ̃. To this end, pre-multiplying (2) by ẼT, we have

ξ̃ = ẼTz − ẼTLx. (4)

It follows from (2) that the variables x and ξ are related,
and x is contained in (4). However, the variable x cannot
be expressed through ξ from (2). Therefore, according to

the structures of (1), (2) and taking into account ξ = Ẽξ̃+
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Erξr, introduce the new variable x̃ = L+[z − Ẽξ̃ − Erξr].
Considering (2) and (4), we have x−x̃ = ẼTLA(I−L+L)x.
Integrating (1) w.r.t. t and substituting results in (4), we
get

ξ̃ =

∫ t

0

[
Ãξ̃(s)− Ã1z(s)

]
ds+ ẼTz − ẼTLx(0)

−
∫ t

0

[
B̃u(s) + B̃f(s)− Ã2ξr(s) + Ã3x(s)

]
ds,

(5)

where

Ã = ẼTLAL+Ẽ, Ã1 = ẼTLAL+, Ã2 = ẼTLAL+Er,
Ã3 = ẼTLA(I − L+L), B̃ = ẼTLB.

Obviously, expression (5) cannot be used to obtain the

information about the signal ξ̃, because (5) contains un-
measured signals. However, following the structure of (5),

introduce the algorithm for estimation of the vector ξ̃
(Estimator of ξ̃ in Fig. 1) in the form

ξ̂ =

∫ t

0

[
Ãξ̂(s)− Ã1z(s)

]
ds+ ẼTz, (6)

where ξ̂ is the estimate of ξ̃. To evaluate the performance
of noise estimator (6), consider the following error

e = ξ̃ − ξ̂. (7)

Differentiate (7) along the trajectories of (5), (6) and
rewrite the result in the form

ė = Ãe− B̃u− B̃f + Ã2ξr − Ã3x. (8)

The ultimate bound of |e| depends on the values of u and f .
Thus, appropriate choice of the control u allows to reduce
the influence of f on the value of |e|. Therefore, the next
section is devoted to design the control law u compensated
the influence of f .

4. CONTROL LAW DESIGN AND MAIN RESULT

Now we obtain information about unknown function f and
use this information for design the control law u. First
clarify information about the output signal y by using the

signal ξ̂ given by (6). Let ŷ be the estimate of y which
introduced as (see Fig. 1)

ŷ = z − Ẽξ̂. (9)

The following assumption is needed for derivation the
control law.

Corresponding to (2), (7) and ξ = Ẽξ̃ + Erξr, rewrite (9)

in the form ŷ = Lx+ Ẽe+Erξr. Taking into account (1),
differentiate ŷ w.r.t. t and rewrite the result as follows

LBf = ˙̂y − LAx− LBu− Ẽė− Er ξ̇r. (10)

Consider the method Furtat (2017) for design the control
law. It follows from (1) that unknown function f can be

compensated if the control law is chosen such that u = −f .
However, the signal f cannot be used from (10), because

it depends on unmeasured signals x, ė and ξ̇r. Therefore,
define the control law u as follows

u = −f̂ , (11)

where f̂ is the estimate of f . According to the structure

of (10) and the second equation of (1), define the signal f̂
in the form

f̂ = ˙̂y − LAL+ŷ − α(p)LBu. (12)
Here α(p) is a scalar differential operator and p = d/dt.
Let us explain the choice of the operator α(p). Substituting
(12) into (11), we have

[1− α(p)]u = − ˙̂y + LAL+ŷ. (13)

Considering α(p) = 1 − µp and taking into account (13),
introduce the control law in the form

u = − 1

µ

[
ŷ − LAL+

∫ t

0

ŷ(s)ds]. (14)

Before formulation the main result, consider the following
notations

A21 =
1

µ
[c0A−BLA(I − L+L)],

A22 =
1

µ
[−c0I + µA], A23 =

1

µ
BLAL+Ẽ,

A24 = − 1

µ
BẼ, B21 = − 1

µ
B,

B23 =
1

µ
BLAL+Er, B24 = − 1

µ
BEr.

A41 =
1

µ
(B̃ − c0ẼT)LA(I − L+L),

A43 =
1

µ
[c0Ã− B̃LAL+Ẽ],

A44 =
1

µ
[−c0I + µÃ+ B̃Ẽ],

B41 =
1

µ
B̃, B43 =

1

µ
[c0Ã2 − B̃LAL+Er],

B44 =
1

µ
[B̃Er + µÃ2].

Ae =

 0 I 0 0
A21 A22 A23 A24

0 0 0 I

A41 −Ã3 A43 A44

 ,
Be =

 0 0 0 0
B21 D B23 B24

0 0 0 0

B41 −D̃ B43 B44

 ,
C1 = [ I 0 0 0 ] , C2 = [ 0 I 0 0 ] ,

Ψ̃1 = α2
1C

T
1 C1,

Ψ̃2 = 2α2
2C

T
2 C2 + 2α2

3C
T
1 C1,

Ψ11 = AT
e P + PAe + 2βP + τ1Ψ̃1 + τ2Ψ̃2.

Setting xe = col{x, ẋ, e, ė} and d = col{ϕ, ϕ̇, ξr, ξ̇r},
rewrite the closed-loop systems in the form

ẋe = Aexe +Bed. (15)
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The following result is in order.

Theorem 1. Let Assumption 1 and 2 hold. Consider the
control system consisting of plant (1), (2), noise estimator
(6) and control law (14), (9). Given coefficients β > 0 and
µ > 0, let there exist ρ > 0 and the matrix P > 0 such
that the following LMI holds

Ψ =

[
Ψ11 PBe
∗ −ρI

]
< 0. (16)

Here ”*” denotes a symmetrical block of a symmetric
matrix. Then algorithm (6), (9), (14) ensures goal (3).

Theroem 1 is proved in Appendix A. In Theorem 1 LMI
(16) depends on unknown parameter c0 which belongs to
the known set [cmin, cmax]. Therefore, we formulate the
following result to verify (16).

Theorem 2. LMI (16) is feasible if the following two LMIs
are feasible

Ψ− < 0 and Ψ+ < 0, (17)

where Ψ− = Ψ
∣∣
Ae=A−

e , Be=B−
e

, Ψ+ = Ψ
∣∣
Ae=A+

e , Be=B+
e

,

A−e = Ae
∣∣
c0=cmin

, A+
e = Ae

∣∣
c0=cmax

, B−e = Be
∣∣
c0=cmin

,

B+
e = Be

∣∣
c0=cmax

.

Remark. It follows from (8) that the error e depends only
on one component ξr of noise vector ξ. Assume a priori
we know that the vector ξ has two components ξi and ξj
such that lim

t→∞
sup
t≥0
|ξi(t)| < lim

t→∞
sup
t≥0
|ξj(t)|. Then, choosing

r = i, the value of lim
t→∞

sup
t≥0
|e(t)| can be reduced. Also, if

we know the smallest component of the vector ξ then it is
recommended to choose this one as rth component.

5. EXAMPLES

Consider plant (1), (2). The following parameters are

known: A =

[−3 1 0
−3 0 1
−1 0 0

]
, B =

[
0 1
1 0
3 2

]
, L =

[
1 0 0
0 1 0

]
. Other

unknown parameters and functions in (1), (2) are defined
below.

Choose parameters in algorithm (6), (9), (14). Employing

r = 2 and L+ = LT, we get Ã = −1, Ã1 = [−1 1],

LAL+ =

[
−1 1
−3 0

]
.

Verify the conditions of Theorem 2 using Yalmip package.
LMIs given by (17) are feasible for µ ∈

[
10−6, 0.09

]
in

(14). Simulations in Matlab Simulink show that solutions
of (1) are bounded for µ ∈ (0, 0.3].

Compare the proposed results with algorithms from Furtat
et al. (2015) and Khlebnikov (2017). Let µ = 0.01 in (14).
The robust algorithm Furtat et al. (2015) is presented by

u = −100v, v =

[
v1

1 + 2v2
1 + v3

1

v1
2 + 2v2

2 + v3
2

]
,

v1
i = zi, v

2
i = zi−zi(t−0.01)

0.01 , v3
i =

v2i−v
2
i (t−0.01)
0.01 , i = 1, 2.

The algorithm Khlebnikov (2017) are defined as

u = −Jẑ, ˙̂z = Aẑ +Bu+ S(ẑ − z),

where the matrices J =

[
0.09 0.62 1.13
1.12 0.11 1.26

]
and S =

−

[
0.27 0.66 0.28
0.69 2.53 2.99
0.24 2.95 6.27

]
are calculated such that the ellipsoid

xTPx = 1, P > 0 has the smallest semiaxes.

Consider plant (1), (2) with x(0) = [1 1 1]T, c0 = 0,
ξ1 = 1+10 sin(3t), ξ2 = 0.01 sin(0.8t), ψ and ϕ are given by
(??). Fig. 2 and Fig. 3 show the transients of y = [y1 y2]T

obtained by algorithms Furtat et al. (2015), Khlebnikov
(2017) and the proposed one.
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Fig. 2. The transients of y(t) for the algorithms from
Furtat et al. (2015) (a) and Khlebnikov (2017) (b).
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Fig. 3. The transients of y(t) for the proposed algorithm.

The transients obtained by algorithms Furtat et al. (2015)
and Khlebnikov (2017) depend on signals ξ1, ξ2, while the
transients obtained by the proposed algorithm depend on
signal ξ2 only. Also, the simulations have been demon-
strated that upper bound of µ obtained by (17) has a
permissible deviation from the upper bound of µ obtained
by Matlab Simulink.

6. CONCLUSIONS

The output feedback control algorithm with compensation
of disturbances and measurement noises is designed for
nonlinear multi-input multi-output systems. In contrast
to Ahrens and Khalil (2009); Astolfy and Marconi (2015);
Pigg and Bodson (2010); Khlebnikov (2017); Prasov and
Khalil (2013); Sanfelice and Praly (2011); Wang et al.
(2015) in the presented paper the dimension of noise can be
equal to the dimension of plant output, disturbances and
noises are independent, and the control law has only one
design parameter µ. Sufficient conditions in terms of linear
matrix inequalities provide the stability of the closed-
loop system. The accuracy in the steady state depends
on the disturbance, one component of noise and its first
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derivatives. Numerical examples illustrate the efficiency of
the proposed method under smooth and random noises
and disturbances.
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Appendix A. PROOF OF THEOREM 1

For the input-to-state stability analysis of (15) consider
the following Lyapunov function

V = xT
e Pxe. (A.1)

Find the condition such that the following inequality holds

V̇ + 2βV − ρdTd ≤ 0. (A.2)

To this end, employing (15) and (A.1), rewrite (A.2) as
follows

xT
e

(
AT
e P + PAe

)
xe

+2xT
e PBed+ 2βxT

e Pxe − ρdTd ≤ 0.
(A.3)

Denoting z = col{xe, d} the closed-loop system is stable if
LMI (16) holds.
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Now let us proof the boundedness of all signals in the
closed-loop system. Since xe is ultimate bounded, the
signals x, ẋ, e and ė are ultimate bounded. The ultimate

boundedness of z follows from (2). The signal ξ̂ is bounded
from (7). The signal ŷ is bounded from (9). The bound-

edness of
∫ t

0
ŷ(s)ds follows from (14). Thus, the function∫ t

0

[
Ãξ̂(s)− Ã1z(s)

]
ds is bounded from (6). Consequently,

all signals are bounded in the closed-loop system.

Appendix B. PROOF OF THEOREM 2

The matrix Ψ is affine w.r.t. the matrices of the system
(15). It follows from (4) that the matrices Ae and Be are
linearly dependent on the parameter c0. Thus, according
to Remark 2 in Fridman (2010), LMI (16) is feasible if two
LMIs (17) are feasible.
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