
An Optimal Distributed Fault Detection
Scheme for Large-Scale Systems with

Deterministic Disturbances

Jiarui Zhang ∗ , Linlin Li ∗

∗ Institute for Automatic Control and Complex Systems (AKS),
University of Duisburg-Essen, 47057 Duisburg, Germany,
(e-mail: jiarui.zhang@uni-due.de, linlin.li@uni-due.de).

Abstract: The main objective of this paper is to develop an optimal distributed fault detection
(FD) approach for large-scale systems in the presence of unknown deterministic disturbances
using the measurement of sensor networks. To be specific, the design approach consists of two
phases: the distributed offline training phase and the online implementation phase. The offline
training phase includes distributed iterative learning and average consensus algorithm. It is
worth mentioning that, the distributed approach avoids enormous computational costs and
complex information exchanges. Finally, a numerical example is illustrated to show that the
distributed approach can successfully and efficiently accomplish the FD task.
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Notation: The notation adopted throughout this paper is
fairly standard. In addition, we use

‖x(k)‖RMS ‖x(k)‖RMS =

(
1

m

m−1∑
l=0

x>(k + l)x(k + l)

)1/2

(A,B,C,D) shorthand for C(zI −A)−1B +D
G∗(z) shorthand for G>(z−1)
λmax(A) maximum eigenvalue of matrix A
ρ(A) spectral radius of matrix A
1 column vector with all elements one

1. INTRODUCTION

In last decades, intensive attention has been paid to
the distributed FD strategies, which provide the possibil-
ity to combine advanced FD approaches, as reported in
(Gao et al., 2015), and the distributed methods (Garin
and Schenato, 2010) for more effective and automatic
approaches in large-scale system when compared with
centralized manners. For such methods, each subsystem
can itself execute the FD algorithms based on the local
measurement data as well as the data received via net-
works from its neighboring subsystems. For model-based
approaches, (Olfati-Saber, 2005) provides us an approach
to use consensus technique to achieve Kalman filter in a
distributed way. (Boem et al., 2016) deals with the FD task
for interconnected systems with measurement noise and
time delays. (Zhang and Yang, 2018) presents a distributed
method for detecting and isolating the faults in multi-
agent systems. For data-driven instances, in (Jiang et al.,
2017) and (Chen et al., 2019), distributed data-driven
fault detection approaches based on canonical correlation
analysis (CCA) are proposed to address the process moni-
toring problem. In addition, based on principal component
? This work has been supported by the programme for the promotion
of excellent early career researchers in University of Duisburg-Essen.

analysis (PCA), (Jiang et al., 2015) proposes a fault-
relevant variable selection and bayesian inference-based
distributed method for efficient distributed FD. However,
most of them deal with the system influenced by stochastic
noise.

Motivated by aforementioned observations, this paper fo-
cuses on developing a distributed fault detection approach
for large-scale systems with deterministic disturbances us-
ing sensor network. The approach consists of two parts:
distributed offline training, which is designed to train
important parameters, and distributed online implementa-
tion, which is applied to achieve distributed FD purpose.

This paper is organized as follows: in Section 2, system
model, sensor network model and the optimal centralized
FD approach are briefly described. It is followed by the cor-
responding distributed realization scheme, which consists
of distributed offline learning and online implementation
in Section 3. A numerical example shows the effectiveness
of the distributed algorithm in Section 4.

2. PRELIMINARIES AND PROBLEM
FORMULATION

In this section, we introduce the models of the dynamic
system and sensor network, an optimal FD scheme and
the problem formulation.

2.1 Process Description

We consider an linear time-invariant (LTI) system:

x(k + 1) = Ax(k) + Eldl(k) + Eff(k), (1)

where x(k) ∈ Rq denotes the state vector, f(k) ∈ Rf
denotes the fault, dl(k) ∈ Rp denotes the unknown
deterministic disturbance, which is norm bounded by

‖dl(k)‖RMS 6 δd.
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To monitor the process, the system under consideration is
equipped with a sensor network, which consists of n sensor
nodes and each sensor node is modelled by

yi(k) = Cix(k) + Fidl(k), (2)

where i ∈ {1, · · · , n} denotes the index of sensor node and
yi(k) ∈ Rmi is the measurement of sensor node i.

The communication topology of sensor network is de-
scribed by an undirected and connected graph G = {N , E},
where N = {1, · · · , n} denotes the node set and E ⊆ {N ×
N} stands for the edge set. The edge (i, j) ∈ E between two
nodes i and j means that they are neighbors and the data
can be transferred between them, and in undirected graph
(i, j) ∈ E also means (j, i) ∈ E . In a connected graph, each
two nodes are connected by at minimum one path, which
consists of several edges. We define d(i, j) as the minimal
length of the path connecting node i and j,

Dg = max
i,j∈N

d(i, j)

as the diameter of G, Ni as the set of all neighbors of node
i, and ci = |Ni| as the cardinality of Ni. Moreover, we set

Σ = [Σij ], Σij = FiF
>
j . (3)

In this study, the communication topology is established
based on the correlation relation between Fi and Fj , i.e.,

i, j ∈ {1, · · · , n}, j ∈ Ni if Σij 6= 0 and i 6= j,

i, j ∈ {1, · · · , n}, j /∈ Ni if Σij = 0.
(4)

2.2 An Optimal FD Scheme

In this section, we recall the existing optimal FD scheme
for system (1) proposed in (Ding, 2008), which lays the
basis for further distributed studies.

Under the assumption that all Ci, Fi and yi, i ∈
{1, · · · , n}, can be collected at one central station, we stack
all sensor nodes together to model the overall system as

x(k + 1) = Ax(k) + Eldl(k) + Eff(k)

yl(k) = Clx(k) + Fldl(k)
. (5)

where

yl(k) =

y1(k)
...

yn(k)

 , Cl =

C1

...
Cn

 , Fl =

F1

...
Fn

 .
For purpose of FD, we adopt the following observer-based
residual generator:

x̂(k + 1) = Ax̂(k) + L(yl(k)− Clx̂(k)), (6)

r(k) = V (yl(k)− Clx̂(k)), (7)

where x̂(k) ∈ Rq represents the state estimation, r(k) ∈
Rr denotes the residual signal, and L and V represents
the matrices to be determined. It is straightforward that
the residual dynamics can be described by

r(z) = V (Gd(z)dl(z) +Gf (z)f(z)), (8)

Gd(z) = (A− LCl, El − LFl, Cl, Fl), (9)

Gf (z) = (A− LCl, Ef , Cl, O). (10)

Without loss of generality, an fault detection problem
is formulated by designing the residual generator such
that the residual signal is robust against disturbance and
meanwhile sensitive to fault. In this paper, an optimal fault
detection problem is formulated as

max
L,V

‖V Gf (z)‖∞
‖V Gd(z)‖∞

. (11)

To deal with it, (Ding, 2008) provides a design scheme,
which is reviewed in the following lemma.

Lemma 1. Given system (5), and residual generator (6)
and (7), L and V , which are calculated by

R = ClXC
>
l + FlF

>
l , (12)

V = R−1/2, (13)

L = (AXC>l + ElF
>
l )R−1, (14)

X = AXA> − LRL> + ElE
>
l , (15)

with X > 0, deliver the solution to the optimal FD
problem (11).

Proof. See (Ding, 2018). �

Moreover, according to (Ding, 2014), with L and V as
the solution to (12)-(15), the transfer function V Gd is co-
inner, which means V GdG

∗
dV
∗ = I, and ‖r(k)‖RMS 6 δd

in fault-free case. Thus, for the purpose of FD, we set the
evaluation function as J(k) = ‖r(k)‖RMS , threshold as
Jth = δd, and the decision logic as{

J(k) 6 Jth, fault-free
J(k) > Jth, faulty

. (16)

In order to ensure that discrete time algebraic Riccati
equation (DARE) (15) has stabilizing solution, we make
the following assumptions:

1. (Cl, A) is detectable;
2. FlF

>
l is invertible;

3. ∀θ ∈ [0, 2π],

[
A− ejθI El

Cl Fl

]
has full row rank.

It is evident that Σ in (3) yields Σ = FlF
>
l , also combining

(3) and the second assumption shows that Σ is symmetric
and positive definite matrix with all elements being real
number.

2.3 Problem Formulation

It is worth mentioning that to achieve the optimal fault
detection approach given in (6)-(16), all the information
about sensors and measurement data should be collected
at one central station to perform the FD actions, which
requires significant computation and communication ef-
forts. To deal with this issue, we investigate a distributed
realization of the proposed optimal FD scheme, which
delivers the exactly same optimal FD performance at each
node.

3. A DISTRIBUTED FAULT DETECTION SCHEME

As mentioned above, in this section, a distributed real-
ization of the proposed optimal FD scheme is presented,
which is achieved by performing the following two phases:

– distributed offline training;
– distributed online fault detection.

In this study, we assume that at node i, only system infor-
mation Al, El, Ci and Fi, and the local measurement yi are
available; and the information can be transmitted between
neighbors according to the communication topology (4).
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3.1 Distributed Offline Training

For our purpose, (15) should be solved to obtain X at
each node in a distributed way. To deal with this issue, we
define

I1 = C>l Σ−1Cl, I2 = F>l Σ−1Cl,

I3 = F>l Σ−1Fl, Ω = (X−1 + I1),

and apply the matrix identity

R−1 = Σ−1 − Σ−1ClΩ
−1C>l Σ−1 (17)

to reformulate (15) into

X =AΩ−1A> −AΩ−1I>2 E
>
l − ElI2Ω−1A>

+ El(I − I3 + I2Ω−1I>2 )E>l .
(18)

It follows from (18) that, for solvingX, I1, I2 and I3 should
be calculated first. Since they have similar structure, for
simplicity, we construct them as the unified form

Λ>Σ−1Φ =
[
Λ>1 · · · Λ>n

] Σ11 · · · Σ1n

...
. . .

...
Σn1 · · · Σnn


−1 Φ1

...
Φn

 ,
where Λ and Φ can be Cl or Fl, and Σ is the same as
introduced in (3). We now introduce a new parameter Z
as

Λ>Σ−1 = Z> =
[
Z>1 · · · Z>n

]
(19)

and divide the calculation of Λ>Σ−1Φ into two phases: the
calculation of Λ>Σ−1 = Z> and further Z>Φ. Due to the
reason that the first phase includes matrix inverse, which
can cause huge computational costs, we apply distributed
iteration learning to avoid this problem and to solve the
first phase; and the average consensus technique can be
used to achieve the second phase to obtain a common
Λ>Σ−1Φ in each sensor node.

3.1.1 Distributed Iteration Learning

For calculating (19) and avoiding the inverse computation,
we adopt the iteration learning method

Z(ζ + 1) = Z(ζ) + λ(Λ− ΣZ(ζ)), (20)

with ζ as the iteration number and λ being a constant,
which is designed to guarantee the iteration convergence

lim
ζ→∞

Z(ζ) = Z. (21)

It is evident that equation (19) leads to Λ = ΣZ. By
setting e(ζ) = Z(ζ) − Z, we identify the dynamic of e(ζ)
as

e(ζ + 1) = (I − λΣ)e(ζ). (22)

It is clear that when (I − λΣ) is a Schur matrix, which
means all eigenvalues of (I − λΣ) are located inside the
unit disk,

lim
ζ→∞

e(ζ) = 0, (23)

which also implies (21). Thus, (I−λΣ) being Schur matrix
is the requirement to guarantee (21). In what follows, we
introduce the condition for λ to ensure that (I − λΣ) is
Schur matrix.

Proposition 1. The condition

0 < λ <
2

‖Σ‖∞
(24)

can ensure that (I − λΣ) is Schur matrix, when Σ is
symmetric and positive definite matrix with all elements
being real numbers.

Proof. See Appendix A. �

However, the above algorithm and analysis are under
centralized manner. For our purpose, in the sequel, a
distributed realization of (20) and a distributed determi-
nation of λ are introduced.

For the distributed realization of (20), we execute

Zi(ζ + 1) = Zi(ζ) + λ(Λi −
∑

j∈{i, Ni}

ΣijZj(ζ)) (25)

at node i, i ∈ {1, · · · , n}. It is clear that in (25), node i only
uses its local and neighbors’ information. And according
to (4), by stacking all (25) together, we obtain exactly
the same equation as (20). Thus, (25) can be used as a
distributed realization of (20).

For the distributed determination of λ, based on Proposi-
tion 1, we provide a distributed algorithm (Algorithm 1)
as shown below to calculate λ at each node in a distributed
way.

Algorithm 1

Step 1 Communicate Fj to node i for j ∈ Ni

Step 2 Calculate Qi = ‖
[
FiF

>
1 · · · FiF

>
n

]
‖∞ at node i

Step 3 Communicate Qj to node i for j ∈ Ni

Step 4 Update Qi = max{Qi, QNi
} at node i with

QNi
= {Qj |j ∈ Ni}

Step 5 Repeat Step 3 and Step 4 Dg times

Step 6 Calculate λ = λi =
α

Qi
at node i with 0 < α < 2

Proposition 2. With Algorithm 1, we have

i, j = 1, · · · , n, Qi = Qj = ‖Σ‖∞,
and λi = λj = λ are obtained to fulfill (24) in a distributed
way.

Proof. See Appendix B. �

After calculating λ in each node, the distributed iteration
learning (25) can be executed and terminate when

‖Zi(ζ + 1)− Zi(ζ)‖2 6 ε,
where ε is a predefined tolerance, is fulfilled. Define

I4 = C>l Σ−1 = [I4,1 · · · I4,n] ,

I5 = F>l Σ−1 = [I5,1 · · · I5,n] .

After executing distributed iteration learning, Zi := Zi(ζ)
is obtained. And as a final result, Z>i Φi is available at node
i, i ∈ {1, · · · , n}, where Zi can be I4,i or I5,i and Φi can
be Ci or Fi.

3.1.2 Average Consensus Approach

Since Z>i Φi is available after performing distributed iter-
ation learning, the average consensus algorithm is further
applied to calculate Λ>Σ−1Φ in each node. To this end,
we first introduce the basis of average consensus algo-
rithm. Without loss of generality, the average consensus
algorithm is achieved by performing

ϑi(ξ + 1) = wiiϑi(ξ) +
∑
j∈Ni

wijϑj(ξ),

where ξ is the iteration number and wij = 0 if j /∈ Ni and
j 6= i. It is clear that, if W = [wij ] is chosen such that

lim
ξ→∞

W ξ =
1

n
11>, (26)
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we have

lim
ξ→∞

ϑ1(ξ)
...

ϑn(ξ)

 = 1⊗ (
1

n

n∑
i=1

ϑi(0)). (27)

To guarantee (26), (Xiao and Boyd, 2004) provides condi-
tions for W , which are reviewed in following lemma.

Lemma 2. The equation (26) holds if and only if

1>W = 1>, (28)

W1 = 1, (29)

ρ(W − 1

n
11>) < 1. (30)

Proof. See (Xiao and Boyd, 2004). �

Numerous methods have been proposed to solve W , which
yield Lemma 2. In this study, we use Metropolis-Hastings
weights method (Xiao et al., 2007), which can be calcu-
lated under distributed manner as

wij =


1

max{ci, cj}+ 1
j ∈ Ni

0 j /∈ Ni and j 6= i

1−
∑
q 6=i

wiq i = j

. (31)

Then by setting ϑi(0) = Z>i Φi and after executing average
consensus, we have ϑi = n−1Z>Φ at node i. By multiply-
ing ϑi with n, we can obtain Λ>Σ−1Φ, which means that
we obtain and save I1, I2 and I3 at each node.

With I1, I2 and I3 at hand, we calculate (15) by the
iteration (32) at each node,

X(η + 1) = Ξ(η)−Ψ(η)−Ψ>(η) + Π(η)
Ω(η) = (X−1(η) + I1)
Ξ(η) = AΩ−1(η)A>

Ψ(η) = AΩ−1(η)I>2 E
>
l

Π(η) = El(I − I3 + I2Ω−1(η)I>2 )E>l

, (32)

where η is the iteration number. According to (Komaroff,
1994), it holds that

lim
η→∞

X(η) = X > 0, X(0) > 0.

Then
lim
η→∞

Ω(η) = Ω = (X−1 + I1)

can be obtained at each node. Moreover, we apply (17) to
reformulate (14) into

L = (A− ElI2)Ω−1I4 + ElI5 = [L1 · · · Ln] .

Or equivalently,

Li = (A− ElI2)Ω−1I4,i + ElI5,i. (33)

In (33), with all parameters known in the right side at each
node, Li can be identified at each node.

3.2 Distributed Online Fault Detection

After calculating the important parameters through dis-
tributed offline training, we execute online implementation
to realize optimal FD scheme in a distributed way.

For the distributed realization of online FD, we run the
state observer (6) as

x̂i(k + 1) = Ax̂i(k) + Lr̄(k) = Ax̂i(k) +

n∑
i=1

Lir̄i(k) (34)

at node i, i ∈ {1, · · · , n}. Here, x̂i(k) denotes the estima-
tion of x(k) at node i and

r̄(k) =

r̄1(k)
...

r̄n(k)

 =

y1(k)− C1x̂1(k)
...

yn(k)− Cnx̂n(k)

 .
Since all observers are identical, it holds that for i, j ∈
{1, · · · , n}, x̂i(k) = x̂j(k) = x̂(k), which leads to r̄(k) =
yl(k)− Clx̂(k). Thus, (34) can be proved as a distributed
realization of (6).

After the estimation of x(k), we directly compute the
evaluation function Ji(k) at node i by

ji(k) =r̄>(k)R−1r̄(k) = I6r̄(k)− (I4r̄(k))>Ω−1I4r̄(k)

=

n∑
i=1

I6,ir̄i(k)− (

n∑
i=1

I4,ir̄i(k))>Ω−1(

n∑
i=1

I4,ir̄i(k)),

(35)

Ji(k) =

(
1

m

m−1∑
l=0

ji(k + l)

)1/2

, (36)

where
I6 = r̄>Σ−1 = [I6,1 · · · I6,n]

and can be identified by running distributed iteration
learning online.

It is clear that in (34), (35) and (36), unknown items
are Lr̄(k), I4r̄(k) and I6r̄(k). Since they have the same
structure as Z>Φ, we use average consensus to calculate
them online. Now, we can run (34) and (35). And the dis-
tributed online implementation is achieved in a distributed
way. However, in online implementation, if there is a strict
limitation on execution time, the distributed FD algorithm
may cause inaccuracy.

Finally, we summarize the overall algorithm into the
following table.

Offline Training

Step 1 Save Al, El, n, Ci, Fi, Jth, ci and Dg at each node
Step 2 Calculate λ using Algorithm 1
Step 3 Calculate W using (31)
Step 4 Calculate I4 and I5 using distributed iteration

learning
Step 5 Calculate I1, I2 and I3 using average consensus
Step 6 Calculate X using (32), Ω and L

Online Training

Step 1 Obtain yi(k) and compute r̄i(k) at each node
Step 2 Calculate I6 using distributed iteration learning
Step 3 Calculate Lr̄(k), I4r̄(k) and I6r̄(k) using

average consensus
Step 4 Calculate Ji(k) using (35) and (36)
Step 5 Update x̂i(k) using (34)
Step 6 Make decision using (16)
Step 7 Repeat Step 1 – Step 6

4. NUMERICAL EXAMPLE

Consider a dynamic model (1) with x(k) ∈ R18, dl(k) ∈
R20, and the sensor network (2) with n = 20 and yi(k) ∈
R1, i ∈ {1, . . . , 20}. Due to the reason that A, El, Ci, Fi
and ci are too complicated, they are not introduced here.
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Fig. 1. Communication topology of sensor network

Further, the communication topology of sensor network
is shown in Fig. 1. And according to Fig. 1, we have the
diameter of the graph is Dg = 2. In addition, we set

Ji(k) =

(
1

5

4∑
l=0

ji(k + l)

)1/2

, Jth = 11.9193,

the sampling time T = 0.02s , and an additive step fault
with amplitude 10 happening at 6s. Simulation results of
the evaluation functions for sensor node 1-20 are shown
as J(1)-J(20) in Fig. 2-5 respectively. The figures indicate
that our proposed distributed FD scheme can achieve the
similar result when compared with centralized approach,
which is plotted as J(0) in each figure.
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Fig. 2. Evaluation functions of sensor nodes 1-5
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Fig. 3. Evaluation functions of sensor nodes 6-10
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Fig. 4. Evaluation functions of sensor nodes 11-15
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Fig. 5. Evaluation functions of sensor nodes 16-20

However, with the limited online execution time, both
online distributed iteration learning and average consensus
may not converge to the accuracy value, which may lead
to inaccuracy of the distributed online implementation as
shown in Fig. 6, which is a local enlarged figure of Fig. 2.
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Fig. 6. Comparison of evaluation functions of nodes 1-5

5. CONCLUSION

In this paper, a novel distributed FD scheme was intro-
duced for large-scale systems influenced by deterministic
disturbances using sensor networks. Theoretical analysis,

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

125



which is based on centralized optimal FD scheme, dis-
tributed iteration learning and average consensus, and
the simulation results show that the proposed scheme can
detect fault effectively when compared with the centralized
approach. We would like to remark that, offline training
and online implementation are all realized in a distributed
way, which means that the sensor node can only use its
local and neighbors’ information for data fusion and cor-
responding purpose. Possible future research may include
the design scheme of general distributed observer, the cor-
responding stability issues and the data-driven realization
of distributed FD scheme.

APPENDIX

A. Proof of Proposition 1

If Σ is symmetric and positive definite matrix with all
elements real numbers, we have λmax(Σ) = ‖Σ‖2. And we
can do singular value decomposition to obtain

Σ = UΩU>,

where U is orthogonal matrix, which means U−1 = U>,
and Ω is a diagonal matrix with diagonal elements being
the eigenvalues of Σ. Further, we have

I − λΣ = U(I − λΩ)U>

= U

1− λλ1
1− λλ2

. . .

U>, (37)

where λi denotes the eigenvalue of Σ. Because Σ is positive
definite, we have λi > 0. In order to ensure that I − λΣ is
Schur matrix, from (37), it is clear that

0 < λ <
2

λmax(Σ)
. (38)

Moreover, according to (Golub and van Loan, 2013),

λmax(Σ) = ‖Σ‖2 6 ‖Σ‖∞. (39)

If we combine (38) and (39), it is evident that Proposition
1 is proved.

B. Proof of Proposition 2

Partition Σ into n rows.

Σ =

Σ1

...
Σn

 =

F1F
>
1 · · · F1F

>
n

...
. . .

...
FnF

>
1 · · · FnF>n

 (40)

With the definition of ∞-norm, we have

‖Σ‖∞ = max
16i6n

‖Σi‖∞ (41)

In Algorithm 1, we know ‖Σi‖∞ = Qi, and after Dg−th
iteration, it is clear that each node obtain the information
of max

16i6n
Qi, then Proposition 2 is proved.
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