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Abstract—Based on the data from the Tesla users about
the degradation of Tesla Model S battery capacity, this paper
introduces two new definitions of fractional integrals and deriva-
tives to describe these very slow decay phenomena, which fill
the blanks in this field. Several existing definitions of fractional
calculus are reviewed at first, together with their drawbacks in
describing very slow decay. Then, two new definitions governed
by new kernel functions are introduced. With the aids of
Numerical Inverse Laplace Transform (NILT), Prony technique
and MATLAB command stmcb(), mathematical properties of
these two fractional operators are investigated.
Keywords: Very slow decay; New fractional operators; Numer-
ical Inverse Laplace Transform; Prony technique

I. INTRODUCTION

The last decades have witnessed a remarkable devel-
opment in fractional calculus as shown by a number of
mathematical monographs dedicated to it [1]–[8]. Based
on the relation between CTRW framework and anomalous
phenomena, authors in [9]–[11] draw the conclusion that a
new wave has been set off on fractional systems, whose
heavy-tailed distribution and memory property mostly match
the characteristics of anomalous phenomena. The applications
of fractional calculus have also widely spread into physics
[12]–[14], biology [15], [16], fractional thermoelasticity [17],
aerodynamics [18], bioengineering [19], etc. It’s known that
the nature of fractional integral/derivative operators is a kind
of convolution form. Hence, one may define different defini-
tions with proper kernel functions. A survey paper [20] listed
almost all the existing definitions of fractional order integrals
and derivatives that appeared in mathematics, physics and
engineering. However, some complaints have been made for
the cumbersome mathematical expressions and the loss of
generality on some of existing definitions.
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In fact, fractional calculus is of particular convenience
at the very start. However, if such effects aren’t present,
adopting a new definition is necessary. Therefore, in this
article, two new kinds of definitions for fractional calculus are
suggested with two kernel functions involving the logarithmic
function to characterize the very slow decay. The first one is
suitable to use the Laplace transform and its inverse, while
the second can degenerate to classical integral and derivative,
which overcome the loss of generality problem well. The
motivation of this new approach is to model the capacity
decay of Tesla Model S battery.

In Section II, some common definitions are reviewed
with their drawbacks in describing a class of phenomena
stated. Section III focuses on two new kinds of definitions,
together with analyzing their mathematical properties by
employing NILT, Prony technique and stmcb() command.

II. OVERVIEW OF EXISTING DEFINITIONS FOR
FRACTIONAL CALCULUS

At first, we recall three definitions of fractional calculus
for continuous functions. Then, from a practical example,
i.e., the data from the Tesla users about the degradation of
Tesla Model S battery capacity, we discuss the drawbacks of
the three definitions in theoretical analysis and in real world
applications. We declare that among the rest of this paper, we
only consider about order α ∈ (0, 1).

Definition II.1. [1] The α-th order Riemann-Liouville
fractional integral and Caputo fractional derivative of a
continuous function f(t) are given by

aI
α
t f(t) ,

1

Γ(α)

∫ t

a

(t− s)α−1
f(s)ds (1)

and

C
aD

α
t f(t) ,

1

Γ(1− α)

∫ t

a

(t− s)−α f ′(s)ds, (2)
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respectively, where Γ(·) denotes the Gamma function.

Definition II.2. [21] Let a > 0. The α-th order Hadamard
fractional integral of f(t) is

H
a I

α
t f(t) ,

1

Γ(α)

∫ t

a

(
log

t

s

)α−1

f(s)
ds

s
, (3)

while its Hadamard-Caputo fractional derivative is given by

HC
a Dα

t f(t) ,
1

Γ(1− α)

∫ t

a

(
log

t

s

)−α
f ′(s)ds. (4)

Definition II.3. [22] The nonsingular fractional derivative
of order α for f(t) is defined by

NC
a Dα

t f(t) ,
M(α)

1− α

∫ t

a

exp

(
−α(t− s)

1− α

)
f ′(s)ds, (5)

where M(α) satisfies M(0) = M(1) = 1.

Remark II.1. At first glance, Hadamard fractional calculus
is not of a convolution form, since one cannot see the kernel
function clearly. In [23], the authors introduced the logarith-
mic convolution for better revealing the characteristics of the
Hadamard type.

In addition, we see

1

Γ(α)

∫ t

a

(
log

t

s

)α−1

f(s)
ds

s

=
1

Γ(α)

∫ log t

log a

(log t− u)
α−1

f (exp(u)) du

=
1

Γ(α)

∫ t

k

(t− s)α−1f (exp(s)) ds,

(6)

where k = log a. We know that (3) convolutes power function
tα−1 and f (exp(t)). Though it can be regarded as a unique
kind of convolution form, we may meet with some trouble
in applications. Moreover, when α = 1, the Hadamard frac-
tional derivative operator degenerates to t d

dt , which doesn’t
coincide with the classical derivative.

In fact, the kernel functions are always used to reflect
the decay rate. The kernel functions of the above definitions
adopted three kinds of basic elementary functions, that are,
power-law function, logarithmic function and exponential
function. It is worth mentioning that here we use tα to repre-
sent all power-law functions due to the fact that

(
tk
)α

= tkα.
We can change the value of α to present power-law functions
of any order. These three kinds of functions are the basic
functions scholars chosen for the definitions of fractional
calculus. Moreover, some other kernel functions which are the
combination of these three kinds functions are also applied,
such as functions for tempered fractional operators [24] and
stretched exponential functions [25].

In 2015, Tesla uploaded the data from their users about
the degradation of Tesla Model S battery capacity. Two
figures about the relationship between remaining battery
capacity and mileage/ battery age are also plotted (see Figure
1 and 2).

Figure 1: Tesla Model S/X Mileage VS Remaining Battery Capacity

Figure 2: Tesla Model S/X Battery Age VS Remaining Battery Capacity

Remark II.2. Figure 1 and 2 are the origin figures an-
nounced by Tesla, which cannot be modified for better read-
ability. Unfortunately, due to the lack of the page width, the
axes and the legends may be of a little unavoidable illegibility.

It can be easily observed from these two figures that
if we want to describe the decay rate of remaining battery
capacity, the inverse power-law function decays too fast,
while that of logarithmic function might decay too slow.
However, to the best of our knowledge, no proper definition
has been founded to describe the very slow decay phenomena
yet. Therefore, we need a new kernel function for a proper
definition!

III. TWO NEW DEFINITIONS WITH VERY-SLOW DECAY
KERNELS

In this section, we provide two new kernel functions for
fractional integral and derivative, which can well describe
the very slow decay in some extent. Here, we choose the
combination of logarithmic function and inverse power-law
function, and thus we have two choices of kernel functions:
log t
tα and

(
log t
t

)α
. From

lim
t→∞

log t
tα

tα
= 0, lim

t→∞

(log t)α

log t
tα

= 0,
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Figure 3: Comparison among different tails. x-axis: t

and

lim
t→∞

(
log t
t

)α
tα

= 0, lim
t→∞

(log t)α(
log t
t

)α = 0,

we know the decay rate of log t
tα and

(
log t
t

)α
are between

logarithmic function and inverse power-law function. Since
log t is the higher order infinitesimal of exponential functions
and any power-law functions when t tends to infinity, the
kernel function 1

(log t)α can be used to describe the ultra-slow
decay rate. On the other hand, the inverse power-law function
1
tα are usually used for normal slow decay. Therefore, log t

tα

and
(

log t
t

)α
can be used to characterize those very slow

decay phenomena.

A. New definition with kernel log t
tα

Figure 3 shows the decay rates of four kinds of kernel
functions, which implies that the decay rate of log t

tα is between
the inverse power-law kernel and the Hadamard kernel.

Proposition III.1. The Laplace transform of log t
tα is

L

(
log t

tα

)
(s) = sα−1Γ(1− α) (ψ(1− α)− log s) , (7)

where ψ(x) = Γ′(x)
Γ(x) denotes the digamma function.

On the above basis, we provide a new definition for
fractional calculus as follows.

Definition III.1. The α-th order fractional integral and
Caputo-type fractional derivative of f(t) with kernel log t

tα are
defined by

0I
α
t f(t) ,

1

Γ(α)

∫ t

0

log(t− s)
(t− s)1−α f(s)ds (8)

and

C
0 D

α
t f(t) ,

1

Γ(1− α)

∫ t

0

log(t− s)
(t− s)α

f ′(s)ds, (9)

respectively.

With the help of the relationship between the Laplace
transform of convolution in time domain and the product in
frequency domain, i.e.,

L (f(t) ∗ g(t)) = F (s)G(s), (10)

we can provide some basic properties on the fractional
operators and give the fractional integrals and derivatives for
some special functions.

Proposition III.2. The fractional integral and derivative
defined by (8) and (9) have the following properties:

(i) 0I
β
t 0I

α
t f(t) = 0I

α
t 0I

β
t f(t) 6= 0I

α+β
t f(t);

(ii) C
0 D

β
t
C
0 D

α
t f(t) = C

0 D
α
t
C
0 D

β
t f(t) 6= C

0 D
α+β
t f(t).

Proposition III.3. The fractional integrals and derivatives
of constant, power function and exponential function can be
obtained as follows:

(i) 0I
α
t c =

c

Γ(α+ 1)
tα
(

log t− 1

α

)
;

(ii) C
0 D

α
t c = 0;

(iii) 0I
α
t t
k =

Γ(k + 1)(ψ(α)− ψ(k + α+ 1))

Γ(k + α+ 1)
tk+α

+
Γ(k + 1)

Γ(k + α+ 1)
tk+α log t;

(iv) C
0 D

α
t t
k =

Γ(k + 1)(ψ(1− α)− ψ(k − α+ 1))

Γ(k − α+ 1)
tk−α

+
Γ(k + 1)

Γ(k − α+ 1)
tk−α log t;

(v) 0I
α
t exp(t) =

ψ(α)(Γ(α)− Γ(α, t))

Γ(α)
exp(t)

− L−1

(
log s

sα(s− 1)

)
(t);

(vi) C
0 D

α
t exp(t) =

d

dt

(
0I

1−α
t exp(t)

)
,

where Γ(α, t) denotes the upper incomplete Gamma function
defined by

Γ(α, t) ,
∫ ∞
t

uα−1 exp(−u)du.

Proof. Here we only give the proof of (iii). The rest can be
obtained similarly. From Definition III.1, we know

0I
α
t t
k =

1

Γ(α)

∫ t

0

log(t− s)
(t− s)1−α s

kds. (11)
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Utilizing Laplace transform on (10), we get

L
(

0I
α
t t
k
)

=
1

Γ(α)

∫ ∞
0

exp(−st)dt
∫ t

0

log(t− u)

(t− u)1−αu
kdu

=
1

Γ(α)

∫ ∞
0

uk exp(−su)du

∫ ∞
0

log(t)

t1−α
exp(−st)dt

=
Γ(k + 1)

Γ(α)sk+1
· s−αΓ(α) (ψ(α)− log s)

=
Γ(k + 1)

sk+α+1
(ψ(α)− log s) .

(12)

Then the inverse Laplace transform on (12) provides

0I
α
t t
k =L−1 Γ(k + 1)

sk+α+1
(ψ(α)− log s)

=
Γ(k + 1)ψ(α)

Γ(k + α+ 1)Γ(α)
ψ(α)tk+α

− Γ(k + 1)L−1

(
log s

s
· 1

sk+α

)
.

According to (10), we have

L−1

(
log s

s
· 1

sk+α

)
=−

∫ t

0

(log τ + γ)
(t− τ)k+α+1

Γ(k + α)
dτ

=− log t− γ − ψ(k + α+ 1)

(k + α)Γ(k + α)
tk+α

− γ

(k + α)Γ(k + α)
tk+α

=− tk+α

Γ(k + α+ 1)
(log t− ψ(k + α+ 1)) ,

where γ = −
∫∞

0
exp(−x) log xdx is the Euler’s constant.

Hence, (iii) holds.

What’s more, though we cannot get the analytical form
on t-function of the fractional integral and derivative of
exp(t) in (v) and (vi) in Proposition III.3, it’s not a problem.
The NILT framework, constructing in [26], together with
Prony technique [27] can be applied to deal with it. Figure
4 and 5 show the approximation of L−1

(
log s

sα(s−1)

)
(t) and

its Bode plot in the frequency domain. It is found that
the impulse response in time domain and the magnitude
in frequency domain are perfectly fitted while the phase
in frequency domain is not fitted very well. However, it is
enough for our practical usage. In addition, the approximation
function of order 3 is

G(z−1) =
0.9942z2 − 1.988z + 0.9936

z3 − 2.999z2 + 2.998z − 0.9992
. (13)

B. New definition with kernel
(

log t
t

)α
Though the new definitions of fractional integral and

Caputo-type fractional derivative have many mathematical
properties, a drawback occurs, that is, when α = 1, it cannot
degenerate to the classical integral and derivative. Luckily, the
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Figure 4: NILT α=0.4, order=3, t=10s, Ts=0.001s
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other kernel
(

log t
t

)α
can fill this gap in certain extent. The

definitions of fractional integral and Caputo-type fractional
derivative with kernel function

(
log t
t

)α
are as follows.

Definition III.2. The α-th order fractional integral and
derivative of f(t) with kernel

(
log t
t

)α
are defined by

0Iαt f(t) ,
1

Γ(α)

∫ t

0

(
log(t− s)
t− s

)1−α

f(s)ds (14)

and

C
0 Dαt f(t) ,

1

Γ(1− α)

∫ t

0

(
log(t− s)
t− s

)α
f ′(s)ds, (15)

respectively.

Furthermore, we present some properties for the frac-
tional integral and derivative defined by (14) and (15).

Proposition III.4. When α = 1, the following two equalities
hold:

0Iαt f(t) =

∫ t

0

f(s)ds, C
0 Dαt f(t) =

df(t)

dt
.
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Figure 6: Comparison of impulse response for the actual and approximate
kernel function

In addition, the properties in Proposition III.2 also hold for
Definition III.2.

Remark III.1. The results in Proposition III.4 indicate that
these definitions of fractional calculus are a kind of genera-
tion of classical integral and derivative.

On one hand, the analytical s-function in frequency
domain for kernel

(
log t
t

)α
is tough to obtain. On the other

hand, even if we get the Laplace transform, it must be
of infinite dimensions, which is impossible to implement
in practical situations. Therefore, discretization method is
considered and NILT and stmcb() command [28] are of great

use. An approximation for
(

log t
t

)0.5

is described by

G
(
z−1
)

=
0.1815z2 − 0.3453z + 0.1638

z3 − 2.973z2 + 2.945z − 0.9725
, (16)

and the comparison between the impulse response of the
actuality and approximation is shown in Figure 6. One can
find that the approximate function can fit the tail well but the
initial is not well fitted. However, we mainly focus on the tail
of the kernel function to describe the decay and we can say
the approximation is of good effect.

Next, we discuss the fractional integrals and derivatives
of some special functions under Definition III.2. By employ-
ing numerical technique, we can provide the corresponding
fractional integrals of power functions and exponential func-
tion, as shown in Figure 7, in which the numerical results for
the fractional integrals of t, t2, t3 and exp(t) are presented.
On the other hand, it’s obvious that for some constant c,
C
0 Dαt c = 0. And Figure 8 provides the numerical results for
the fractional derivatives of power functions t2

2 , t3

3 , t4

4 and
exponential function exp(t). Here in Figure 7 and 8, α is
chosen to be 0.9.

Finally, we are to fit the Tesla data by using the two new
kernel functions introduced in this paper. The trendlines are
plotted as shown in Figure 9 and 10, which are corresponded
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Figure 7: Fractional integrals of power functions t, t2, t3 and exponential
function exp(t) under Definition (14)
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, t

3

3
, t

4

4
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nential function exp(t) under Definition (15)

to Figure 1 and 2 respectively and these well fitting (espe-
cially the red dashed lines) indicate the effectiveness of the
two kernel functions. Moreover, the optimal orders are also
obtained as α = 0.123 for log t

tα and α = 0.01526 for
(

log t
t

)α
in Figure 9, while α = 0.2212 and 0.01395 respectively in
Figure 10.

IV. CONCLUSION

Two new definitions of fractional calculus are established
in this work, which can well describe very slow decay
phenomena. Some basic properties are derived with the aids
of NILT, Prony and stmcb() technique. It’s worth mentioning
that this work is just a start in these types of fractional
integrals and derivatives, which requires further investigations
on their mathematical properties and on the analysis of
systems governed by each kind fractional derivative.

In addition, these new kernels will be further used to test
other phenomena or data sets for a better generalization.
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