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Abstract: The goal of this paper is to investigate regional exact controllability from the exterior
of the nonlocal diffusion system governed by parabolic partial differential equations (PDEs) with
the fractional Laplacian. For this purpose, we first explore an explicit expression of solutions to
the system. Use this, some equivalent conditions to achieve regional exact controllability of the
considered systems are given. Then, we propose an approach on the minimum energy control
problem using the Hilbert uniqueness method (HUM). It is presented that the minimum control
input can be explicitly given with respect to the subregion, the actuators structure and the
spectral theory of fractional Laplacian under zero Dirichlet exterior boundary conditions. An
example is finally included to illustrate our theoretical results.
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1. INTRODUCTION

Let Ω ⊆ Rn be a bounded domain with Lipschitz con-
tinuous boundary ∂Ω. Given T < ∞, the system we are
concerned with is a nonlocal diffusion system governed by
the following parabolic PDEs with the fractional Laplacian
on a bounded domain:{

yt(x, t) + (−4)sy(x, t) = 0 in Ω× (0, T ),
y(x, t) = Bu(t) in (Rn\Ω)× (0, T ),
y(x, 0) = y0(x) in Ω,

(1)

where y(x, t) is the state to be controlled, (−4)s with
s ∈ (0, 1] denotes the fractional Laplace operator to be
specified later and

Bu(t) = gT (x)u(t) =

p∑
i=1

ΥDi
gi(x)ui(t) (2)

denotes the control function localized in some nonempty
subregion of Rn\Ω depending on the number and struc-

ture of actuators. More precisely, u = [u1, u2, · · · , up]T ∈
L2 (0, T ;Rp) is the control input which is provided by p

actuators, g(x) =
[
ΥD1

g1(x),ΥD2
g2(x), · · · ,ΥDp

gp(x)
]T

denotes the actuators’ spatial distribution with gi ∈
L2(Rn\Ω) and ΥD is the characteristic function of the
set D ⊆ (Rn\Ω). It is worth pointing out that this Bu(t)
is a finite-dimensional controller and may be unbounded
(see, e.g., Sakawa (1974); Demetriou et al. (2010); Ge et al.
(2016b, 2017a, 2018); Curtain and Zwart (2012)).
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It is well known that operator (−4)s with 0 < s < 1 is a
non-local pseudo-differential operator defined by a singular
integral (see monographs Pozrikidis (2016); Ge and Chen
(2019); Chen and Holm (2018) for example). By Warma
(2019), only knowing y(x, t) at the boundary ∂Ω is not
enough to know y(x, t) on all Ω ⊆ Rn and besides, the
Dirichlet problem{

(−4)sφ = 0 in Ω, s ∈ (0, 1),
φ = Bu(t) on ∂Ω

(3)

is not well-posed. These yield that the actuators Bu(t)
cannot be localized on some subset of the boundary ∂Ω,
i.e., the second equation in (1) cannot be replaced by
y(x, t) = Bu(t) in ∂Ω × (0, T ). Moreover, since the zero
exterior Dirichlet problem for fractional Laplacian given
in (1) is well-posed, we conclude that the formulation
presented in system (1) to replace the classical boundary
control problems of PDEs is right. For more knowledge on
the property of fractional Laplacian, we refer the reader to
Ros-Oton and Serra (2014); Vázquez (2012, 2014); Chen
et al. (2017) and the references therein.

Since fractional Laplacian can efficiently describe the pro-
cesses with interactions between two domains arising at a
distance, i.e., long range interaction, system (1) is a typ-
ical model of anomalous diffusion governing the stopped
α−stable Lévy motion, and has been utilized to character-
ize anomalous transport in many diverse disciplines (see,
e.g., Rudolf (2000); Lischke et al. (2018); Ge and Chen
(2019)). Typical examples include the cooling/heating
process for steel and glass manufacturing in Meyer and
Philip (2005), the modeling for distribution of suspended
sediment of unsteady flows in Li et al. (2019), or the
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application to the atmospheric motion for large-scale flow
in Bourgeois and Beale (1994), etc.

Notice that controllability for infinite-dimensional system
is one of the major concerns in modern control theory.
However, as stated in El Jai and Pritchard (1988), there
exist many systems in practical that are not controllable
on the whole domain but may be regionally controllable
on some critical subregions. This is the concept of regional
controllability, which has been investigated in El Jai and
Pritchard (1988); El Jai et al. (1995) for conventional
parabolic PDEs and in Ge et al. (2016a,c, 2017b) for time-
fractional diffusion systems. Based on these, in this paper,
we consider the regional exact controllability problems of
system (1). More precisely, let L2(Ω) be the usual square
integrable function space endowed with the norm ‖·‖L2(Ω)

and the inner product (·, ·)L2(Ω). Given any subregion
ω ⊆ Ω with positive Lebesgue measure, we say that system
(1) is regionally exactly controllable in L2(ω) at time T if
for any target function yT ∈ L2(ω), there exists a control
function u ∈ L2 (0, T ;Rp) such that the corresponding
unique mild solution y satisfies

χωy(·, T, u) = yT . (4)

Here y(x, t, u) is the solution of system (1) driven by the
control input u and χω : L2(Ω) → L2(ω) denotes the
projection operator given by χωy = y|ω. It yields that the
investigation on regional exact controllability would allow
for a reduction in the number of physical actuators and be
possible to reduce the computational complexity to some
extent. This is appealing in real applications. Furthermore,
this paper also concerns the minimum energy control
problem for regional exact controllability of system (1)
with the controller designed from the exterior of the
bounded domain Ω. To the best of our knowledge, no result
is available on this topic.

For this purpose, we first explore an explicit representation
of solutions to system (1). This, together with the defini-
tion of regional exact controllability and the operator the-
ory, we give some equivalent conditions to ensure that the
considered system is regionally exactly controllable. Use
this, an approach on how to explicitly solve the minimum
energy control problem with respect to the subregion, the
actuators structure and the spectral theory of fractional
Laplacian is then presented.

The rest of this paper is organized as follows. Some basic
results to be used are presented in the next section. In
Section 3, we give our main results on regional exact
controllability of the studied system and the approach
to explicitly solving the corresponding minimum energy
control problem. An example is worked out at last.

2. PRELIMINARIES

Let Hs
0 (Ω) = {φ ∈ Hs (Rn) : φ = 0 in Rn\Ω} , where

Hs (Rn) is the fractional Sobolev space defined in Section
3 of Di Nezza et al. (2012). From Abdellaoui et al. (2016),
it follows that Hs

0 (Ω) is a Hilbert space endowed with the
norm

‖φ‖Hs
0 (Ω) =

(∫
Ω

∫
Ω

|φ(x)− φ(y)|2

|x− y|n+2s
dxdy

)1/2

. (5)

Then, given φ ∈ Hs
0(Ω), the fractional Laplacian (−4)s :

Hs
0 (Ω) → H−s(Ω) to be used throughout this paper is

defined as

(−4)sφ(x) = (−4)sφ̃(x), s ∈ (0, 1], (6)

where

φ̃(x) =

{
φ(x), x ∈ Ω,
0, x ∈ Rn\Ω (7)

is the extension of φ. Moreover, by Warma (2019) and
Kwaśnicki (2012), we get that eigenvalue-eigenfunction
pair (λn,s, ξn,s) of operator (−4)s, s ∈ (0, 1] under the
boundary condition φ(x) = 0, x ∈ Rn\Ω satisfies

(1) λn,s ≤ λsn holds true for all n, where λn denotes
the eigenvalue of −∆ under the Dirichlet boundary
conditions. In particular, when Ω = (−1, 1), the
Theorem 1 of Kwaśnicki (2012) yields that

λn,s =

(
nπ

2
−

(1− s)π
4

)2s

+O

(
1

n

)
<

(
n2π2

4

)s
= λsn.

(2) {ξn,s}n≥1 forms a Riesz basic of L2(Ω).

With these, the domain of operator (−4)s can be given by

D ((−4)s) =

{
φ ∈ Hs

0(Ω) :
∞∑
n=1

λ2
n,s(φ, ξn,s)

2
L2(Ω) <∞

}
and for φ ∈ D ((−4)s), we have

(−4)sφ(x) =

∞∑
n=1

λn,s(φ, ξn,s)L2(Ω)ξn,s(x). (8)

This yields the following continuous embeddings

C∞0 (Ω) ↪→ D ((−4)s) ↪→ Hs
0 (Ω) ↪→ L2(Ω), (9)

where C∞0 (Ω) denotes the space of infinitely differentiable
functions with compact support in Ω.

In addition, consider two dual systems:{
(−4)sφ(x) = 0 in Ω,
φ(x) = h(x) in (Rn\Ω) ,

(10)

{
(−4)sϕ(x) = f(x) in Ω,
ϕ(x) = 0 in (Rn\Ω) ,

(11)

we introduce a nonlocal normal operator Ns given by

Nsφ(x) := Cn,s

∫
Ω

φ(x)− φ(y)

|x− y|n+2s
dy, x ∈ (Rn\Ω) (12)

with Cn,s = s4sΓ(n/2+s)
πn/2Γ(1−s) and get the following lemmas.

Lemma 1. [Warma (2019)] The operatorNs mapsHs(Rn)
into L2 (Rn\Ω) and moreover, Ns : D ((−4)s) ⊆
Hs(Rn)→ L2 (Rn\Ω) is bounded.

Lemma 2. [Warma (2019)] Given h ∈ Hs (Rn\Ω) , sup-
pose that Φh ∈ Hs(Rn) is the unique mild solution of
system (10). Then, for any f ∈ L2(Ω), it leads to∫

Ω

Φh(x)f(x)dx+

∫
Rn\Ω

h(x)NsΨf (x)dx = 0, (13)

where Ψf ∈ Hs
0(Ω) represents the unique mild solution of

(11). Moreover, if one takes f(x) = λn,sξn,s(x), we have
Ψf (x) = ξn,s(x) and then
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λn,s

∫
Ω

Φh(x)ξn,s(x)dx+

∫
Rn\Ω

h(x)Nsξn,s(x)dx = 0.

Lemma 3. A function y ∈ C (0, T ;Hs(Rn)) is said to be
the unique mild solution of system (1) if it satisfies

y(x, t) =

∞∑
n=1

e−λn,st(y0, ξn,s)L2(Ω)ξn,s(x)

−
∞∑
n=1

∫ t

0

(Bu(τ),Nsξn,s)L2(Rn\Ω)

eλn,s(t−τ)
dτξn,s(x).

(14)

Proof. Let Φu(x, t) be the unique solution of system{
(−4)sφ(x, t) = 0 in Ω× (0, T ),
φ(x, t) = Bu(t) in (Rn\Ω)× (0, T )

(15)

and let ω(t, x) solve{
ωt(x, t) + (−4)sω(x, t) = −Φut(x, t) in Ω× (0, T ),
ω(x, t) = 0 in (Rn\Ω)× (0, T ),
ω(x, 0) = y0(x) in Ω.

(16)

Then, one has

(ω(x, t) + Φu(x, t))t + (−4)s (ω(x, t) + Φu(x, t))
= Φut(x, t)− Φut(x, t) + (−4)sΦu(x, t) = 0

(17)

and moreover, ω(x, t) + Φu(x, t) = Bu(t) in (Rn\Ω) ×
(0, T ), ω(x, 0) + Φu(x, 0) = y0(x). Therefore, y(x, t) =
ω(x, t) + Φu(x, t) solves the problem (1).

In addition, by the Lemma 1 of Ge and Chen (2019),
system (16) has a unique solution given by

ω(x, t) =

∞∑
n=1

e−λn,st(y0, ξn,s)L2(Ω)ξn,s(x)

−
∞∑
n=1

∫ t

0

e−λn,s(t−τ)(Φut(x, t), ξn,s)L2(Ω)dτξn,s(x).

(18)

Since the second part of (18) satisfies

∞∑
n=1

∫ t

0

e−λn,s(t−τ)(Φut(x, t), ξn,s)L2(Ω)dτξn,s(x)

= Φu(x, t)−
∞∑
n=1

∫ t

0

λn,s(Φu(x, t), ξn,s)L2(Ω)

eλn,s(t−τ)
dτξn,s(x),

by Lemma 2, it follows that

y(x, t) = ω(x, t) + Φu(x, t)

=

∞∑
n=1

e−λn,st(y0, ξn,s)L2(Ω)ξn,s(x)

−
∞∑
n=1

∫ t

0

(Bu(τ),Nsξn,s)L2(Rn\Ω)

eλn,s(t−τ)
dτξn,s(x).

This completes the proof.

3. MAIN RESULTS

This section aims to investigate the regional exact control-
lability problems of system (1) and then propose a direct
approach on exploring the minimum energy control policy.

Consider the operator DT : L2(0, T ;Rp) → L2(Ω) given
by

(DTu) (x) =

∞∑
n=1

∫ T

0

(Bu(τ),Nsξn,s)L2(Rn\Ω)

eλn,s(T−τ)
dτξn,s(x)

for all u ∈ L2(0, T ;Rp), one has the following result.

Theorem 4. Given T > 0, there is an equivalence among
the following three properties:

〈1〉 System (1) is regionally exactly controllable in L2(ω)
at time T ;
〈2〉 Im(χωDT ) = L2(ω);
〈3〉 For any ϕ ∈ L2(ω), a constant γ > 0 can be found
satisfying

‖ϕ‖L2(ω) ≤ γ‖D∗Tχ∗ωϕ‖L2(0,T ;Rp). (19)

Here D∗T denotes the adjoint operator of DT and χ∗ω is the
adjoint operator of χω given by

χ∗ωy(x) =

{
y(x), x ∈ ω,
0, x ∈ Ω\ω. (20)

Proof. 〈1〉 ⇔ 〈2〉 : When u ≡ 0 in system (1), by Lemma
3, the unique mild solution of system (1) satisfies

y1(x, t) =

∞∑
n=1

e−λn,st(y0, ξn,s)L2(Ω)ξn,s(x). (21)

For any target function yT ∈ L2(ω), since y1(·, T ) ∈ L2(Ω),
we have χωy1(·, T )− yT ∈ L2(ω). Then,

i) if Im(χωDT ) = L2(ω), we can find a u ∈ L2(0, T ;Rp)
satisfying χωy1(·, T )− yT = χωDTu. This implies

χωy(·, T, u) = yT . (22)

Here y(x, T, u) = y1(x, T )−(DTu)(x) denotes the solution
of system (1) at time T under the control input u. Hence,
system (1) is regionally exactly controllable in L2(ω) at
time T .

ii) On the contrary, based on above definition in Eq.(4),
if system (1) is regionally exactly controllable in L2(ω) at
time T , we have

{χωy(x, T, u) : u ∈ L2 (0, T ;Rp)} = L2(ω). (23)

This is, for any yT ∈ L2(ω), a control input u ∈
L2(0, T ;Rp) can be found such that

0 = χωy(·, T, u)− yT
= χω(y(·, T, u)− y1(·, T ))− (yT − χωy1(·, T )).

(24)

Since yT − χωy1(·, T ) ∈ L2(ω) as a consequence of (21),
we get that

{χω (y(·, T, u)− y1(·, T )) : u ∈ L2 (0, T ;Rp)} = L2(ω),

i.e., Im(χωDT ) = L2(ω).

〈2〉 ⇔ 〈3〉 : Consider the following general result presented
in Pritchard and Wirth (1978):

Let E,F,G be reflexive Hilbert spaces and d ∈ L(E,G),
k ∈ L(F,G). Then the following two properties are
equivalent

1) Im(d) ⊆ Im(k);
2) ∃ γ > 0 such that ‖d∗z∗‖E∗ ≤ γ‖k∗z∗‖F∗ , ∀z∗ ∈ G,
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choose E = G = L2(ω), F = L2(0, b;Rp), d = IdL2(ω) and

k = χωDT , it yields that L2(ω) ⊆ Im(χωDT ) is equivalent
to

‖ϕ‖L2(ω) ≤ γ‖D∗Tχ∗ωϕ‖L2(0,b;Rp), ∀ϕ ∈ L2(ω) (25)

for some γ > 0. Based on the definition of DT , obviously,
Im(χωDT ) ⊆ L2(ω). Then, we get the results and com-
plete the proof.

Taking into account that condition (19) does not allow
for the pointwise actuator since for such case, B is an
unbounded operator. To this end, we suppose that

(A1) B is densely defined and its adjoint operator B∗

exists.

If B is bounded, obviously, (A1) holds true. Further-
more, since (−∆)s is self-adjoint (see e.g.Xu (2018) and
Guan (2006)), given v ∈ L2(Ω), by 〈DTu, v〉L2(Ω) =

〈u,D∗T v〉L2(0,T ;Rp), one has

(D∗T v)(t) = B∗
∞∑
n=1

e−λn,s(T−t) (ξn,s, v)L2(Ω)Nsξn,s,(26)

where 〈·, ·〉∗ denotes the dual pairing between space ∗ and
its dual space.

In what follows, given any target function yT ∈ L2(ω), we
focus on discussing the following minimum energy control
problem for regional exact controllability of system (1):

inf
u
J(u) = inf

u

{
1

2

∫ T

0

‖u(t)‖2Rpdt : u ∈ UT

}
, (27)

where UT = {u ∈ L2 (0, T ;Rp) : χωy(x, T, u) = yT } is a
nonempty closed convex set. The main tool to be used is
the HUM. For more knowledge on this method, we refer
the reader to Lions (1971) and Glowinski et al. (2008).

Indeed, let

G =
{
g ∈ L2(Ω) : g = 0 in Ω\ω

}
. (28)

For any g ∈ G, consider the following adjoint system{
vt(x, t) = (−4)sv(x, t) in Ω× (0, T ),
v(x, t) = 0 in (Rn\Ω)× (0, T ),
v(x, T ) = g in Ω,

(29)

by the Lemma 1 of Ge and Chen (2019), its unique mild
solution satisfies

v(x, t) =

∞∑
n=1

e−λn,s(T−t) (ξn,s, g)L2(Ω) ξn,s(x). (30)

Define the following semi-norm on G

g ∈ G→ ‖g‖2G =

∫ T

0

‖B∗Nsv(·, t)‖2Rpdt, (31)

the following lemma is obtained.

Lemma 5. If system (1) is regionally exactly controllable
in L2(ω) at time T , then (31) defines a norm on G.

Proof. If system (1) is regionally exactly controllable in
L2(ω) at time T , by 〈3〉 of Theorem 4, one has

D∗T g = 0⇒ g = 0. (32)

Moreover, since

B∗Nsv(·, t) = B∗
∞∑
n=1

e−λn,s(T−t) (ξn,s, g)L2(Ω)Nsξn,s

and ‖g‖2G = 0⇔ B∗Nsv(·, t) = 0, by Eq.(26), we get that

‖g‖G =

√∫ T

0

‖B∗Nsv(·, t)‖2Rpdt = 0⇒ g = 0. (33)

Therefore, ‖ · ‖G is a norm of space G and the proof is
finished.

Furthermore, consider the following system{
ψt(x, t) + (−4)sψ(x, t) = 0 in Ω× (0, T ),
ψ(x, t) = BB∗Nsv(x, t) in (Rn\Ω)× (0, T ),
ψ(x, 0) = 0 in Ω

(34)

and let Λ: G→ L2(ω) be

Λg = −χωψ(·, T ). (35)

Suppose that ψ̃(t) satisfies
ψ̃t(x, t) + (−4)sψ̃(x, t) = 0 in Ω× (0, T ),

ψ̃(x, t) = 0 in (Rn\Ω)× (0, T ),

ψ̃(x, 0) = y0(x) in Ω.

(36)

For any target function yT ∈ L2(ω), it yields that the
minimum energy control to achieve regional exact control-
lability of yT at time T is equal to solving the equation

Λg = yT − χωψ̃(x, T ), x ∈ Ω. (37)

Theorem 6. Given any target function yT ∈ L2(ω), if
system (1) is regionally exactly controllable in L2(ω) at
time T under the control input u∗(t) given by

u∗(t) = B∗Nsv(x, t)

=

(
B∗

∞∑
n=1

e−λn,s(T−t) (ξn,s, g)L2(Ω)Nsξn,s

)
(t),

(38)

then the equation (37) admits a unique solution g ∈ G
and moreover, u∗(t) is the solution of the minimum energy
control problem (27).

Proof. For any yT ∈ L2(ω), by Lemma 5, if system (1) is
regionally exactly controllable in L2(ω) at time T driven
by above control input u∗(t), we get that (31) defines a
norm of space G. Let the completion of G with respect
to the norm ‖ · ‖G again by G. By using the definition of
operator Λ in (35), since χ∗ωχωg = g, one has

(Λg, χωg)L2(ω) = (−ψ(·, T ), χ∗ωχωg)L2(Ω)

=

∞∑
n=1

∫ T

0

(BB∗Nsv(·, τ),Nsξn,s)L2(Rn\Ω)

(ξn,s, g)L2(Ω)

eλn,s(T−τ)
dτ

=

∫ T

0

(
BB∗Nsv(·, τ),

∞∑
n=1

〈ξn,s, g〉L2(Ω)Nsξn,s
eλn,s(T−τ)

)
L2(Rn\Ω)

dτ

=

∫ T

0

‖B∗Nsv(·, t)‖2dt = ‖g‖2G.

This implies that Λ : G → L2(ω) is one to one. It then
follows from the Theorem 2.1 of Lions (1971) that Λ is
coercive. Therefore, we get that Eq.(37) has a unique
solution g ∈ G.

In what follows, we show that u∗(t) is the solution of the
minimization problem (27).
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Indeed, since χωy(x, T, u∗) = yT , for any u ∈ L2(0, T ;Rp),
it leads to χωy(x, T, u∗)− χωy(x, T, u) ≡ 0 and besides,

(y(x, T, u∗)− y(x, T, u), g)L2(Ω) = 0. (39)

With this, we have(
∞∑
n=1

∫ T

0

(B (u(τ)− u∗(τ)) ,Nsξn,s)L2(Rn\Ω)ξn,s

eλn,s(T−τ)
dτ, g

)
L2(Ω)

=

∫ T

0

(u(τ)− u∗(τ))B∗Nsv(·, τ)dτ = 0.

Further, since

J ′(u∗)(u− u∗) =

∫ T

0

u∗(t)(u(t)− u∗(t))dt

=

∫ T

0

B∗Nsv(x, t)(u(t)− u∗(t))dt = 0

(40)

holds true for all u ∈ L2(0, T ;Rp), by Chapter III of Lions
(1971), it yields that u∗ solves the minimum energy control
problem (27) and the proof is finished.

4. AN EXAMPLE

Consider the following one dimensional nonlocal diffusion
system with a zone actuator:{

yt(x, t) + (−4)sy(x, t) = 0 in (0, 1)× (0, 5),
y(x, t) = Υ[a1,a2]u(t) in (R\(0, 1))× (0, 5),
y(x, 0) = 0 in (0, 1),

(41)

where s = 0.3, Bu(t) = Υ[a1,a2]u(t) with 1 < a1 ≤ a2 and

u ∈ L2(0, 5). By Kwaśnicki (2012); Kulczycki et al. (2010),

one has λn,s = (nπ − 0.35π)
0.6

+O
(

1
n

)
,

ξn,s(x) ≈
√

2 sin ((n− 0.35)πx+ 0.35π) (42)

and {ξn,s}n≥1 forms a Riesz basic of L2(Ω). Therefore,

D5u =

∞∑
n=1

∫ 5

0

e−λn,s(5−τ)u(τ)dτ

∫ a2

a1

Nsξn,s(x)dxξn,s(x)

and

(D∗5h)(t) =

(
B∗

∞∑
n=1

e−λn,s(5−t) (ξn,s, h)L2(0,1)Nsξn,s

)
(t),

=

∞∑
n=1

e−λn,s(5−t) (ξn,s, h)L2(0,1)

× Cn,s
∫ a2

a1

∫ 1

0

ξn,s(x)− ξn,s(y)

(x− y)1.6
dydx.

Taking into account that∫ a2

a1

∫ 1

0

ξn,s(x)− ξn,s(y)

(x− y)1.6
dydx = 0 (43)

holds true for some a1, a2 ∈ Q with a2 ≥ a1 > 1, we
have Ker(D∗5) 6= {0}. Then, condition 〈3〉 of Theorem 4
cannot be satisfied. This implies that system (41) is not
exact controllability on whole domain L2(0, 1).

However, let a1 = 2, a2 = 2+µ. Since ξn,s(x) is a periodic
continuous function and ξn,s(2) 6= 0, there exists a small
µ > 0 such that

∫ 2+µ

2

∫ 1

0

ξn,s(x)− ξn,s(y)

(x− y)1.6
dydx 6= 0. (44)

Similarly, for a nonzero continuous function h, one can find
for example, an interval (γ, γ + ε) with ε > 0 satisfying∫ γ+ε

γ

ξn,s(x)h(x)dx 6= 0. (45)

With these, let ω = (γ, γ+ ε). Then (D∗5χ
∗
ωh)(t) 6= 0. This

implies that system (41) is regionally exactly controllable
in L2 (γ, γ + ε) at time T = 5 under a zone actuator
localized in [2, 2 + µ].

Furthermore, given any target function y5 ∈ L2(ω), if
system (41) is regionally exactly controllable in L2 (ω) at
time T = 5, consider the following minimization problem:

inf
u
J(u) = inf

u

{
1

2

∫ 5

0

u2(t)dt : u ∈ UT
}
, (46)

where UT = {u ∈ L2 (0, 5) : χωy(x, 5, u) = y5}. By
Theorem 6, if system (41) is regionally exactly controllable
in L2(ω) at time 5, the equation

Λg = y5 − χωψ̃(x, 5), x ∈ Ω (47)

admits a unique solution g ∈ G, where Λg = −χωψ(·, 5),
ψ(x, t) is the solution of system ψt(x, t) + (−4)0.3ψ(x, t) = 0 in (0, 1)× (0, 5),

ψ(x, t) = Υ[a1,a2]u
∗(t) in (R\(0, 1))× (0, 5),

ψ(x, 0) = 0 in (0, 1)
(48)

and

u∗(t) =

∞∑
n=1

e−λn,s(5−t) (ξn,s, g)L2(0,1)

× Cn,s
∫ a2

a1

∫ 1

0

ξn,s(x)− ξn,s(y)

(x− y)1.6
dydx.

(49)

Besides, we get that u∗(t) solves above minimum energy
control problem (46).

5. CONCLUSION

This paper investigate the regional exact controllability
problem of parabolic PDE systems with the fractional
Laplacian, whose control input is localized on some subset
of the system’s exterior domain. Some equivalent condi-
tions to achieve regional exact controllability of the consid-
ered system are presented. An approach on the minimum
energy control problem is then explicitly derived by using
HUM. Moreover, the presented results can be extended
to more complex nonlocal distributed parameter systems.
For instance, the problem of constrained regional control
of time-space fractional diffusion systems with the frac-
tional Laplacian under more complicated regional sensing
and actuation configurations are of great interest. For
more information on the potential topics related to space-
fractional diffusion systems, we refer the reader to Ge et al.
(2015) and the references therein.
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